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Abstract

Effective decision-making on networks often re-
lies on learning from graph-structured data, where
Graph Neural Networks (GNNs) play a central
role, but they take efforts to configure and tune.
In this demo, we propose LLMNet, showing how
to design GNN automated through Large Lan-
guage Models. Our system develops a set of
agents that construct graph-related knowlege bases
and then leverages Retrieval-Augmented Genera-
tion (RAG) to support automated configuration and
refinement of GNN models through a knowledge-
guided evolution process. These agents, equipped
with specialized knowledge bases, extract insights
into tasks and graph structures by interacting with
the knowledge bases. Empirical results show LLM-
Net excels in twelve datasets across three graph
learning tasks, validating its effectiveness of GNN
model designing.

1 Introduction and Related Work

Effective decision-making in networks—such as in commu-
nication networks, social networks, and transportation net-
works— often relies on graph-structured data representa-
tions. Among the techniques developed for learning from
such data, Graph Neural Networks (GNNs) have become
widely adopted across diverse domains, including tasks such
as anomaly detection and recommendation systems in social
networks [Hamilton et al., 2017], as well as for predicting
biomedical molecular properties [Gilmer ef al., 2017]. The
majority of existing GNNs are designed for diverse graphs
under a specific task [Wu et al., 2020], such as captur-
ing graph-level representations [Zhang er al., 2018; Ying
et al., 2018]. and learning subgraph patterns in link-level
tasks [He et al., 2020; Zhang and Chen, 2018]. However,
designing effective GNNs for different graph learning prob-
lems is challenging, as it requires substantial graph-related
knowledge in order to understand the tasks and graphs [Hoff-
man et al., 1995]. Then, there is a natural question: How
to integrate graph learning knowledge to design effective
GNNs? It is non-trivial to answer this question. Firstly,
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existing methods have not provided explicit guidelines for
utilizing knowledge in designing GNN model architectures.
Most GNNs are designed to effectively model graphs for
a specific task [Wu er al.,, 2020; Hamilton er al., 2017;
Ying et al., 2018], based on implicit human expertise, which
is difficult to explicitly describe and extract.

Therefore, we propose LLMNet, which automates GNN
design using LL.Ms. Specifically, we have designed a Knowl-
edge Agent to extract graph-related knowledge, building
knowledge bases covering advanced graph learning research.
Then, we have developed a set of agents that use RAG
(Retrieval-Augmented Generation) to interact with knowl-
edge bases, designing GNNs step by step in a knowledge-
guided manner. Leveraging LLMs’ task analysis, LLMNet
streamlines the designing and refinement of GNN model ar-
chitectures. Extensive experiments on twelve datasets across
three tasks demonstrate LLMNet’s superior performance and
efficiency, proving the effectiveness of integrating knowledge
for automated GNN design. A concrete case demonstrating
this process is presented in Section 4.

2 Method

We introduce LLMNet, which prepares and utilizes knowl-
edge to design GNN model architectures for diverse graph
learning tasks using LLM-based agents. Firstly, we gather
graph-related resources and develop a knowledge agent for
knowledge extraction and retrieval. Subsequently, the knowl-
edge is then used by several LLM-based agents step by step
to design effective GNN model architectures.

2.1 Knowledge Bases Construction and Utilization

Knowledge Bases Construction LLMs face challenges due
to outdated knowledge and hallucinations. We address this
by creating two knowledge bases, which is currently lacking
for designing GNN model architectures. We collect resources
and use the Knowledge Agent to manage them.

The Knowledge Agent is tasked with acquiring and in-
tegrating specialized knowledge tailored to specific user re-
quirements. This agent mainly manages two types of knowl-
edge bases, as shown in Figure 1: the prior knowledge base
and the experiment knowledge base. The prior knowledge
base is enriched with task-specific information extracted from
sources such as the Open Graph Benchmark (OGB) leader-
boards, the PyTorch Geometric (PyG) documentation, and the
top-tier conference proceedings that are accessible on Arxiv,
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Figure 1: System architecture of LLMNet, which automates GNN design via a knowledge-guided approach. (a) Inputs: task graph and
external knowledge resources. (b) Knowledge Agent builds knowledge bases. (c) The pipeline of LLM agents designs and finetunes GNNs
using the knowledge. (d) User receives intermediate responses and experimental knowledge base is updated. (e) Outputs: GNN design,

performance, and resource usage.

ensuring the agent remains at the cutting edge of technology
and methodology. The experiment knowledge base archives
detailed experimental outcomes such as the benchmark eval-
uation results, including models setups and their performance
on specific datasets, thereby providing insights into their ef-
fectiveness and application contexts.

