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Abstract
Despite an ongoing shift in automated chemical
literature search methods, many are fairly limited
in ability to find very specific relevant information
about a drawn molecule and its associated property
data. We aim to tackle the challenge of convert-
ing drawn molecules to a machine readable repre-
sentation and co-reference any associated molecule
data. MoleculeMiner is a system where a user can
feed in their own patent or paper to obtain each
drawn molecule along with any specific metadata
(chemical name, chemical reactivity, yield, purity
etc.) provided anywhere in the PDF in a tabular
format, using an interactive user-friendly environ-
ment. We also present MolScribeV2, a molecu-
lar image parser which improved upon the original
MolScribe by introducing pixel-based self attention
positional embedding technique. Along with other
changes, MolScribeV2 is robust to varied styles of
compound drawings commonly found in patents
and papers–scanned or born digital. Our extrac-
tion and user interactive system can be found at
https://github.com/insitro/MoleculeMiner.

1 Introduction
While structured extraction from unstructured documents in
the chemical domain is not new, most of these systems have
modality and input format limitations. Some recent systems
for chemical structure recognition (CSR) include DECIMER
[Rajan et al., 2020] that used a CNN based encoder-decoder
architecture to directly predict SMILES from a molecule im-
age. MolScribe [Qian et al., 2023], which MoleculeMiner’s
parsing is based off of, used a transformer based encoder-
decoder model but was limited in performance due to being
trained on synthetically generated data. MolGrapher [Morin
et al., 2023] used a different approach by first using a CNN to
predict the atoms and then use a graph neural network (GNN)
to predict the graph structure of the molecule. This was then
converted to a SMILES representation. ChemScraper [Shah
et al., 2024] on the other hand used two different parsing
techniques for born-digital (rules) and image-based (neural)
to improve accuracy if the PDF has embedded graphical ele-
ments for the molecule figures. MoleculeMiner aims to im-

prove upon the existing MolScribe CSR system by adding a
novel positional embedding technique and addition of new
forms of data augmentation for CSR to be robust to diagrams
extracted from patents as well as journals.

Extracting tabular data in the chemical domain has always
been a challenge due to the large variations in table styles
found. Further, these tables often don’t contain the chemi-
cal structure, and instead have a text identifier to the com-
pounds. ChemTables [Zhai et al., 2021] tried an approach
by trying to classify the type of table first by populating a
table type ontology from Reaxys [Reaxys, 2009]. Chem-
DataExtractor [Swain and Cole, 2016] used a layout classi-
fier to identify tables from other objects such as images and
text blocks based on a heirarchy of rules. The segmented
tables were then parsed row-wise based on embedded char-
acters in the PDF. Thus, it could only support born-digital
documents as their base extraction system was based on PDF-
Box [The Apache Software Foundation, 2012]. Modern ap-
proaches introduce using vision based multi-modal Large
Language Models (LLM) for zero-shot extraction of table
data given a specific schema through prompt engineering.
ChatExtract [Polak and Morgan, 2024] used a hierarchy of
prompts to extract chemical data from tables in a JSON for-
mat. MoleculeMiner attempts to automate the table extraction
and linking using carefully constructed prompts to identify
chemically relevant tables.

Co-referencing or entity-linking different modes of infor-
mation sources from a document in the chemical domain is an
equally challenging task due to variations in document gener-
ation methods and structure. [Zhang et al., 2023] used a Bi-
LSTM based Named Entity Recognition (NER) model to ex-
tract relevant chemical text and a CNN model to perform Op-
tical Character Recognition (OCR) on document tables to link
material names in text with associated units and composition
data in tables. However their table schema that were filtered
had to adhere to a fixed expected schema. ChemSchemati-
cResolver [Beard and Cole, 2020] linked R-group definitions
in text to diagrams containing open group substituent. Open-
ChemIE [Fan et al., 2024] is an end-to-end system that used a
table detection method and identifying relevant ones though
table headers to replace R-groups in diagrams. Our system
can identify links between any form of structured tables and
diagrams as long as there is a reference number written in its
vicinity.
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Figure 1: Pipeline Overview. A PDF provided by the user through the interface is processed to localize molecule regions in page using
YOLOv8. MolScribeV2 is used to convert these molecule regions into their SMILES representations. In parallel, a reference number for
the drawing was identified, if any. These references were finally used to link to data extracted from tables fusing GPT-4o and the associated
molecule which is served back to the user as an interactive overlay.

