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Abstract
In this demonstration, we present a system that au-
tomates regression testing for video games using
automated planning techniques. Traditional test
scripts are a common method for testing both video
games and software in general. While effective,
they require manual creation and frequent updates
throughout development, making the process labor-
intensive. Our system eliminates this burden by au-
tomatically generating and maintaining test scripts.
The test engineer only needs to define the game’s
rules using the Planning Domain Definition Lan-
guage (PDDL) and specify initial states and goals
for individual test cases. This significantly reduces
human effort while ensuring test scripts remain up
to date. Additionally, our system integrates with
game engine editors — supporting both Unity and
Unreal to execute and evaluate test cases directly
within the game. It collects detailed logs, telemetry
data, and video recordings, allowing users to review
test results efficiently.

1 Introduction
Game testing is crucial for identifying bugs, optimizing per-
formance, and ensuring a high-quality user experience. It in-
volves scenario testing, UI refinement, and compliance checks,
especially for online games. While modern testing blends
automation and manual efforts, fully integrating automation
without disrupting development remains a challenge [Poli-
towski et al., 2022]. Our system expands automated testing
with a planning-based approach.

We present an alternative to scripted testing. The most
significant difference is that scripts, in conventional script-
ing, must be manually created and maintained for each test,
whereas tests utilizing automated planning only require spec-
ifying the test goals. A plan can be used in the same way as
test scripts in games. The planner creates an ad hoc path to
the goal each time it is executed based on the game mechanics

captured in the defined domain model. Furthermore, our sys-
tem can react to unexpected events during the execution of a
script and adjust it by re-planning from the current state and
still possibly reaching the goal.

The presented system is being developed as a commercial
product by Filuta AI, Inc. in collaboration with real game
development studios as customers. It undergoes continuous
evaluation and refinement based on their feedback to ensure it
meets their needs.

2 Motivation
We focus on regression testing during game development, i.e.,
running frequent tests to ensure that recent changes did not
introduce unintended glitches and the game still performs as
expected. This is a particularly repetitive and dull task for
a human tester but crucial for effective development. It is
often the case that the longer the time difference between the
introduction and discovery of the bug, the harder it is to fix.

2.1 What can be Tested with Planning
For regression testing, we can define a set of objectives that
must be tested every time the game code is updated. These
objectives can be translated into (planning) goals that need
to be achieved by sequences of actions (plans) that can be
generated automatically (by planners). The plans are then
executed in the game in a similar fashion as (manually written)
test scripts. On top of that, we can collect game performance
telemetry data.

Besides regression testing, planning has the potential for
investigating whether the game can be completed, i.e., each
intended objective can be achieved from the starting state of
each scenario, if the game has dead-ends, i.e., states that can be
reached but it is impossible to complete the game from them.
In modern game design, such situations are very undesirable
and annoying for gamers. Additionally, planning can be also
used to identify undesired shortcuts in the game.

The Planning Agent technology is a great fit for games that
have random and non-deterministic nature due to its ability
to adapt to changing conditions and the availability of re-
planning (changing the game script) at any point. Planning
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agents also inherently allow the automatic variation of the
playthroughs by weighing the decision points (preferring the
unexplored paths) so that the agent finds plans that are as
different as possible from all the previous playthroughs while
still achieving the goal. This principle is like Monte-Carlo
Sampling, providing coverage of diverse gameplays even in
infinitely large game worlds, where the only limitation is the
number of hours budgeted for the explorative agents. This
adaptability allows us to test objectives such as:

• Dialogue Choices / NPC1 Interactions: Assuming the tree
of narrative decisions is finite, the Planning Agents are
expected to provide complete coverage of the narrative
tree and capture anomalies such as suddenly inaccessible
dialogue paths or unreachable story goals.

• Unscripted Event Responses: This can be a side effect
of any other tests or a test by itself. Re-planning based
on a changed world state is an integral part of Planning
Agents and happens seamlessly. We can either detect
deviations or re-plannings in all the other tests that can
be used for this analysis, or we can design a test that
covers a part of the game that changes dramatically and
lets the Planning Agent reach a goal. We also measure
the cognitive complexity of the dynamic changes and
gameplay (how difficult the reasoning task about the
dynamic change has been).

2.2 Applicability
The classical planning-based testing approach is most suitable
for games with many discrete causal interactions such as role-
playing games (RPG), point-and-click adventures, strategy
or city-building games, visual novels, or puzzles. It is less
suitable for fast-paced action-oriented games such as sports
games or driving simulations. For such games, reinforcement
learning-based approaches, that have been studied in recent
works, seem to be more suitable (see the Related Work Section
of this paper). Overall, we observe that the reinforcement
learning and the planning-based approaches can complement
each other rather well.