The content of papers and reports often overlaps, with re-
dundant background information and methods that can intro-
duce noise and reduce the informativeness of retrieved knowl-
edge. To address this, we employ a two-level knowledge
extraction strategy, first, we start by summarizing inputs to
obtain coarse-grained knowledge, then refine this into fine-
grained details specific to graph learning tasks, such as archi-
tecture design and dataset usage. The code and the extended
version with more details are available. '.

Knowledge Utilization and Update To effectively utilize the
constructed knowledge bases, we implement a goal-aware
knowledge retrieval mechanism. Utilizing the RAG tech-
nique, we enhance the effectiveness of the designing GNN
model architectures by retrieving relevant knowledge. The
pre-trained model all-MiniLM-L6-v2 encodes both the ex-
tracted knowledge and the queries from other agents. We cal-
culate the cosine similarity in the embedding space to iden-
tify the most relevant knowledge. To accommodate the vary-
ing goals and resource types in graph learning, we apply a
post-ranking strategy. The top-k knowledge items from each
resource type are initially retrieved and then re-ranked and se-

"https://github.com/Igssstsp/LLMNet

lected by the knowledge agent based on the query’s context.
This refined knowledge is integrated into the graph learning
agent’s prompt, facilitating the design of GNN model.

LLMNet also incorporates a dynamically knowledge up-
date mechanism. After the evaluation of a GNN model,
the experimental summary, including the task plan, designed
GNNss, and results, is stored in memory. The planning agent
then compiles a report, which is added to the knowledge base,
ensuring that the system’s knowledge remains current and ap-
plicable for future pipeline runs. This continuous update pro-
cess allows LLMNet to adapt and improve over time, enhanc-
ing its ability to design effective GNN models.

2.2 Knowledge-Guided GNNs Model Designing

Figure 1 illustrates how each agent engages with knowledge
bases to streamline the entire process. The two knowledge
bases bridge research and application, they empower agents
to make informed decisions.

Planning Agent The Planning Agent generate a task plan
based on user instructions, to direct subsequent agent ac-
tions, which includes specifications for datasets, task types
and evaluation metrics. After all agents completed their tasks,
this agent evaluates the experimental results, utilizing insights
from the experiment knowledge base to determine whether a
revision loop is necessary.

Data Agent The Data Agent utilizes insights from the prior
knowledge base to perform feature engineering tailored to
specific graphs and tasks, ensuring alignment with expert
practices in a knowledge-guided manner.
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| Cora Photo Actor Genius __ obgn-arxiv | DD Proteins _ ogbg-molhiv | Amazon-Sports() | Avg. Rank
LLMNet 87.10(0.36) 96.11(0.33) 40.93(0.35) 90.89(0.11) 72.70(0.54) | 78.27(2.57) 75.44(0.93) 74.27(1.54) 0.9298(0.0071) 1
LLMNet (GL) | 86.68(0.40) 95.50(0.21) 39.59(0.39) 90.33(0.15) 72.30(0.54) | 77.69(2.24) 74.88(1.16) 73.37(1.23) | 0.9622(0.0103) 25
GCN 85.68(0.61) 93.13(0.27) 33.98(0.76) 89.10(0.13) 71.74(0.29) | 73.59(4.17) 74.84(3.07) 73.89(1.46) | 1.0832(0.0077) 525
SAGE 86.18(0.35) 94.60(0.25) 39.28(0.18) 89.71(0.09) 71.49(0.27) | 76.99(2.74) 73.87(2.42) 73.46(1.69) 0.9900(0.0125) 4.5
AutoML ‘ 86.57(0.32) 95.38(0.30) 40.39(0.03) 90.81(0.04) 72.42(0.37) ‘ 77.03(2.48) 74.58(2.61) 73.51(3.21) ‘ 0.9327(0.0006) ‘ 2.63
LLM-GNN | 84.64(1.04) 93.73(038) 38.92(0.07) $931(0.17) 70.83(0.93) | 75.12(3.44) 74.47(3.65) 72.93(090) | 0.9670(0.0079) | 5.13

Table 1: Performance of LLMNet and baselines on three tasks. We report the test accuracy and the standard deviation for node and graph
classification tasks, and use the common Rooted Mean Square Error (RMSE) for the item ranking task. The top-ranked performance in each
dataset is highlighted in gray, and the second best one is underlined. The average rank on all datasets is provided in the last column.

