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Abstract

We are living in an era of “big literature”, where the
volume of digital scientific publications is growing
exponentially. While offering new opportunities,
this also poses challenges for understanding litera-
ture landscapes, as traditional manual reviewing is
no longer feasible. Recent large language models
(LLMs) have shown strong capabilities for litera-
ture comprehension, yet they are incapable of of-
fering “comprehensive, objective, open and trans-
parent” views desired by systematic reviews due to
their limited context windows and trust issues like
hallucinations. Here we present LitChat, an end-to-
end, interactive and conversational literature agent
that augments LLM agents with data-driven discov-
ery tools to facilitate literature exploration. LitChat
automatically interprets user queries, retrieves rel-
evant sources, constructs knowledge graphs, and
employs diverse data-mining techniques to gener-
ate evidence-based insights addressing user needs.
We illustrate the effectiveness of LitChat via a case
study on Al4Health, highlighting its capacity to
quickly navigate the users through large-scale lit-
erature landscape with data-based evidence that is
otherwise infeasible with traditional means.

1 Introduction

The past decade has witnessed an unprecedented expansion
of scientific literature on many topics. This deluge of digital
data on publications offers unprecedented opportunities for
scholars and practitioners to explore patterns characterizing
the structure and evolution of the underlying literature land-
scapes while simultaneously confronting them with new chal-
lenges. Scholars often develop systematic literature reviews
(SLRs) [Kitchenham et al., 2009] to obtain comprehensive
overviews of the relevant topics by manually reviewing a set
of relevant publications. However, the exponentially increas-
ing volume of literature means that the provision of “compre-
hensive, objective, open and transparent” (COQOT) principles
is no longer feasible by traditional means. For example, the
number of publications on the applications of artificial intel-
ligence in healthcare has reached 100,000 in 2023, which is
far beyond the capacity of human experts to review.

Large language models (LLMs) like ChatGPT and Gem-
ini have now emerged as transformative tools that promise to
revolutionize scientific literature exploration and understand-
ing. Autosurvey [Wang et al., 2024] is a recent example of
such a system that uses LLMs to automatically generate liter-
ature reviews. Another system, PaperQA2 [Skarlinski et al.,
2024], leverages LLMs and retrieval-augmented generation
(RAG) [Gao et al., 2023] to answer questions about scien-
tific publications. While they have shown some promise, they
also fail to provide COOT views of literature landscapes. For
example, due to the limited context windows of LLMs, it is
infeasible to feed the entire literature corpus, which may con-
tain thousands of papers, to the LLMs. This is in contrast to
the “comprehensive” principle of SLR. Similarly, as probab-
listic models, LLMs function as black boxes and are prone to
hallucinations [Ji er al., 2023], which may lead to incorrect
or misleading information that violates the “objective” and
“transparent” principles.

Long before the emergence of LLMs, scholars have ex-
plored the use of data-driven methods to generate insights that
can guide literature exploration. For example, Schmallen-
bach et al. leverages topic modeling to explore latent themes
in large corpora of literature on the use of artificial intelli-
gence in life science research. Jeong ef al. uses community
detection techniques to explore key research topics in authen-
tication. Our recent work [Huang and Li, 2024] combines
these with author collaboration network analysis to provide
a holistic view on the research landscape of multi-objective
optimization research. These methods could provide quanti-
tative evidence to facilitate SLR under the COOT principles.

Inspired by this, here we present LitChat, an end-to-end,
interactive and conversational literature agent that combines
LLM agents and data-driven discovery tools to facilitate
literature exploration. LitChat can automatically interpret
user queries, design search queries, retrieves relevant sources
from online databases, constructs bibliographic knowledge
graphs, and employs diverse data-mining techniques to de-
liver evidence-based insights addressing user needs. It is
able to perform explorations of different granularities, from
providing an overview of the literature landscape to drilling
down into the details of individual papers or researchers. We
demonstrate the effectiveness of LitChat through a case study
on Al4Health, highlighting its capacity to guide users through
a timely, large-scale and rapidly evolving research landscape.
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Figure 1: Schematic overview of LitChat.

