
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

ASP Chef Chats with Large Language Models

Mario Alviano , Pietro Macrı̀ , Luis Angel Rodriguez Reiners
DEMACS, University of Calabria, Via Bucci 30/B, 87036 Rende (CS), Italy

{mario.alviano, luis.reiners}@unical.com

Abstract
ASP Chef enriches Answer Set Programming
(ASP) with the notion of recipe, that is, a sequence
of operations on answer sets. Recipes are designed
and executed in modern browsers, and further im-
prove the fast prototyping capabilities of ASP. This
paper introduces new operations designed to inte-
grate Large Language Models (LLMs) in recipe,
with the aim of combining the reasoning strength
of ASP with the natural language capabilities of
LLMs, to enable more interactive and adaptive
problem-solving workflows. In a nutshell, an-
swer sets in input are transformed into prompts for
LLMs, whose responses are processed to extract
facts for subsequent operations within the recipe.

1 Introduction
Large Language Models (LLMs) and Answer Set Program-
ming (ASP) are complementary AI paradigms, driving grow-
ing interest in their integration [Nye et al., 2021; Yang
et al., 2023; Borroto et al., 2024; Ishay et al., 2023a;
Ishay et al., 2023b; Rajasekharan et al., 2023a; Rajasekha-
ran et al., 2023b; Kalyanpur et al., 2024; Lin et al., 2024;
Brancas et al., 2024; Zeng et al., 2024; Coppolillo et al.,
2024]. LLMs have revolutionized natural language process-
ing [Brown and et al., 2020; Chowdhery and et al., 2023;
Touvron and et al., 2023], while ASP offers robust capa-
bilities in logical reasoning [Gelfond and Lifschitz, 1990;
Marek and Truszczynski, 1999; Niemelä, 1999]. This makes
ASP invaluable for applications that demand strong infer-
ence capabilities (e.g., [Cardellini et al., 2023; Cardellini et
al., 2024b; Cardellini et al., 2024a; Cappanera et al., 2023;
Wotawa, 2020; Taupe et al., 2021; Dodaro et al., 2024]) be-
yond the scope of LLMs [Hadi et al., 2023].

ASP Chef [Alviano et al., 2023; Alviano and Reiners,
2024] improves the user experience of ASP and simplifies its
use in various computational tasks. Thanks to its web-based
platform, ASP users can create and execute complex work-
flows, known as recipes, which are executed directly within
the browser and can include data manipulation and visualiza-
tion operations. ASP Chef is powered by the WebAssembly
version of CLINGO [Gebser et al., 2019] (https://github.com/
domoritz/clingo-wasm), and is an ideal tool for education,

rapid prototyping, and practical problem solving [Costantini
and Formisano, 2024; Böhl et al., 2024; Alviano et al., 2024a;
Alviano et al., 2024b; Alviano and Rodriguez Reiners, 2024].

This paper presents an integration of LLMs into ASP Chef
that allows users to harness the power of LLMs and ASP
within a unified environment. The integration proves particu-
larly useful in the three key areas targeted by ASP Chef. In an
educational context, it enables users to quickly generate ex-
ample data by leveraging the broad knowledge base of LLMs,
to facilitate the understanding of ASP concepts and applica-
tions. For rapid prototyping, LLMs assist users by provid-
ing immediate suggestions on ASP syntax, debugging hints,
and clarifications regarding ASP Chef documentation, signifi-
cantly reducing the time required to construct and refine logic
programs. Finally, in practical problem-solving, LLMs can
be used to extract structured data from unstructured sources,
which is then processed through ASP Chef recipes for logi-
cal reasoning; the results of the reasoning process can subse-
quently be mapped back into natural language (using LLMs)
to improve their interpretability.

