
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Using Planning for Automated Testing of Video Games
Tomáš Balyo1 , Roman Barták1,2 , Lukáš Chrpa1,3 , Michal Červenka1 , Filip Dvořák1 ,

Stephan Gocht4 , Lukáš Lipčák1 , Viktor Macek1 , Dominik Roháček1 , Josef Ryzı́1 ,
Martin Suda1,3 , Dominik Šafránek1 , Slavomı́r Švancár1 , G. Michael Youngblood1

1Filuta AI, Inc., 1606 Headway Cir STE 9145, Austin, TX 78754, United States
2Faculty of Mathematics and Physics, Charles University, Prague, Czechia

3Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Czechia
4Stephan Gocht - AI Software Engineering, Meißen, Germany

tomas@filuta.ai, batak@ktiml.mff.cuni.cz, lukas.chrpa@cvut.cz, {mcervenka, filip}@filuta.ai,
stephan@drgocht.com

{llipcak, viktor, drohacek, josef, msuda, dsafranek, slavo, michael}@filuta.ai

Abstract
In this demonstration, we present a system that au-
tomates regression testing for video games using
automated planning techniques. Traditional test
scripts are a common method for testing both video
games and software in general. While effective,
they require manual creation and frequent updates
throughout development, making the process labor-
intensive. Our system eliminates this burden by au-
tomatically generating and maintaining test scripts.
The test engineer only needs to define the game’s
rules using the Planning Domain Definition Lan-
guage (PDDL) and specify initial states and goals
for individual test cases. This significantly reduces
human effort while ensuring test scripts remain up
to date. Additionally, our system integrates with
game engine editors — supporting both Unity and
Unreal to execute and evaluate test cases directly
within the game. It collects detailed logs, telemetry
data, and video recordings, allowing users to review
test results efficiently.

1 Introduction
Game testing is crucial for identifying bugs, optimizing per-
formance, and ensuring a high-quality user experience. It in-
volves scenario testing, UI refinement, and compliance checks,
especially for online games. While modern testing blends
automation and manual efforts, fully integrating automation
without disrupting development remains a challenge [Poli-
towski et al., 2022]. Our system expands automated testing
with a planning-based approach.

We present an alternative to scripted testing. The most
significant difference is that scripts, in conventional script-
ing, must be manually created and maintained for each test,
whereas tests utilizing automated planning only require spec-
ifying the test goals. A plan can be used in the same way as
test scripts in games. The planner creates an ad hoc path to
the goal each time it is executed based on the game mechanics

captured in the defined domain model. Furthermore, our sys-
tem can react to unexpected events during the execution of a
script and adjust it by re-planning from the current state and
still possibly reaching the goal.

The presented system is being developed as a commercial
product by Filuta AI, Inc. in collaboration with real game
development studios as customers. It undergoes continuous
evaluation and refinement based on their feedback to ensure it
meets their needs.

2 Motivation
We focus on regression testing during game development, i.e.,
running frequent tests to ensure that recent changes did not
introduce unintended glitches and the game still performs as
expected. This is a particularly repetitive and dull task for
a human tester but crucial for effective development. It is
often the case that the longer the time difference between the
introduction and discovery of the bug, the harder it is to fix.

2.1 What can be Tested with Planning
For regression testing, we can define a set of objectives that
must be tested every time the game code is updated. These
objectives can be translated into (planning) goals that need
to be achieved by sequences of actions (plans) that can be
generated automatically (by planners). The plans are then
executed in the game in a similar fashion as (manually written)
test scripts. On top of that, we can collect game performance
telemetry data.

Besides regression testing, planning has the potential for
investigating whether the game can be completed, i.e., each
intended objective can be achieved from the starting state of
each scenario, if the game has dead-ends, i.e., states that can be
reached but it is impossible to complete the game from them.
In modern game design, such situations are very undesirable
and annoying for gamers. Additionally, planning can be also
used to identify undesired shortcuts in the game.

