
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

PyTorch-Lifestream: Learning Embeddings on Discrete Event Sequences

Artem Sakhno1 , Ivan Kireev1 , Dmitrii Babaev2 , Maxim Savchenko1 , Gleb Gusev1 and
Andrey Savchenko1,3

1Sber AI Lab, Moscow, Russia
2SaluteDevices, Moscow, Russia

3ISP RAS Research Center for Trusted Artificial Intelligence, Moscow, Russia
sakhno.ad18@physics.msu.ru

Abstract
The domain of event sequences is widely applied
in various industrial tasks in banking, healthcare,
etc., where temporal tabular data processing is re-
quired. This paper introduces PyTorch-Lifestream,
the first open-source library specially designed to
handle event sequences. It supports scenarios with
multimodal data and offers a variety of techniques
for learning embeddings of event sequences and
end-to-end model training. Furthermore, PyTorch-
Lifestream efficiently implements state-of-the-art
methods for event sequence analysis and adapts
approaches from similar domains, thus enhancing
the versatility and performance of sequence-based
models for a wide range of applications, including
financial risk scoring, campaigning, user ID match-
ing, churn prediction, fraud detection, medical di-
agnostics, and recommender systems.

1 Introduction
In a broad range of real-world applications, including finance,
healthcare, risk assessment, e-commerce, and telecommuni-
cations, information is processed in the form of tabular time
series [Padhi et al., 2021], i.e., event sequences [Babaev et al.,
2022], where each event is characterized by its timestamp and
attributes. Such events include financial transactions (with
attributes like MCC code, amount, etc.), medical visits (at-
tributes: diagnosis, ICD code, analysis results), customer in-
teractions, and online actions like clicks or purchases.

There exist many frameworks for working with such data,
such as recommender systems [Zhao et al., 2022; Vasilev et
al., 2024] and temporal point processes [Bacry et al., 2017;
Karpukhin et al., 2024]. Both are designed to predict the next
event type, user action, or item interaction. However, many
applications of sequential data go beyond next-event predic-
tion. Some tasks focus on individual events, such as fraud
detection in transactions. In contrast, others require mod-
eling entire event sequences, such as classifying full event
streams, refining customer segmentation, or scoring user be-
havior. Frameworks designed exclusively for next-event pre-
diction are often insufficient for these broader challenges,
limiting their applicability in domains that require a more
comprehensive approach to event sequence modeling.

Frameworks for other similar domains, multivariate time
series [Tavenard et al., 2020; Alexandrov et al., 2020] or text
processing [Wolf, 2019], though provide exceptional perfor-
mance in sequence modeling, cannot be directly applied to
event sequence processing. Indeed, they rely on regularly
spaced data, where observations or text tokens occur at fixed
intervals. In contrast, event sequences are inherently irreg-
ular, with varying time between events. Moreover, events in
sequence may contain a mix of numerical and categorical fea-
tures, making their processing more complex.

Large organizations typically have vast amounts of event
data, enabling unsupervised/self-supervised learning (SSL)
techniques to learn meaningful embeddings. Since only a
small fraction is labeled, the typical pipeline involves train-
ing embeddings of event sequences, which are then utilized
for downstream classification and regression tasks [Bazarova
et al., 2025]. However, frameworks specifically designed for
this purpose, such as SimCLR [Chen et al., 2020], often fo-
cus on narrow methodological aspects and do not provide a
general framework for learning event representations.

As a result, practitioners working with event sequences
often rely on general-purpose libraries like pandas or PyS-
park for feature engineering and preprocessing, followed by
training models using deep learning frameworks such as Py-
Torch or TensorFlow. However, this approach requires signif-
icant adaptation, as these tools offer highly general-purpose
functionality, whereas handling event sequences necessitates
specialized solutions. This increases development time and
model complexity and results in inefficiencies during both
model creation and inference processes.