3 Preliminaries
Automated planning concerns finding a plan — a sequence
of actions that transform the world from an initial state to a
goal state, i.e., a state where all goal conditions are satisfied.
A planning problem instance consists of a domain definition
and a task definition. The domain definition describes the
environment and possible actions with their preconditions
and effects. In STRIPS planning [Fikes and Nilsson, 1971],
the environment is specified by predicates, and preconditions
and effects of actions are conjunctions of predicates and their
negations. The task specification consists of the description of
the initial state and the goal conditions.

4 Related Work
Planning is rooted in search and, as such, has had a long history
with games. At the beginning of AI, the focus was on games

1Non-player character

like chess [Newell et al., 1972] and checkers [Samuel, 1959],
which initially relied on the search for solutions. Planning con-
tinued to dominate in the 80s and 90s with checkers and chess
with Deep Blue [Hsu et al., 1990] and Chinook [Schaeffer et
al., 1996]. Agent architectures and production systems added
value, and soon, planning started to add value in games like
bridge [Smith et al., 1998] and the class of Real-Time Strategy
(RTS) games [Chung et al., 2005]. In [Duarte et al., 2020],
they survey the history of planning and learning in games,
covering the spectrum as well as diving into the lineage of
planning from search, minimax and alpha-beta pruning, hier-
archical task networks, and Monte Carlo Tree search, through
classical planning, rapidly-exploring random trees, case-based
planning, and behavior trees. Most of the work is focused on
creating AI-driven opponents [Wurman et al., 2022], which
are sometimes used to play both sides for evaluation, AI train-
ing, and testing.

Automated testing with AI has been a rising research focus
more recently with work that has focused on agent-based ap-
proaches that include navigation mesh path-finding [Shirzade-
hhajimahmood et al., 2021], reinforcement learning agents
for finding design and environmental defects [Ariyurek et al.,
2019; Ferdous et al., 2022], reinforcement learning for load
testing [Tufano et al., 2022], modeling of user interaction for
boundary testing [Owen et al., 2016], search for test case gen-
eration [Ferdous et al., 2021a], and search for automated play
testing [Ferdous et al., 2021b]. Despite planning uses in-game
AI, we do not see its use in in-game testing more broadly
beyond back to search. However, as evidenced by Bram Rid-
der’s (AI Programmer for Rebellion) keynote talk at the 2021
AIIDE Conference on “Improved Automated Game Testing
Using Domain-Independent AI Planning” [Riddler, 2021] and
his 2021 GDC AI Summit talk “Automated Game Testing
Using a Numeric Domain Independent AI Planner,” planning
techniques for game testing are beginning to be used in the
games industry mixed in with calls for more AI automation of
testing [Fray, 2023].

In [Volokh and Halfond, 2023] the authors proposed an
automated approach for determining actions when conducting
automated exploration for games. It is based on program
analysis (slicing) of the game code. Although they are not
using the usual planning formalism (like PDDL), they work
with symbolic representation of states and actions and rely on
SMT (satisfiability modulo theories) solvers to determine the
set of applicable actions in a given state.

5 System Description
A Planning Agent is an entity that generates a plan to reach
the test goal, executes the plan, and then reports the outcome
of the plan execution (e.g. passed or failed) and provides
telemetry data. A planning agent requires a domain model
that captures the mechanics of the game and a description of
the current game state and a goal that needs to be achieved.
The domain model is provided in Planning Domain Definition
Language (PDDL) [Ghallab et al., 1998], while the initial and
goal states are described using predicates. The planning agent
utilizes the Unified Planning framework [Micheli et al., 2025]
to interface with state-of-the-art planners and find plans.
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Planning Agents are engine-agnostic and can be integrated
with any game engine. Our most advanced integration is with
Unity and Unreal engines. For both we developed a unique
Filuta Plugin that automatically generates the data required
by the planning agent. Each plugin can hook onto the Unity
and Unreal objects to automatically collect information about
the game environment. Each plugin also allows the Planning
Agent’s output to be integrated back into the game to play it.
Based on the environment configuration, it sets the game up
into an initial state, creates a plan to fulfill the (user-specified)
test goal and executes it. In most tests, the only configuration
the user must specify is the environment (map) on which the
test will be executed. Everything is configured and viewed on
a web application called Planning Dashboard. It is also used
by the user to inspect the results of the tests.