2 LitChat

A schematic overview of LitChat is depicted in Figure 1 on
page 2. Overall, LitChat consists of two LLM agents, both
of which can interact with users in a conversational man-
ner. The first agent (upper) takes user queries and devises
boolean search queries to retrieve relevant publications from
online databases. The collected papers along with metadata
are then used to construct a bibliographic knowledge graph
(BKG). The second agent (lower) then selects appropriate
data-mining techniques to explore the obtained BKG and gen-
erate responses to user queries based on the analysis results.
At a higher level, the whole system is connected to a fron-
tend built using JavaScript and React, which allows users to
interact through a web interface. This frontend is connected
to a backend using a Python Flask web app. The backend
holds the LLM agents, the BKG (via Neo4j graph database),
the paper metadata (via SQLite databases), and the data min-
ing library. Below we delineate each component of LitChat.

2.1 Query Design and Data Acquisition

Initial query design. When a user enters a query, e.g., “I
want to know what healthcare tasks researchers have explored
using LLMs for” (see Figure 2 on page 3), the first LLM
agent identifies the key research domains involved and syn-
thesizes them into a boolean search query that can be used on
established databases like Web of Science, Scopus, or Seman-
tic Scholar. Benefiting from the extensive training on large-
scale corpora, LLMs have shown human-level performance
in query formulation [Wang et al., 2023]. To further en-
sure the quality of the designed query, 10 in-context-learning
examples are provided to the LLM agent. These examples
are extracted from established SLRs from diverse domains in
which domain experts explicitly describe the search queries
they used for literature search.

Note on the choice of LLMs: Unlike other LLM-based lit-
erature agents like Autosurvey and GraphRAG, which prompt
LLMs to scrutinize the entire text corpus before reaching the
final outputs, LitChat only uses LLMs to directly interact with
the users for essential communications like discussing the query,
explaining the results, and answering questions. This makes
LitChat significantly more “token-efficient” and thus more af-
fordable for broader applications. We thereby choose GPT-40 to
enhance performance, though any other LLMs can also be used.

Interactive refinement. The initial query will then be sent
to the user for confirmation. The user can either approve it
or provide feedback to refine, e.g., by adding or removing

keywords. In the latter case, the LLM agent will update the
query accordingly and ask for confirmation again. This pro-
cess continues until the user is satisfied with the query.

Database search and metadata. Once the query is con-
firmed, the LLM agent forwards it to an online database via
API calls to retrieve relevant publications. Here we use the
WoS API for this purpose, which is one of the most compre-
hensive literature databases and a common choice for SLR.
The WoS API returns the matched publications in JSON for-
mat, which consists of rich curated metadata such as abstract,
authors, venues, publication date, citations. The agent stores
this information in a SQLite database for further processing.

Note on full paper data: Due to copyright issues, LitChat typi-
cally only retrieves paper metadata from online databases, unless
the full paper is open access. Yet, a user is able to upload PDF
documents to LitChat for further analysis.

2.2 Bibliographic Knowledge Graph Construction

Once the paper metadata is collected, LitChat parses it to
construct a BKG, which essentially contains all the infor-
mation regarding the underlying literature landscape. No-
tably, this graph is heterogeneous, consisting of different
types of entities including papers, authors, venues, key-
words, institutions, etc., as well as complex relationships
among them like citation, co-authorship, and keyword co-
occurrence, etc. Paper abstracts are also integrated as part
of node attributes, and we generate embeddings for them us-
ing the voyage-3-large' model, a top performer on the
MTEB leaderboard. The final BKG provides the basis for
all the subsequent data mining and response generation tasks.
Upon construction, it will be stored in a Neo4;j graph database
to allow for efficient querying and analysis.

2.3 Data Mining and Response Generation

After obtaining the BKG, the second LLM agent, also based
on GPT-40, would take another look at the user query and
select one or more data mining approaches from a predefined
library that can be helpful for answering the query. While an
exhaustive list of data mining techniques is not feasible here,
some important ones include:

* Topics and keywords: Applying topic modeling [Groo-
tendorst, 2022] to uncover latent research themes and
their temporal evolution in the BKG; Traverse keyword
co-occurrence networks [Miao et al., 2022] to identify
interdisciplinary research topics.

» Papers and citations: Exploiting the topology of pa-
per citation network to identify or predict impactful
works [Weis and Jacobson, 2021] and recommend simi-
lar papers [Boyack and Klavans, 2010].

* Authors and research groups: Exploring author col-
laboration networks to identify active researchers and
groups with network metrics [Palla er al., 2007].

* Scientific discovery: Learning hidden patterns embed-
ded in the BKG to infer meaningful research ideas

'https://blog.voyageai.com/2025/01/07/voyage-3-large/
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{.;. Hi, how can | help you today?

| want to know what healthcare tasks researchers
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=
jY Sure, | will first craft a search query to gather =8
relevant literature metadata.