Configuration Agent The Configuration Agent is responsi-
ble for configuring the search space, which includes possible
model architecture configurations such as layers and connec-
tions, and the search algorithm that explores this space. It
interacts with the prior knowledge base to gain insights on
model design, enhancing the effectiveness of search space
configuration and algorithm selection.

Evaluation Agent The Evaluation Agent is designed to fine-
tune the designed GNN and conduct experiments to validate
its performance. After completing the experiments, the Eval-
uation Agent transmits the results to the Knowledge Agent
for integration into the experiment knowledge base.

3 Experiments

We evaluate LLMNet’s effectiveness on twelve datasets
across three tasks as shown in Table 1, the performance of
another three datasets are shown in appendix of extended ver-
sion. Detailed resource costs and ablation studies are in the
appendix of the extended version.

3.1 Experimental Settings

Datasets We evaluate twelve widely used datasets across
three tasks as shown in Table 1. The detailed introduction
of these datasets and the evaluation performance of another
three datasets are shown in appendix of extended version.
Baselines In this paper, we provide several kinds of base-
lines. (1) GNNs with task adaption, including GCN [Kipf and
Welling, 2016] and GraphSAGE [Hamilton et al., 2017] with
task-specific adaptations. (2) AutoML-based methods. We
adopt F2GNN [Wei ef al., 2022] / LRGNN [Wei et al., 2023]
/ Prof-CF [Wang et al., 2022] for three tasks. (3) LLM-GNN.
GNNs generated by LLMs. (4) LLMNet (GL) operates with-
out external knowledge.

3.2 Performance Comparisons

Table 1 showcases the performance of LLMNet on twelve
datasets across three tasks. LLMNet consistently outperforms
all baselines, highlighting its ability to design effective GNN's
for various graph learning tasks. The enhanced performance
of LLMNet over LLMNet (GL) underscores the value of in-
corporating extracted knowledge into the GNN design pro-
cess. Unlike AutoML methods that operate within a pre-
defined design space, LLMNet (GL) leverages LLMs to ex-
pand this space, achieving comparable performance and val-
idating the agents’ problem-solving capabilities. The LLM-
GNN baseline, which relies solely on LLM suggestions with-
out knowledge integration, faces challenges in understand-
ing tasks and graphs, resulting in less effective GNN designs.
LLMNet’s superior performance highlights the significance
of knowledge in designing effective GNNs.

I have a graph, it is saved on the dataset file: Cora, a
in which node represent the paper and edges represent the citation re
The node attribute is the keywords mentioned in the paper.
I want to predict the domain of the given paper.
I think SAGEConv will be useful.
{ (b)
"Learning_tasks_on_graph": "node-level",
"Learning_task_types": "classification",
“Evaluation_metric": "accuracy",
"Preference": "SAGEConv",

“Data": "Cora"

}

Cases retrieved from prior knowledge base:

{ (©
"Task Description": "Leaderboards for Node Property Prediction"
"Dataset Name": "ogbn-papersleem",

"Method": "GLEM+GIANT+GAMLP",

"Test Accuracy": "0.7037 \uoebl 0.0002",

"Validation Accuracy": "©.7354 \ueebl ©.0001",

"Parameters": "154,775,375", l
"Hardware": "Tesla V100 (32GB)",

"Paper Summary": "This paper proposes a novel approach, Graph a

}

[Experimental Results] S
. @
"predict_results": {
"test_accuracy": 0.8710,
"test_std_dev": 0.0036,
"valid_accuracy": 0.8787,
"valid_std_dev": ©.0019

1
"searched_gnn": "sageconv||gatconv||gatconv||gcnconv||zero||ide
"hyper_parameters”: {
"gpu": o, 0
"data": “cora", v
4 G »

Figure 2: The detailed steps and output of LLMNet.

4 Demonstration

In this section, we demonstrate the use case of LLMNet on
a real-world problem. For example, users aim to predict the
category of articles within a citation network.

As shown in Figure 2, (a) illustrates the user’s input in-
structions, (b) displays the task plan generated by the Plan-
ning Agent, which interprets the user’s intention to predict
the category of articles within a citation network as a node
classification task. (c) shows the Data Agent retrieving rel-
evant knowledge from the prior knowledge base, including
methods for node classification. (d) displays the system’s
experimental results and its designed GNN model, LLMNet
achieves an accuracy of 0.8710 on the Cora dataset, surpass-
ing the GNN-based baselines GCN at 0.8568, ACM-GCN at
0.8667 (Detailed experiments is in the extended version), and
the AutoML-based baseline SANE at 0.8640.

This demonstration showcases the effectiveness of LLM-
Net in automatically designing GNN model for real-world
graph learning problems.
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