Figure 1 shows the overall pipeline of MoleculeMiner.
When a user provides a PDF document (born-digital or
scanned), the system runs it through a multi-stage pipeline
that (1) Detects, extracts and parses Drawn Molecule Di-
agrams into a Simplified Molecular Input Line Entry Sys-
tem (SMILES) [Weininger, 1988] string (Chemical Structure
Recognition (CSR)) (2) Detects and extracts all data from ta-
bles (Table Extraction) (3) Co-references molecule property
data from tables and links them to parsed molecules (Entity
Linking).

2 System Description
2.1 Molecule Detection and Parsing
The detection and parsing system first identifies the re-
gions where the molecules exists, then parses the individual
molecules through a transformer based encoder-decoder sys-
tem to predict the graph structure of the molecule. The graph
is then post-processed to generate the canonical SMILES
string. This representation is useful for a variety of reasons
– applicability in molecular downstream tasks, encoding of
chemical properties such as chirality and double-bond geom-
etry (stereochemistry) and easy interconversion to other for-
mats such as MOLFile, DeepSMILES [O’Boyle and Dalke,
2018] and InChI [Heller et al., 2015] [Heller, 2014].

Molecule Diagram Detection: PDF pages are processed
through YOLOv8 [Jocher et al., 2023] to segment the
molecule regions. CLEF-IP2012 [Piroi et al., 2012] [Dey
and Zanibbi, 2021] dataset consisting of 1242 pages and 419
pages for train and test respectively containing molecule dia-
grams. Due to limitation in availability of open source train-
ing data for segmentation, we avoid using data intensive op-
tions like vision transformer for this stage.

Molecule Diagram Parsing: Our parsing model,
MolScribeV2, improves upon the original MolScribe [Qian et
al., 2023] in three major areas – enhanced positional embed-
dings, dataset size and special augmentation. Figure 2 shows

Figure 2: Enhanced Learnable Positional Embedding at the SWIN-B
encoder for MolScribeV2. A binary mask of the molecule is gener-
ated for each of the transformer block levels. For each window of
the mask, self-attention layers are generated where pixels belong-
ing to the molecule lines are considered as ”relevant” (green arrow)
while all other relationships are made ”non-relevant” (red arrow).
The mask considers pixel relationships within each window.

the additional positional embedding method where at each
block of the SWIN transformer encoder [Liu et al., 2021], an
additional learnable positional embedding is created from the
binary mask of graphics pixels that forces attention values
in the transformer layers to distinguish between valid and
invalid pixels. Compared to MolScribe which was trained on
1 million PubChem [Kim et al., 2022] molecules, 5 million
molecules were used to train MolScribeV2 with data from
PubChem, Zinc250k [Akhmetshin et al., 2021], ChemBL
[Mendez et al., 2019], MOSES [Polykovskiy et al., 2020].
Finally, existing data augmentation methods were combined
with two new techniques to improve performance on real
world data. Margin cropping or adding was a method used
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System Accuracy(%)
SMILES Match ↑

Leven-
shtein ↓

Tanimoto
Similarity ↑

Graph Edit
Distance ↓

MolScribe (Baseline) 88.02 34.89 0.976 (1761) 0.039 (1666)
MolScribeV2 (5M Train) 90.31 3.27 0.980 (1790) 0.032 (1715)
+ Enh. Pos. Emb. 90.09 4.30 0.982 (1790) 0.033 (1717)
+ Crop/Add Margins 94.61 0.83 0.987 (1834) 0.035 (1783)
+ Doc. Degradation 94.17 1.52 0.983 (1813) 0.012 (1756)