Filuta AI allows for unattended testing even in non-
deterministic environments. In case of any unforeseen cir-
cumstances in a game, such as the targeted item is collected by
a different game character, the Planning Agent can automati-
cally adjust, i.e., the Planning Agent can stop the execution,
evaluate the current world state, and produce a new plan to
reach the goal.

5.1 Instrument Once, Test All Code Versions
The most labor-intensive part of integrating the Filuta AI
Gaming QA solution is mapping the actions from the domain
(move, kill, collect, . . . ) back to the game code. Therefore we
designed our plugins in a way that the game code itself does
not need to be modified, and new code is only added on top of
it. The plugins use reflection techniques to extract game state
information. This allows the mapping needs to be developed
only once, and unless there are significant changes to the game
mechanics, it can remain the same throughout the whole game
development process.

The original instrumentation of the real-time strategy game
Silica [Bohemia Interactive, 2025] happened on a code ver-
sion from September 2023. One of the initial groups of tests
was to build all the available unit types in the game. The
version from September 2023, however, did not implement
some of the unit-building structures, so a player could not
build some units yet, hence these goals were unachievable.
When updating the code to a version from April 2024 (after
7 months of active development), no change was required to
the Filuta AI instrumentation. All the tests that worked on
the September 2023 version also work on the latest version
without any amendments. Moreover, the structures to build
the new units were implemented into the game and the Filuta
Unity Plugin automatically registered them.

5.2 Addressing Hardness of PDDL Modeling
Automated Planning is not commonly utilized by game de-
velopers. A major challenge in its adoption lies in the au-
thorial burden of writing domain and problem descriptions
in PDDL [Ghallab et al., 1998]. Crafting well-structured
PDDL models is a specialized skill that develops over time,
making efficient use of experienced modelers crucial. While
Knowledge Engineering tools exist to support PDDL model-
ing [Simpson et al., 2007; Vaquero et al., 2013], the process
remains somewhat of a “black art” [McCluskey et al., 2017].

To address this challenge, we investigate the practical
applicability of Automated Planning Action Model Learn-
ing (AML) techniques. AML aims to synthesize domain
definitions directly from logs containing state sequences,
reducing the need for manual modeling. Numerous al-
gorithms have been developed for this task [Wang, 1996;
Aineto et al., 2019; Zhuo et al., 2010; Yang et al., 2007;
Juba et al., 2021], and the MacQ project [Callanan et al., 2022]
provides a recent overview along with new implementations of
multiple AML techniques. Our research team is actively con-
tributing to this field with ongoing work [Balyo et al., 2024a;
Balyo et al., 2024b].

6 Demo Video
The demo video (available at https://youtu.be/ggRiXeQxMsE)
showcases our system in action with two real game examples.
The first is a real-time strategy game Silica by Bohemia In-
teractive [Bohemia Interactive, 2025] developed in the Unity
Engine [Unity Technologies, 2025] and the second is the first-
person shooter Lyra [Epic Games, 2025a]. Lyra is a sam-
ple tutorial project developed alongside Unreal Engine [Epic
Games, 2025b] to serve as a starting point for learning about
the engine and creating new games in it. The video features
gameplay footage from the planning agent, along with behind-
the-scenes insights into test setup and evaluation using our
web application, the Filuta Planning Dashboard.

7 Conclusion
We introduced the Filuta AI planning agent, which automates
regression testing for video games using PDDL-based auto-
mated planning. This approach eliminates the need for manual
test scripts, reducing workload while maintaining accuracy
and adaptability. Integrated with Unity and Unreal, it enables
seamless test execution and detailed result analysis.

Our evaluation across multiple games shows that planning-
based testing effectively verifies gameplay mechanics and
objectives. Its ability to adapt and replan in dynamic environ-
ments enhances robustness.

However, challenges remain, particularly in the complex-
ity of PDDL modeling. To address this, we explored action
model learning (AML) to generate domain models from game-
play logs, making automated planning more accessible. Our
research continues to refine these techniques and streamline
integration.

7.1 Future Work
Moving forward, we aim to extend our system’s applicability
by testing it across a broader range of game genres. We’re
working closely with several video game studios to meet their
real-world needs. Additionally, we plan to develop intuitive
tools for domain modeling, such as graphical or no-code inter-
faces inspired by Unreal Engine’s Blueprint system, to further
lower the barrier for game developers. By enhancing usability
and expanding coverage, we hope to drive wider adoption
of automated planning in game testing, ultimately improving
game quality and development efficiency.
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