In a nutshell, we introduce operations to register API keys
of LLM servers, to configure endpoints and models to use,
and to perform remote chat completion requests. Such re-
quests use messages stored in ASP facts and can incorpo-
rate mustache queries (introduced here) to dynamically in-
clude data from other facts. This approach enables prompts
for LLMs to be generated from templates, where placehold-
ers are automatically replaced with the results of mustache
queries. As a result, ASP and LLMs can be seamlessly com-
bined, allowing for dynamic and context-aware interactions.
The response generated by the LLM is stored as an ASP fact,
allowing seamless integration with other ASP Chef opera-
tions. For example, if the LLM outputs a response in comma-
separated values (CSV) format, the Parse CSV operation can
transform each value into a structured fact. Subsequently, the
Search Models operation can process these facts to derive a
meaningful relational representation. Alternatively, the usual
Markdown format used by LLMs can be processed by the
Markdown operation of ASP Chef to visualize the generated
response as a side output of the recipe.

2 Background
ASP. A program is a set of rules defining conditions (con-
junctive bodies) under which atoms must be derived (atomic

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/domoritz/clingo-wasm
https://github.com/domoritz/clingo-wasm


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

heads) or guessed (choices). Programs are associated with
zero or more answer sets, i.e., interpretations satisfying all
rules and a stability condition [Gelfond and Lifschitz, 1990].
Programs are extended with #show directives of the form

#show p(t) : conjunctive query.
where p is an optional predicate, t is a possibly empty se-
quence of terms, and conjunctive query is a conjunction.
Answer sets of the program are projected according to the
#show directives. We refer the ASP-Core-2 format for de-
tails [Calimeri et al., 2020].
Example 1. The following program solves the graph color-
ing problem in ASP:

node(A) :- edge(A,B). node(B) :- edge(A,B).
{assign(N,C) : color(C)} = 1 :- node(N).
:- edge(X,Y), assign(X,C), assign(Y,C).
#show (N,C) : assign(N,C).

The first line contains two rules defining nodes from edges.
The second line is a choice rule guessing one color for each
node. The third line is a constraint enforcing different colors
for adjacent nodes. Finally, the fourth line is a #show direc-
tive projecting the answer sets over the node–color assign-
ment. Given color(red) and color(green), the graph
edge(a,b), edge(a,c), edge(b,d), edge(c,d) has 2
(projected) answer sets, among them (a,red), (b,green),
(c,green), (d,red). ■

ASP Chef. An operation O is a function receiving in in-
put a sequence of interpretations and producing in output a
sequence of interpretations. Operations may produce side
outputs (e.g., a graph visualization) and accept parameters
to influence their behavior. An ingredient is an instantia-
tion of a parameterized operation with side output. A recipe
is a tuple of the form (encode, Ingredients , decode), where
Ingredients is a (finite) sequence O1⟨P1⟩, . . . , On⟨Pn⟩ of
ingredients, and encode and decode are Boolean values.
If encode is true, the input of the recipe is mapped to
[[__base64__("s")]], where s = Base64 (sin) (i.e., the
Base64–encoding of the input string sin ). After that, the in-
gredients are applied one after another. Finally, if decode is
true, every occurrence of __base64__(s) is replaced with
(the ASCII string associated with) Base64−1(s).
Large Language Models (LLMs). LLMs are AI systems
designed to process and generate human-like text. Here,
LLMs are used as black box operators on text (functions that
take text in input and produce text in output). The text in in-
put is called prompt, and the text in output is called generated
text or response. The prompt is a sequence of messages from
three roles, namely system, user and assistant. System mes-
sages set behavior, tone, and context for the assistant. User
messages represent queries to or instructions for the assistant.
Assistant messages are responses to user queries.