Table 1: Comparison of MolScribe and MolScribeV2 on a set of
1832 molecules. Numbers in parenthesis indicate the number of
molecules which could be successfully computed for the metric.

to cut or append margins (upto 10% of height or width of
the image) at any side of the original to simulate real world
examples of images arising from imperfect segmentations.
Document degradation was another augmentation that added
random amounts gaussian and salt and pepper noise to the
images to simulate molecule regions from scanned PDFs.
Table ?? shows the comparison of original version to various
improvements on a set of two real-world patent PDFs. 1832
molecules were manually collected along with their ground-
truth SMILES. This set was collated with expert annotated
SMILES to produce the Page → Location → Molecule →
SMILES examples from real world documents. This is the
first such collection made to our knowledge and will be
made available. We do not report benchmark comparisons
due to space constraints and those not reflecting real world
extracted molecules.

2.2 Molecule and Table Data Linking
The process involves three main stages. (1) Finding the refer-
ence number written in the proximity to each drawn molecule
(2) Extracting all tables found in the PDF and filtering only
the tables containing a column with reference numbers (3)
Merging drawn molecules with their associated table meta-
data based on common reference numbers.

References to drawn molecules were found using the
docTR [Mindee, 2021] OCR suite. After filtering out all
words that either were not numeric or alphanumeric or were
inside a molecule region, the rest of the words were chosen
as candidate sets for attaching to each individual molecule.
Proximity-based matching included spatial constraints such
as reference numbers can only be to the bottom or right of a
molecule, each reference number instance can only be used
without replacement and have to fall within certain distance
based on the longest side of molecule region. This approach
was found to be most consistent across different styles of doc-
uments.

Table Detection and Extraction was performed through
GPT-4o [et al., 2024] through a series of prompts. The
prompts were carefully designed to sequentially extract the
table label, table headers and the row metadata. Additional
algorithms were designed to join multi-page tables together,
process tables with no table headers and filter out columns
where the molecule is drawn inside the table itself.

Linking molecules with their associated metadata involved
collating reference numbers found near drawn molecules with
reference numbers in tables. In our work, we found reference
column headers could be named in a different ways and spe-
cific keyword list was designed to account for the variations.

Figure 3: An excerpt from the user interface showing detected
molecules on a PDF page and a clickable pop-up menu showing
a specific molecule’s extracted and linked properties from anywhere
in the PDF through reference matching with tables.

The approach taken in this paper for co-referencing im-
proves previous systems in various ways. Multi-page tables
can be successfully joined together, forming a unified coher-
ent table for linking regardless of table schema change be-
tween pages. Each molecule can be linked to metadata ob-
tained from more than one table. Any type of metadata in-
cluding multi-line metadata can be successfully linked with-
out the need of constraining to very specific table schemas.

3 User Interface
To facilitate user adoption of Molecule Miner, we have cre-
ated a user interface allows users to run analyses with little
effort, including those lacking programming experience (see
video accompanying paper). The user can upload a PDF of
interest and, optionally, their OpenAI API key if they want
table extraction as well. Once complete, the user is served an
interactive display of their document with clickable red boxes
indicating an identified molecule. Upon clicking each red
box, the user can see information about the molecule like its
SMILES and the model confidence. Figure 3 shows available
metadata collated from the entire PDF for a specific molecule
displayed to the user. Furthermore, a user can directly down-
load the full PDF result as a CSV file that can be directly used
in downstream applications like molecule modeling, property
prediction etc.

4 Conclusion
MoleculeMiner uses specialized extraction and co-
referencing methods, linking parsed diagrams with its
pharmacologically relevant data mentioned in tables. This
is enabled by our robust molecule diagram extraction and
improved parsing along with the usage of Large Language
Models to detect and parse tables. Automated linking of
relevant table data with molecules allows important molecule
properties to be easily accessible to be used in other down-
stream tasks for cheminformatics. The webapp exposes this
functionality in an easy-to-use interface through which users
can get information from both digital and scanned PDFs.
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