The Planning Agent technology is a great fit for games that
have random and non-deterministic nature due to its ability
to adapt to changing conditions and the availability of re-
planning (changing the game script) at any point. Planning

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

agents also inherently allow the automatic variation of the
playthroughs by weighing the decision points (preferring the
unexplored paths) so that the agent finds plans that are as
different as possible from all the previous playthroughs while
still achieving the goal. This principle is like Monte-Carlo
Sampling, providing coverage of diverse gameplays even in
infinitely large game worlds, where the only limitation is the
number of hours budgeted for the explorative agents. This
adaptability allows us to test objectives such as:

• Dialogue Choices / NPC1 Interactions: Assuming the tree
of narrative decisions is finite, the Planning Agents are
expected to provide complete coverage of the narrative
tree and capture anomalies such as suddenly inaccessible
dialogue paths or unreachable story goals.

• Unscripted Event Responses: This can be a side effect
of any other tests or a test by itself. Re-planning based
on a changed world state is an integral part of Planning
Agents and happens seamlessly. We can either detect
deviations or re-plannings in all the other tests that can
be used for this analysis, or we can design a test that
covers a part of the game that changes dramatically and
lets the Planning Agent reach a goal. We also measure
the cognitive complexity of the dynamic changes and
gameplay (how difficult the reasoning task about the
dynamic change has been).

2.2 Applicability
The classical planning-based testing approach is most suitable
for games with many discrete causal interactions such as role-
playing games (RPG), point-and-click adventures, strategy
or city-building games, visual novels, or puzzles. It is less
suitable for fast-paced action-oriented games such as sports
games or driving simulations. For such games, reinforcement
learning-based approaches, that have been studied in recent
works, seem to be more suitable (see the Related Work Section
of this paper). Overall, we observe that the reinforcement
learning and the planning-based approaches can complement
each other rather well.

3 Preliminaries
Automated planning concerns finding a plan — a sequence
of actions that transform the world from an initial state to a
goal state, i.e., a state where all goal conditions are satisfied.
A planning problem instance consists of a domain definition
and a task definition. The domain definition describes the
environment and possible actions with their preconditions
and effects. In STRIPS planning [Fikes and Nilsson, 1971],
the environment is specified by predicates, and preconditions
and effects of actions are conjunctions of predicates and their
negations. The task specification consists of the description of
the initial state and the goal conditions.

4 Related Work
Planning is rooted in search and, as such, has had a long history
with games. At the beginning of AI, the focus was on games

1Non-player character

like chess [Newell et al., 1972] and checkers [Samuel, 1959],
which initially relied on the search for solutions. Planning con-
tinued to dominate in the 80s and 90s with checkers and chess
with Deep Blue [Hsu et al., 1990] and Chinook [Schaeffer et
al., 1996]. Agent architectures and production systems added
value, and soon, planning started to add value in games like
bridge [Smith et al., 1998] and the class of Real-Time Strategy
(RTS) games [Chung et al., 2005]. In [Duarte et al., 2020],
they survey the history of planning and learning in games,
covering the spectrum as well as diving into the lineage of
planning from search, minimax and alpha-beta pruning, hier-
archical task networks, and Monte Carlo Tree search, through
classical planning, rapidly-exploring random trees, case-based
planning, and behavior trees. Most of the work is focused on
creating AI-driven opponents [Wurman et al., 2022], which
are sometimes used to play both sides for evaluation, AI train-
ing, and testing.

Automated testing with AI has been a rising research focus
more recently with work that has focused on agent-based ap-
proaches that include navigation mesh path-finding [Shirzade-
hhajimahmood et al., 2021], reinforcement learning agents
for finding design and environmental defects [Ariyurek et al.,
2019; Ferdous et al., 2022], reinforcement learning for load
testing [Tufano et al., 2022], modeling of user interaction for
boundary testing [Owen et al., 2016], search for test case gen-
eration [Ferdous et al., 2021a], and search for automated play
testing [Ferdous et al., 2021b]. Despite planning uses in-game
AI, we do not see its use in in-game testing more broadly
beyond back to search. However, as evidenced by Bram Rid-
der’s (AI Programmer for Rebellion) keynote talk at the 2021
AIIDE Conference on “Improved Automated Game Testing
Using Domain-Independent AI Planning” [Riddler, 2021] and
his 2021 GDC AI Summit talk “Automated Game Testing
Using a Numeric Domain Independent AI Planner,” planning
techniques for game testing are beginning to be used in the
games industry mixed in with calls for more AI automation of
testing [Fray, 2023].