3 LLMs Operations
Config. The @LLMs/Config operation extends each
input interpretation with facts representing parameters
like server, model and temperature. These facts have
the form __llms_config__(key,"value"), where
__llms_config__ can be set in the ingredient. The

temperature is expressed as a percentage (to accommodate
differences between servers), with 0% disabling randomness.
Chat Completion. For each input interpretation I , the
@LLMs/Chat Completion takes the configuration from in-
stances of __llms_config__ (or the predicate speci-
fied in the ingredient), and messages from atoms of the
form __message__(role("content")), where role is
system, user or assistant, and content is a string with
mustache queries, defined next. A mustache query has the
form {{ Π }}, where Π is an ASP program with #show
directives, and it is replaced by one projected answer set
of Π ∪ {p(t). | p(t) ∈ I}. In more details, only tuples
of terms are left, and specific atoms are interpreted as fol-
lows: separator/1 defines the separator for tuples (de-
fault \n); term_separator/1 defines the separator between
terms (default ,); prefix/1 and suffix/1 define strings
to be added before and after each tuple (empty by default);
ol/1 and ul/1 to produce ordered and unordered lists, and
th and tr to produce tables (in Markdown); base64 to de-
code Base64-encoded strings. Moreover,

{{= (terms): conjunctive_query }}
is syntactic sugar for

{{ #show (terms): conjunctive_query. }}.
The response given by the LLM is Base64-encoded in the
predicate __base64__ (or the predicate specified in the in-
gredient), and can be further processed by the subsequent in-
gredients in the recipe.
Example 2. Let I be the interpretation comprising
assign(a,red), assign(b,green), assign(c,green),
assign(d,red). Let I also contain the following instances
of __message__/1: system("If you are unsure,
say \"I don't know\"") and user("{{ Π }}\n
What's the color of node a?"), where Π is

#show (N,C) : assign(N,C).
#show prefix("Node ").
#show term_separator(" has color ").
#show suffix(".").

After mustache query replacement, the user message is

Node a has color red.
Node b has color green.
Node c has color green.
Node d has color red.

What's the color of node a?

If I also contains configuration atoms for using Groq [Abts et
al., 2022] and the model llama3-70b-8192 with temperature
0%, the resulting response "The color of node a is
red." is Base64-encoded in the output predicate. ■

To ease the representation of prompts, especially those in-
cluding mustache queries, the @LLMs/Chat Completion op-
eration accepts the additional parameters system role, user
role and assistant role, which specifies unary predicates
whose terms are Base64-encoded.
Register API Key. Servers usually expect an API key to be
provided with each request. In ASP Chef, such API keys are
retrieved from the session storage, where they are saved via
a @LLMs/Register API Key ingredient. This way, API keys

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

are not part of the recipe, are not accessible by other tabs of
the browser, and are forgotten when the tab with the recipe
is closed. Alternatively, API keys can be stored permanently
in the local storage, again with a @LLMs/Register API Key
ingredient. In this case, a recipe can copy an API key from
the local storage to the session storage, hence enabling it in
the current session, if the user confirm this intention.

Unregister API Keys. API keys enabled in the current ses-
sion can be disabled via a @LLMs/Unregister API Keys,
which also lists the permanently stored API keys and gives
the possibility to remove them selectively or in block.

4 Use Cases
We report a few use cases whose recipes are available online
at https://asp-chef.alviano.net/s/LLMs.

4.1 Generate Example Data
ASP is often introduced by showing how to address combina-
torial puzzles such as Sudoku. Manually writing input facts
can be tedious, while generating them with a script may in-
troduce an additional barrier for learners. As an alternative,
we can ask an LLM for a random instance, using the system
message “Your answer must be in CSV format. Just CSV
and nothing else! Use TAB and new lines as separators.”
and the user message

Give me a random instance of {{= S :
size(S) }}x{{= S : size(S) }} Sudoku.

Each known cell must have a number between
1 and {{= S : size(S) }}.

Use 0 for the unknown cells.

where size(9) can be a given fact. The generated instance
can then be processed by Parse CSV and solved with ASP.

For another example, we can ask for factual data about
cities (and do some reasoning on such data using ASP):

__message__(system("Answer with CSV only.
Use TAB as separator.")).

__message__(user("Give me a list of cities
and their population.")).

4.2 Interacting with ASP Chef Documentation
The Documentation operation can be used to consult the ASP
Chef documentation, but also to generate facts storing such
documentation. This approach enables the possibility to in-
clude documentation snippets in messages for LLMs, for ex-
ample using the user message

Give me an example of the usage of Merge
and Split. Their documentation follow.