To bridge this gap, we introduce PyTorch-Lifestream
(PTLS)1, an open-source library2 explicitly designed for
learning embeddings of event sequences. Unlike existing so-
lutions that primarily focus on explicit predictive tasks, our
library is optimized for learning informative sequence em-
beddings that can be used across various downstream appli-
cations, such as customer segmentation, anomaly detection,
and forecasting. The library supports multimodal event se-
quences, including transactions, clickstreams, and geoloca-
tion data [Mollaev et al., 2024], offering a unified and effi-

1Lifestream is a concept for processing sequential events that
represent a subject’s “stream of life”

2https://github.com/pytorch-lifestream/pytorch-lifestream

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/pytorch-lifestream/pytorch-lifestream


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

cient approach to representation learning.
A key advantage of PyTorch-Lifestream is its flexible and

modular design, allowing users to adapt the framework to di-
verse tasks and model architectures swiftly. The library offers
a configurable pipeline that supports various sequence en-
coders, training objectives, and inference strategies. A video
demonstrating its usage is available at3.

2 PyTorch-Lifestream Overview
PyTorch-Lifestream offers a complete model development
pipeline, enabling them to derive embeddings or scores for
downstream tasks directly from raw data. Built on top of
PyTorch Lightning, it is designed to be modular and easily
extendable. This foundation simplifies distributed training,
experiment reproducibility, and integration of custom com-
ponents, such as additional checkpoints, evaluation metrics,
and training logic. The library implements three core stages
in the modeling process: preprocessing, training using SSL
followed by fine-tuning, and inference (Figure 1).

PyTorch-Lifestream is a highly flexible framework that has
been successfully deployed in real-world industrial scenarios
involving millions of users. Its modular architecture and scal-
able data pipeline support make it well-suited for large-scale
applications such as financial scoring, churn prediction, and
user modeling. Details about our framework are provided in
the following Subsections.

2.1 Preprocessing and Data Loading
In most business systems, data is stored in a “event-per-row”
format, with several categorical and numerical features ac-
companying each action. However, this format makes it chal-
lenging to leverage such data in machine learning, as it lacks
an explicit sequence structure.

In PyTorch-Lifestream, this shortcoming is addressed by
various preprocessors that transform raw data into sequence-
friendly formats and provide functions for handling categor-
ical, numerical, and temporal features. These preprocessors
support the fit-transform interface, similar to scikit-learn[Pe-
dregosa et al., 2011], ensuring seamless integration into ma-
chine learning pipelines. For instance, PTLS includes a Fre-
quencyEncoder component to efficiently convert the original
categories into a training-ready format through frequency-
based encoding. The library provides three preprocessors,
each employing different toolsets for working with tabular
data: pandas, Dask, and PySpark. After all transformations,
a table is generated in the “sequence-per-row” format.

To improve computational efficiency, PTLS enables struc-
tured storage of preprocessed data in the Parquet format,
which provides efficient compression and rapid retrieval into
memory [Apache Arrow, 2016].

The framework offers an extensible Dataset interface that
supports map-style and iterable-style datasets, facilitating
flexible data handling strategies. This dual-mode support al-
lows seamless adaptation to large-scale datasets that exceed
memory constraints. Various options are available to trans-
form raw data during loading. Users can limit the number

3https://youtu.be/C1opqDCIfhI

of events, select a random data slice, shuffle the sequence of
events, etc.

2.2 Model Architecture
Our framework employs two key architectural components:
the event encoder (TrxEncoder) and the sequence encoder
(SeqEncoder). TrxEncoder consists of an embedding layer
for categorical features and normalization for numerical fea-
tures. The embeddings of categorical and numerical features
are concatenated and passed through a linear layer. Custom
numerical feature processing can be implemented. For exam-
ple, to apply a custom piecewise linear encoding for numeri-
cal features [Gorishniy et al., 2022], it is sufficient to pass it
as a scaler argument to TrxEncoder, allowing seamless inte-
gration of advanced feature engineering techniques.

Two main architectures are implemented for SeqEncoder:
RNN (Recurrent Neural Network) and Transformer. The li-
brary supports modular replacement of standard sequence
encoders with more advanced architectures. For instance,
the SeqEncoder can use state-of-the-art transformers from
Hugging Face [Wolf, 2019] or the x-transformers [Wang,
2020] library. This ensures seamless integration with popular
Transformer-based architectures.

As some tasks require an embedding for each token in the
input sequence, while others require a single embedding for
the entire sequence, a parameter (is reduce sequence) con-
trols this behavior. When set to true, the model outputs a sin-
gle embedding suitable for predicting a single label. Other-
wise, the model produces an embedding for each input token,
enabling sequence-level processing.