In [Volokh and Halfond, 2023] the authors proposed an
automated approach for determining actions when conducting
automated exploration for games. It is based on program
analysis (slicing) of the game code. Although they are not
using the usual planning formalism (like PDDL), they work
with symbolic representation of states and actions and rely on
SMT (satisfiability modulo theories) solvers to determine the
set of applicable actions in a given state.

5 System Description
A Planning Agent is an entity that generates a plan to reach
the test goal, executes the plan, and then reports the outcome
of the plan execution (e.g. passed or failed) and provides
telemetry data. A planning agent requires a domain model
that captures the mechanics of the game and a description of
the current game state and a goal that needs to be achieved.
The domain model is provided in Planning Domain Definition
Language (PDDL) [Ghallab et al., 1998], while the initial and
goal states are described using predicates. The planning agent
utilizes the Unified Planning framework [Micheli et al., 2025]
to interface with state-of-the-art planners and find plans.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Planning Agents are engine-agnostic and can be integrated
with any game engine. Our most advanced integration is with
Unity and Unreal engines. For both we developed a unique
Filuta Plugin that automatically generates the data required
by the planning agent. Each plugin can hook onto the Unity
and Unreal objects to automatically collect information about
the game environment. Each plugin also allows the Planning
Agent’s output to be integrated back into the game to play it.
Based on the environment configuration, it sets the game up
into an initial state, creates a plan to fulfill the (user-specified)
test goal and executes it. In most tests, the only configuration
the user must specify is the environment (map) on which the
test will be executed. Everything is configured and viewed on
a web application called Planning Dashboard. It is also used
by the user to inspect the results of the tests.

Filuta AI allows for unattended testing even in non-
deterministic environments. In case of any unforeseen cir-
cumstances in a game, such as the targeted item is collected by
a different game character, the Planning Agent can automati-
cally adjust, i.e., the Planning Agent can stop the execution,
evaluate the current world state, and produce a new plan to
reach the goal.

5.1 Instrument Once, Test All Code Versions
The most labor-intensive part of integrating the Filuta AI
Gaming QA solution is mapping the actions from the domain
(move, kill, collect, . . . ) back to the game code. Therefore we
designed our plugins in a way that the game code itself does
not need to be modified, and new code is only added on top of
it. The plugins use reflection techniques to extract game state
information. This allows the mapping needs to be developed
only once, and unless there are significant changes to the game
mechanics, it can remain the same throughout the whole game
development process.

The original instrumentation of the real-time strategy game
Silica [Bohemia Interactive, 2025] happened on a code ver-
sion from September 2023. One of the initial groups of tests
was to build all the available unit types in the game. The
version from September 2023, however, did not implement
some of the unit-building structures, so a player could not
build some units yet, hence these goals were unachievable.
When updating the code to a version from April 2024 (after
7 months of active development), no change was required to
the Filuta AI instrumentation. All the tests that worked on
the September 2023 version also work on the latest version
without any amendments. Moreover, the structures to build
the new units were implemented into the game and the Filuta
Unity Plugin automatically registered them.

5.2 Addressing Hardness of PDDL Modeling
Automated Planning is not commonly utilized by game de-
velopers. A major challenge in its adoption lies in the au-
thorial burden of writing domain and problem descriptions
in PDDL [Ghallab et al., 1998]. Crafting well-structured
PDDL models is a specialized skill that develops over time,
making efficient use of experienced modelers crucial. While
Knowledge Engineering tools exist to support PDDL model-
ing [Simpson et al., 2007; Vaquero et al., 2013], the process
remains somewhat of a “black art” [McCluskey et al., 2017].

To address this challenge, we investigate the practical
applicability of Automated Planning Action Model Learn-
ing (AML) techniques. AML aims to synthesize domain
definitions directly from logs containing state sequences,
reducing the need for manual modeling. Numerous al-
gorithms have been developed for this task [Wang, 1996;
Aineto et al., 2019; Zhuo et al., 2010; Yang et al., 2007;
Juba et al., 2021], and the MacQ project [Callanan et al., 2022]
provides a recent overview along with new implementations of
multiple AML techniques. Our research team is actively con-
tributing to this field with ongoing work [Balyo et al., 2024a;
Balyo et al., 2024b].