{{ #show base64(X) : __doc__(X).
#show separator("\n\n"). }}

The documentation of Merge and Split, stored in instances
of __doc__/1, reaches the LLM, which is then capable of
generating an example even if it has no previous knowledge
on the two operations. The generated answer can be shown
with the Markdown operation.

4.3 Extract Structured Data
We are designing a package delivery route for a small courier
company. A delivery driver starts at a given point and needs
to reach another point, making sure to visit every location
exactly once. Connections are also given. For example,

Starts at Point A and reach Point G.
- A is connected to B and C
- B is connected to A, C and D
- C is connected to A and D
- D is connected to B, C, and E
- E is connected to D, F and H
- F is connected to E and G
- G is connected to F and H
- H is connected to F

The above input can be stored in a __base64__ predicate
and combined with the following user message:

{{= base64(X) : __base64__(X) }}
----
Give me the start point in the first line,
and the reach point in the second line.
After that, list all connections,
one per line.

Once input data is structured in CSV, Parse CSV and Search
Models can easily obtain a relational representation in predi-
cates start/1, target/1, node/1 and link/2. After that,
a Hamiltonian path (if any) is obtained with the following
ASP program:

reach(X) :- start(X).
reach(Y) :- next(X,Y).
{next(X,Y) : link(X,Y)} = 1 :-

reach(X), not target(X).
:- next(X,Y), next(Z,Y), X < Z.
:- node(X), not reach(X).

4.4 Improve Interpretability of Reasoning Results
SELinux policies define access control rules that govern inter-
actions between processes, files, and other system resources.
These policies are typically very large rule sets, making it
challenging to manually analyze permissions for a specific
subject type and security context. We can efficiently filter
SELinux policies using ASP, and provide human-readable in-
sights into what a given user or process can do in a specific se-
curity context using LLMs. Specifically, we can use the sys-
tem message “You are an expert in SELinux policy man-
agement and your task is to create a detailed text starting
from a specific set of policies.” and pack the user message
using

__message__(user(@string_format(
"allow %s %s:%s %s;", S,O,C,P))

) :- needed_policy(S,O,C,P).

where needed_policy contains the filtered input facts.

5 Conclusion
The integration of LLMs into ASP Chef bridges the gap be-
tween human-intuitive input and machine-processable ASP
facts, opening new possibilities for reasoning, knowledge
representation, and automated decision-making.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://asp-chef.alviano.net/s/LLMs


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Ethical Statement
The use of LLMs inherently exposes to risks related to trans-
parency and accountability. Users of @LLMs operations of
ASP Chef must be clearly informed about such risks.

Acknowledgments
This work was supported by the Italian Ministry of
University and Research (MUR) under PRIN project
PRODE “Probabilistic declarative process mining”, CUP
H53D23003420006, under PNRR project FAIR “Future AI
Research”, CUP H23C22000860006, under PNRR project
Tech4You “Technologies for climate change adaptation and
quality of life improvement”, CUP H23C22000370006,
and under PNRR project SERICS “SEcurity and RIghts
in the CyberSpace”, CUP H73C22000880001; by the
Italian Ministry of Health (MSAL) under POS projects
CAL.HUB.RIA (CUP H53C22000800006) and RADIOAM-
ICA (CUP H53C22000650006); by the Italian Ministry
of Enterprises and Made in Italy under project STROKE
5.0 (CUP B29J23000430005); under PN RIC project
ASVIN “Assistente Virtuale Intelligente di Negozio” (CUP
B29J24000200005); and by the LAIA lab (part of the SILA
labs). Mario Alviano is member of Gruppo Nazionale
Calcolo Scientifico-Istituto Nazionale di Alta Matematica
(GNCS-INdAM).