Q | have designed the following search query:
(“large language model*” OR “foundation
model*” OR “large generative model*” OR

Q By applying the refined query | have now
acquired 3,789 relevant papers. | will next
perform topic modeling to identify the research
domains involved.

With topic modeling | identified 49 major ==
healthcare topics that studied LLMs, among

which the most prominent ones include:

- Named entity recognition (495 papers)

- Medical image segmentation (388 papers)

- Mental health consultation (289 papers)

- Medical question-answering (222 papers)

| am interested in how LLMs are used for mental
health consultation. Please tell me more about
this topic.

ijﬁ[ Sure! LLMs aid mental health by enhancing
empathy in peer support, assessing emotional
awareness, analyzing suicide risk, facilitating
empathic conversations, and powering
chatbots for public health. Specialized models
like MentalBERT improve mental health
detection... (more responses are omitted due
to page limit)

LLM*) - Medical Education (198 papers)

Do you think it is ok to proceed with this?

Afull list of these domains are provided below,
along with a 2D interative plot showing their

In general this is fine to me, but you can explicitly

mention ChatGPT and GPT-4 series distrioutions.

If you would like to dive more into any of these @] ..
Q topics, please feel free to tell me!

Sure! | will refine this query by adding...
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Figure 2: An example of LitChat in action.
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Figure 3: 2D visualization of the research landscape of LLM appli-
cations in healthcare provided by LitChat. Each point represents a

paper, colored by the research topic as identified by topic modeling.
Light gray points indicate outliers that are not assigned to any topic.

that transcend existing individual knowledge and cross-
domain boundaries [Krenn et al., 2023; Bai et al., 2024].

After LitChat executes a tool, it composes the results of the
operations into a natural language response that it returns to
the user. LitChat generates these responses by filling in tem-
plates associated with each operation based on the results.
The responses also include sufficient context to understand
the results and opportunities for following up. In addition to
these advanced data-driven tools, LitChat also supports ba-
sic tasks like question-answering and summarization based
on RAG techniques just as many other literature chatbots.

3 Case Study on Al4Health

To demonstrate the effectiveness of LitChat, here we present
a case study on the Al4Health domain. Specifically, as shown
in Figure 2 on page 3, the user first asks “I want to know what
healthcare tasks researchers have explored using LLMs for?”
As one can imagine, answering this requires a comprehensive
audit of the relevant literature, which is beyond the capac-
ity of human experts. To address this, LitChat first creates a

candidate search query and engages with the user to refine it
to allow for a comprehensive coverage of relevant literature.
The final query is then sent to the Web of Science database,
from which 3,700+ papers are retrieved and synthesized into
a BKG. Given the large volume of papers, traditional LLM-
based systems would struggle to process them all, and this is
where LitChat’s data-driven tools come into play.

Since the user is interested in an overview of certain re-
search topics, LitChat chooses topic.modeling to ana-
lyze the BKG. This function clusters the retrieved papers into
different topics based on their semantic proximity (e.g., in the
upper left region are topics related to brain and recognition,
e.g., “Alzheimer”, “Mental Health”, and “Speech Recogni-
tion”). LitChat then generates response by highlighting the
most prominent topics, and also provides a 2D visualization
of the literature landscape (see Figure 3 on page 3). Note that
in the response, LitChat is able to explicitly indicate the size
of each topic as determined by the topic model, which con-
forms to the “objective” and “transparent” principles of SLR.

When the user asks for more details on a specific topic
(here “mental health”), LitChat can use the topic tool to
recommend representative papers, and generate topic sum-
maries based on them. This conversation can continue to drill
down into the details of one specific paper in this topic, histor-
ical trends of the topic, or the authors involved, etc., and each
response would also be grounded on data-based evidence.

4 Conclusion

In this paper we introduced LitChat, an interactive LLM agent
that is augmented with data-driven discovery tools to aid the
exploration of large-scale literature landscapes. With a case
study on Al4Health, we demonstrated how LitChat can help
users to quickly navigate the terrain of LLM applications in
healthcare research in an end-to-end fashion, which is oth-
erwise infeasible with traditional manual reviewing or pure
LLM-based systems. We hope that LitChat opens up new
possibilities for scholars and practitioners to understand sci-
entific literature in this era of literature explosion.
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