6 Demo Video
The demo video (available at https://youtu.be/ggRiXeQxMsE)
showcases our system in action with two real game examples.
The first is a real-time strategy game Silica by Bohemia In-
teractive [Bohemia Interactive, 2025] developed in the Unity
Engine [Unity Technologies, 2025] and the second is the first-
person shooter Lyra [Epic Games, 2025a]. Lyra is a sam-
ple tutorial project developed alongside Unreal Engine [Epic
Games, 2025b] to serve as a starting point for learning about
the engine and creating new games in it. The video features
gameplay footage from the planning agent, along with behind-
the-scenes insights into test setup and evaluation using our
web application, the Filuta Planning Dashboard.

7 Conclusion
We introduced the Filuta AI planning agent, which automates
regression testing for video games using PDDL-based auto-
mated planning. This approach eliminates the need for manual
test scripts, reducing workload while maintaining accuracy
and adaptability. Integrated with Unity and Unreal, it enables
seamless test execution and detailed result analysis.

Our evaluation across multiple games shows that planning-
based testing effectively verifies gameplay mechanics and
objectives. Its ability to adapt and replan in dynamic environ-
ments enhances robustness.

However, challenges remain, particularly in the complex-
ity of PDDL modeling. To address this, we explored action
model learning (AML) to generate domain models from game-
play logs, making automated planning more accessible. Our
research continues to refine these techniques and streamline
integration.

7.1 Future Work
Moving forward, we aim to extend our system’s applicability
by testing it across a broader range of game genres. We’re
working closely with several video game studios to meet their
real-world needs. Additionally, we plan to develop intuitive
tools for domain modeling, such as graphical or no-code inter-
faces inspired by Unreal Engine’s Blueprint system, to further
lower the barrier for game developers. By enhancing usability
and expanding coverage, we hope to drive wider adoption
of automated planning in game testing, ultimately improving
game quality and development efficiency.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://youtu.be/ggRiXeQxMsE


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgements
Roman Barták and Lukáš Chrpa are supported by the project
25-18003S of the Czech Science Foundation.

References
[Aineto et al., 2019] Diego Aineto, Sergio Jiménez Celorrio,

and Eva Onaindia. Learning action models with minimal
observability. Artificial Intelligence, 275:104–137, 2019.

[Ariyurek et al., 2019] Sinan Ariyurek, Aysu Betin-Can, and
Elif Surer. Automated video game testing using synthetic
and humanlike agents. IEEE Transactions on Games,
13(1):50–67, 2019.

[Balyo et al., 2024a] Tomáš Balyo, Martin Suda, Lukáš
Chrpa, Dominik Šafránek, Stephan Gocht, Filip Dvořák,
Roman Barták, and G Michael Youngblood. Planning do-
main model acquisition from state traces without action
parameters. In Proceedings of the International Conference
on Principles of Knowledge Representation and Reasoning,
volume 21, pages 812–822, 2024.

[Balyo et al., 2024b] Tomáš Balyo, G Michael Youngblood,
Filip Dvořák, and Roman Barták. On automating video
game testing by planning and learning. arXiv preprint
arXiv:2402.12393, 2024.

[Bohemia Interactive, 2025] Bohemia Interactive. Silica
game. https://silicagame.com/, 2025. Accessed: 2025-
05-15.

[Callanan et al., 2022] Ethan Callanan, Rebecca De Venezia,
Victoria Armstrong, Alison Paredes, Tathagata Chakraborti,
and Christian Muise. Macq: a holistic view of model
acquisition techniques. arXiv preprint arXiv:2206.06530,
2022.

[Chung et al., 2005] Michael Chung, Michael Buro, and
Jonathan Schaeffer. Monte carlo planning in rts games.
In Proceedings of the 2005 IEEE Symposium on Computa-
tional Intelligence and Games (CIG05). IEEE, 01 2005.

[Duarte et al., 2020] Fernando Fradique Duarte, Nuno Lau,
Artur Pereira, and Luis Paulo Reis. A survey of planning
and learning in games. Applied Sciences, 10(13):4529,
2020.

[Epic Games, 2025a] Epic Games. Lyra starter game - un-
real engine marketplace. https://www.unrealengine.com/
marketplace/learn/lyra, 2025. Accessed: 2025-05-15.