References
[Abts et al., 2022] Dennis Abts, John Kim, Garrin Kimmell,

Matthew Boyd, Kris Kang, Sahil Parmar, Andrew C. Ling,
Andrew Bitar, Ibrahim Ahmed, and Jonathan Ross. The
groq software-defined scale-out tensor streaming multi-
processor : From chips-to-systems architectural overview.
In 2022 IEEE Hot Chips 34 Symposium, HCS 2022, Cu-
pertino, CA, USA, August 21-23, 2022, pages 1–69. IEEE,
2022.

[Alviano and Reiners, 2024] Mario Alviano and Luis An-
gel Rodriguez Reiners. ASP chef: Draw and expand. In
Pierre Marquis, Magdalena Ortiz, and Maurice Pagnucco,
editors, Proceedings of the 21st International Conference
on Principles of Knowledge Representation and Reason-
ing, KR 2024, Hanoi, Vietnam. November 2-8, 2024, 2024.

[Alviano and Rodriguez Reiners, 2024] Mario Alviano and
Luis Angel Rodriguez Reiners. Integrating MiniZinc with
ASP Chef: Browser-based constraint programming for ed-
ucation and prototyping. In International Conference on
Logic Programming and Nonmonotonic Reasoning, pages
174–186. Springer, 2024.

[Alviano et al., 2023] Mario Alviano, Davide Cirimele, and
Luis Angel Rodriguez Reiners. Introducing ASP recipes
and ASP chef. In ICLP Workshops, volume 3437 of CEUR
Workshop Proceedings. CEUR-WS.org, 2023.

[Alviano et al., 2024a] Mario Alviano, Danilo Amendola,
and Luis Angel Rodriguez Reiners. Addressing market-
place logistic tasks in answer set programming. Intelli-
genza Artificiale, 18(2):261–278, 2024.

[Alviano et al., 2024b] Mario Alviano, Paola Guarasci,
Luis Angel Rodriguez Reiners, and Ilaria R Vasile. In-
tegrating structured declarative language (sdl) into ASP
Chef. In International Conference on Logic Programming
and Nonmonotonic Reasoning, pages 387–392. Springer,
2024.

[Böhl et al., 2024] Elisa Böhl, Stefan Ellmauthaler, and
Sarah Alice Gaggl. Winning snake: Design choices in
multi-shot asp. Theory and Practice of Logic Program-
ming, 24(4):772–789, 2024.

[Borroto et al., 2024] Manuel Borroto, Irfan Kareem, and
Francesco Ricca. Towards automatic composition of asp
programs from natural language specifications. arXiv
preprint arXiv:2403.04541, 2024.

[Brancas et al., 2024] Ricardo Brancas, Vasco Manquinho,
and Ruben Martins. Combining logic with large language
models for automatic debugging and repair of asp pro-
grams, 2024.

[Brown and et al., 2020] Tom B. Brown and et al. Language
models are few-shot learners. CoRR, abs/2005.14165,
2020.

[Calimeri et al., 2020] Francesco Calimeri, Wolfgang Faber,
Martin Gebser, Giovambattista Ianni, Roland Kaminski,
Thomas Krennwallner, Nicola Leone, Marco Maratea,
Francesco Ricca, and Torsten Schaub. Asp-core-2 in-
put language format. Theory Pract. Log. Program.,
20(2):294–309, 2020.

[Cappanera et al., 2023] Paola Cappanera, Marco Gavanelli,
Maddalena Nonato, and Marco Roma. Logic-based ben-
ders decomposition in answer set programming for chronic
outpatients scheduling. Theory Pract. Log. Program.,
23(4):848–864, 2023.

[Cardellini et al., 2023] Matteo Cardellini, Carmine Do-
daro, Giuseppe Galatà, Anna Giardini, Marco Maratea,
Nicholas Nisopoli, and Ivan Porro. Rescheduling reha-
bilitation sessions with answer set programming. J. Log.
Comput., 33(4):837–863, 2023.

[Cardellini et al., 2024a] Matteo Cardellini, Carmine Do-
daro, Marco Maratea, and Mauro Vallati. Optimising
dynamic traffic distribution for urban networks with an-
swer set programming. Theory Pract. Log. Program.,
24(4):825–843, 2024.

[Cardellini et al., 2024b] Matteo Cardellini, Paolo De Nardi,
Carmine Dodaro, Giuseppe Galatà, Anna Giardini, Marco
Maratea, and Ivan Porro. Solving rehabilitation scheduling
problems via a two-phase ASP approach. Theory Pract.
Log. Program., 24(2):344–367, 2024.

[Chowdhery and et al., 2023] Aakanksha Chowdhery and
et al. Palm: Scaling language modeling with pathways.
J. Mach. Learn. Res., 24:240:1–240:113, 2023.

[Coppolillo et al., 2024] Erica Coppolillo, Francesco Cal-
imeri, Giuseppe Manco, Simona Perri, and Francesco
Ricca. LLASP: fine-tuning large language models for an-
swer set programming. In Pierre Marquis, Magdalena Or-
tiz, and Maurice Pagnucco, editors, Proceedings of the

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

21st International Conference on Principles of Knowledge
Representation and Reasoning, KR 2024, Hanoi, Vietnam.
November 2-8, 2024, 2024.

[Costantini and Formisano, 2024] Stefania Costantini and
Andrea Formisano. Solver fast prototyping for reduct-
based ELP semantics. In Emanuele De Angelis and Maur-
izio Proietti, editors, Proceedings of the 39th Italian Con-
ference on Computational Logic, Rome, Italy, June 26-
28, 2024, volume 3733 of CEUR Workshop Proceedings.
CEUR-WS.org, 2024.

[Dodaro et al., 2024] Carmine Dodaro, Giuseppe Galatà,
Martin Gebser, Marco Maratea, Cinzia Marte, Marco
Mochi, and Marco Scanu. Operating room scheduling via
answer set programming: Improved encoding and test on
real data. J. Log. Comput., 34(8):1556–1579, 2024.

[Gebser et al., 2019] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, and Torsten Schaub. Multi-shot ASP
solving with clingo. Theory Pract. Log. Program.,
19(1):27–82, 2019.

[Gelfond and Lifschitz, 1990] Michael Gelfond and
Vladimir Lifschitz. Logic programs with classical
negation. In D. Warren and Peter Szeredi, editors,
Logic Programming: Proc. of the Seventh International
Conference, pages 579–597, 1990.

[Hadi et al., 2023] Muhammad Usman Hadi, Rizwan
Qureshi, Abbas Shah, Muhammad Irfan, Anas Zafar,
Muhammad Bilal Shaikh, Naveed Akhtar, Jia Wu,
Seyedali Mirjalili, et al. Large language models: a
comprehensive survey of its applications, challenges,
limitations, and future prospects. Authorea Preprints,
2023.

[Ishay et al., 2023a] Adam Ishay, Zhun Yang, and Joohyung
Lee. Leveraging large language models to generate an-
swer set programs. In Proceedings of the 20th Interna-
tional Conference on Principles of Knowledge Represen-
tation and Reasoning, pages 374–383, 2023.

[Ishay et al., 2023b] Adam Ishay, Zhun Yang, and Joohyung
Lee. Leveraging Large Language Models to Generate An-
swer Set Programs. In Proceedings of the 20th Interna-
tional Conference on Principles of Knowledge Represen-
tation and Reasoning, pages 374–383, 8 2023.

[Kalyanpur et al., 2024] Aditya Kalyanpur, Kailash Sara-
vanakumar, Victor Barres, Jennifer Chu-Carroll, David
Melville, and David A. Ferrucci. LLM-ARC: enhanc-
ing llms with an automated reasoning critic. CoRR,
abs/2406.17663, 2024.