[Epic Games, 2025b] Epic Games. Unreal engine. https://
www.unrealengine.com/en-US, 2025. Accessed: 2025-05-
15.

[Ferdous et al., 2021a] Raihana Ferdous, Fitsum Kifetew, Da-
vide Prandi, I. S. W. B. Prasetya, Samira Shirzadehhajimah-
mood, and Angelo Susi. Search-based automated play
testing of computer games: A model-based approach. In
Search-Based Software Engineering: 13th International
Symposium, SSBSE 2021, Bari, Italy, October 11–12,
2021, Proceedings, page 56–71, Berlin, Heidelberg, 2021.
Springer-Verlag.

[Ferdous et al., 2021b] Raihana Ferdous, Fitsum Kifetew, Da-
vide Prandi, ISWB Prasetya, Samira Shirzadehhajimah-
mood, and Angelo Susi. Search-based automated play
testing of computer games: A model-based approach. In
International Symposium on Search Based Software Engi-
neering, pages 56–71. Springer, 2021.

[Ferdous et al., 2022] Raihana Ferdous, Fitsum Kifetew, Da-
vide Prandi, and Angelo Susi. Towards agent-based testing
of 3d games using reinforcement learning. In Proceed-
ings of the 37th IEEE/ACM International Conference on
Automated Software Engineering, pages 1–8, 2022.

[Fikes and Nilsson, 1971] Richard E Fikes and Nils J Nils-
son. Strips: A new approach to the application of theorem
proving to problem solving. Artificial intelligence, 2(3-
4):189–208, 1971.

[Fray, 2023] Andrew Fray. Automated testing roundtables
gdc 2023. https://autotestingroundtable.com/, 2023. (Ac-
cessed on 12/12/2023).

[Ghallab et al., 1998] M. Ghallab, A. Howe, C. Knoblock,
D. Mcdermott, A. Ram, M. Veloso, D. Weld, and
D. Wilkins. PDDL—The Planning Domain Definition Lan-
guage. 1998.

[Hsu et al., 1990] F-h Hsu, Thomas S Anantharaman, Mur-
ray S Campbell, and Andreas Nowatzyk. Deep thought. In
Computers, Chess, and Cognition, pages 55–78. Springer,
1990.

[Juba et al., 2021] Brendan Juba, Hai S. Le, and Roni Stern.
Safe Learning of Lifted Action Models. In Proceedings of
the 18th International Conference on Principles of Knowl-
edge Representation and Reasoning, pages 379–389, 11
2021.

[McCluskey et al., 2017] Thomas Leo McCluskey, Tiago Ste-
gun Vaquero, and Mauro Vallati. Engineering knowledge
for automated planning: Towards a notion of quality. In
Óscar Corcho, Krzysztof Janowicz, Giuseppe Rizzo, Ilaria
Tiddi, and Daniel Garijo, editors, Proceedings of the Knowl-
edge Capture Conference, K-CAP 2017, Austin, TX, USA,
December 4-6, 2017, pages 14:1–14:8. ACM, 2017.

[Micheli et al., 2025] Andrea Micheli, Arthur Bit-Monnot,
Gabriele Röger, Enrico Scala, Alessandro Valentini, Luca
Framba, Alberto Rovetta, Alessandro Trapasso, Luigi
Bonassi, Alfonso Emilio Gerevini, Luca Iocchi, Felix In-
grand, Uwe Köckemann, Fabio Patrizi, Alessandro Saetti,
Ivan Serina, and Sebastian Stock. Unified planning: Mod-
eling, manipulating and solving ai planning problems in
python. SoftwareX, 29:102012, 2025.

[Newell et al., 1972] Allen Newell, Herbert Alexander Si-
mon, et al. Human problem solving, volume 104:9. Prentice-
hall Englewood Cliffs, NJ, 1972.

[Owen et al., 2016] V Elizabeth Owen, Gabriella Anton, and
Ryan Baker. Modeling user exploration and boundary test-
ing in digital learning games. In Proceedings of the 2016
conference on user modeling adaptation and personaliza-
tion, pages 301–302, 2016.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://silicagame.com/
https://www.unrealengine.com/marketplace/learn/lyra
https://www.unrealengine.com/marketplace/learn/lyra
https://www.unrealengine.com/en-US
https://www.unrealengine.com/en-US
https://autotestingroundtable.com/


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Politowski et al., 2022] Cristiano Politowski, Yann-Gaël
Guéhéneuc, and Fabio Petrillo. Towards automated video
game testing: still a long way to go. In Proceedings of the
6th International ICSE Workshop on Games and Software
Engineering: Engineering Fun, Inspiration, and Motiva-
tion, pages 37–43, 2022.

[Riddler, 2021] Bram Riddler. Improve automated game
testing using domain independent ai planning - youtube.
https://www.youtube.com/watch?v=2KXmxuCjjCw, 2021.
(Accessed on 12/12/2023).

[Samuel, 1959] Arthur L Samuel. Some studies in machine
learning using the game of checkers. IBM Journal of re-
search and development, 3(3):210–229, 1959.

[Schaeffer et al., 1996] Jonathan Schaeffer, Robert Lake,
Paul Lu, and Martin Bryant. Chinook the world man-
machine checkers champion. AI magazine, 17(1):21–21,
1996.

[Shirzadehhajimahmood et al., 2021] Samira Shirzadehha-
jimahmood, ISWB Prasetya, Frank Dignum, Mehdi Das-
tani, and Gabriele Keller. Using an agent-based approach
for robust automated testing of computer games. In Pro-
ceedings of the 12th International Workshop on Automating
TEST Case Design, Selection, and Evaluation, pages 1–8,
2021.

[Simpson et al., 2007] Ron M. Simpson, Diane E. Kitchin,
and Thomas Leo McCluskey. Planning domain definition
using GIPO. Knowl. Eng. Rev., 22(2):117–134, 2007.

[Smith et al., 1998] Stephen J Smith, Dana Nau, and Tom
Throop. Computer bridge: A big win for ai planning. AI
magazine, 19(2):93–93, 1998.

[Tufano et al., 2022] Rosalia Tufano, Simone Scalabrino,
Luca Pascarella, Emad Aghajani, Rocco Oliveto, and
Gabriele Bavota. Using reinforcement learning for load
testing of video games. In Proceedings of the 44th In-
ternational Conference on Software Engineering, pages
2303–2314, 2022.

[Unity Technologies, 2025] Unity Technologies. Unity game
engine. https://unity.com/, 2025. Accessed: 2025-05-15.

[Vaquero et al., 2013] Tiago Stegun Vaquero, José Reinaldo
Silva, Flavio Tonidandel, and J. Christopher Beck. itsim-
ple: towards an integrated design system for real planning
applications. Knowl. Eng. Rev., 28(2):215–230, 2013.

[Volokh and Halfond, 2023] Sasha Volokh and William G.J.
Halfond. Automatically defining game action spaces for
exploration using program analysis. Proceedings of the
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment, 19(1):145–154, Oct. 2023.

[Wang, 1996] Xuemei Wang. Learning planning operators
by observation and practice. PhD thesis, Citeseer, 1996.

[Wurman et al., 2022] Peter R. Wurman, Samuel Barrett,
Kenta Kawamoto, James MacGlashan, Kaushik Subra-
manian, Thomas J. Walsh, Roberto Capobianco, Alisa
Devlic, Franziska Eckert, Florian Fuchs, Leilani Gilpin,
Piyush Khandelwal, Varun Kompella, HaoChih Lin, Patrick
MacAlpine, Declan Oller, Takuma Seno, Craig Sherstan,

Michael D. Thomure, Houmehr Aghabozorgi, Leon Barrett,
Rory Douglas, Dion Whitehead, Peter Dürr, Peter Stone,
Michael Spranger, and Hiroaki Kitano. Outracing cham-
pion gran turismo drivers with deep reinforcement learning.
Nat., 602(7896):223–228, 2022.

[Yang et al., 2007] Qiang Yang, Kangheng Wu, and Yunfei
Jiang. Learning action models from plan examples using
weighted max-sat. Artificial Intelligence, 171(2-3):107–
143, 2007.

[Zhuo et al., 2010] Hankz Hankui Zhuo, Qiang Yang,
Derek Hao Hu, and Lei Li. Learning complex action mod-
els with quantifiers and logical implications. Artificial
Intelligence, 174(18):1540–1569, 2010.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://www.youtube.com/watch?v=2KXmxuCjjCw
https://unity.com/