[Lin et al., 2024] Xinrui Lin, Yangfan Wu, Huanyu Yang,
Yu Zhang, Yanyong Zhang, and Jianmin Ji. CLMASP:
coupling large language models with answer set program-
ming for robotic task planning. CoRR, abs/2406.03367,
2024.

[Marek and Truszczynski, 1999] Victor W. Marek and
Miroslaw Truszczynski. Stable models and an alternative
logic programming paradigm. In The Logic Program-
ming Paradigm, Artificial Intelligence, pages 375–398.
Springer, 1999.

[Niemelä, 1999] Ilkka Niemelä. Logic programs with stable
model semantics as a constraint programming paradigm.
Ann. Math. Artif. Intell., 25(3-4):241–273, 1999.

[Nye et al., 2021] Maxwell Nye, Michael Tessler, Josh
Tenenbaum, and Brenden M Lake. Improving coher-
ence and consistency in neural sequence models with dual-
system, neuro-symbolic reasoning. Advances in Neural
Information Processing Systems, 34:25192–25204, 2021.

[Rajasekharan et al., 2023a] Abhiramon Rajasekharan,
Yankai Zeng, and Gopal Gupta. Argument analysis using
answer set programming and semantics-guided large
language models. In ICLP Workshops, 2023.

[Rajasekharan et al., 2023b] Abhiramon Rajasekharan,
Yankai Zeng, Parth Padalkar, and Gopal Gupta. Reliable
natural language understanding with large language
models and answer set programming. In Enrico Pontelli,
Stefania Costantini, Carmine Dodaro, Sarah Alice Gaggl,
Roberta Calegari, Artur S. d’Avila Garcez, Francesco
Fabiano, Alessandra Mileo, Alessandra Russo, and
Francesca Toni, editors, Proceedings 39th International
Conference on Logic Programming, ICLP 2023, Imperial
College London, UK, 9th July 2023 - 15th July 2023,
volume 385 of EPTCS, pages 274–287, 2023.

[Taupe et al., 2021] Richard Taupe, Gerhard Friedrich, Kon-
stantin Schekotihin, and Antonius Weinzierl. Solving
configuration problems with ASP and declarative domain
specific heuristics. In Michel Aldanondo, Andreas A.
Falkner, Alexander Felfernig, and Martin Stettinger, edi-
tors, Proceedings of the 23rd International Configuration
Workshop (CWS/ConfWS 2021), Vienna, Austria, 16-17
September, 2021, volume 2945 of CEUR Workshop Pro-
ceedings, pages 13–20. CEUR-WS.org, 2021.

[Touvron and et al., 2023] Hugo Touvron and et al. Llama:
Open and efficient foundation language models. CoRR,
abs/2302.13971, 2023.

[Wotawa, 2020] Franz Wotawa. On the use of answer set
programming for model-based diagnosis. In Hamido
Fujita, Philippe Fournier-Viger, Moonis Ali, and Jun
Sasaki, editors, Trends in Artificial Intelligence The-
ory and Applications. Artificial Intelligence Practices -
33rd International Conference on Industrial, Engineer-
ing and Other Applications of Applied Intelligent Sys-
tems, IEA/AIE 2020, Kitakyushu, Japan, September 22-
25, 2020, Proceedings, volume 12144 of Lecture Notes in
Computer Science, pages 518–529. Springer, 2020.

[Yang et al., 2023] Zhun Yang, Adam Ishay, and Joohyung
Lee. Coupling large language models with logic pro-
gramming for robust and general reasoning from text. In
Findings of the Association for Computational Linguistics:
ACL 2023, pages 5186–5219, 2023.

[Zeng et al., 2024] Yankai Zeng, Abhiramon Rajasekharan,
Kinjal Basu, Huaduo Wang, Joaquı́n Arias, and Gopal
Gupta. A reliable common-sense reasoning socialbot built
using llms and goal-directed asp. Theory and Practice of
Logic Programming, 24(4):606–627, 2024.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