PTLS also provides functionality for working with mul-
timodal data, including a built-in method for early fu-
sion [Zong et al., 2024], which enables combining different
modalities by using separate TrxEncoders for each modality
and a shared SeqEncoder. Multimodality in sequential data
allows the model to integrate information from clickstream,
transactions, and other contextual interactions, leading to a
more comprehensive understanding of user activity.

2.3 Implemented Methods
PyTorch-Lifestream implements various state-of-the-art pre-
training methods for event sequences, for example:

• CoLES [Babaev et al., 2022] and its modifications:
the library provides a wide range of samplers and loss
functions for contrastive learning, including conven-
tional contrastive loss [Bromley et al., 1993], triplet
loss [Hoffer and Ailon, 2015], and InfoNCE [Oord et al.,
2018]. Additionally, regularization techniques such as
VicReg [Bardes et al., 2021] and Barlow Twins [Zbontar
et al., 2021] are supported, allowing for training embed-
dings without negative examples.

• GPT-2 [Radford et al., 2019]: prediction of all categori-
cal features of the next event.

• MLM (Masked Language Modeling) [Devlin et al.,
2019; Liu et al., 2019]: the event embedding is masked
at the event encoder output, as implemented in [Baevski
et al., 2020; Yugay and Zaytsev, 2024]. The neural net-
work is trained to reconstruct the masked embedding us-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://youtu.be/C1opqDCIfhI


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 1: Architecture of the proposed PyTorch-Lifestream framework

ing a contrastive loss function. Additionally, the loss of
NSP (next sentence prediction) can be used.

• RTD (Replace Token Detection): the library employs a
simplified version of the architecture proposed in [Clark,
2020]. TrxEncoder is used as the encoder in our imple-
mentation, and the replaced token is randomly selected
from the batch.

• TabFormer [Padhi et al., 2021]: a portion of event fea-
tures is masked and subsequently reconstructed during
model training.

• CPC (Contrastive Predictive Coding) [Oord et al.,
2018]: during training, the next n embeddings produced
by the event encoder are predicted.

Moreover, we support flexible loss functions. Users are
not restricted to built-in loss functions. They can leverage
specialized metric learning libraries such as PyTorch Metric
Learning [Musgrave et al., 2020] or SSL libraries to incorpo-
rate modern loss functions.

A dedicated class, SequenceToTarget, fine-tunes the
model, enabling further training for classification, regression,
and other tasks. This class supports both training models
from scratch and fine-tuning pre-trained models, allowing
users to leverage prior knowledge encoded in embeddings
while adapting to specific downstream tasks. This class al-
lows training for supervised tasks for a given target at the
sequence and individual transaction levels.

3 Our Benchmark
Together with our library, we introduce a benchmark for event
sequence modeling. In this paper, we present its part for three
datasets: Default Scoring [Boosters, 2025a], Churn predic-
tion [Boosters, 2025b], and Age prediction [ODS.AI, 2025].
These tasks are widely applied in the banking sector and other
business areas. Each dataset represents user transactional ac-
tivity data. However, the datasets differ in scale: the Scoring
dataset contains more than 1,400,000 users, the Age dataset
has 50,000 users, and the Churn dataset includes less than
11,000 users.

Table 1 presents the results obtained using the methods im-
plemented in PyTorch-Lifestream. Since some of these meth-

ods, such as GPT, MLM, and Tabformer, generate multiple
embeddings, pooling across all transactions was applied for
their use in downstream tasks. The library also includes a
model that implements manually engineered features by ag-
gregating various statistics along the sequence. The results
show that the implemented methods frequently outperform
approaches relying on manually engineered features. More-
over, blending or concatenating embeddings from different
models often improves quality.

Method
Scoring
AUROC

Age
Accuracy

Churn
AUROC

Hand made features 0.7792 0.629 0.827
Barlow Twins 0.7878 0.643 0.839
VicReg 0.7886 0.598 0.829
CPC 0.7919 0.602 0.792
CoLES 0.7921 0.640 0.841
MLM 0.7791 0.621 0.817
RTD 0.7910 0.631 0.771
Tabformer 0.7862 0.601 0.827
GPT 0.7737 0.589 0.824

Table 1: Comparison results for methods from PyTorch-Lifestream

4 Conclusion
This paper introduced PyTorch-Lifestream, the first publicly
available unified framework for representing and modeling
discrete event sequences. The integration of robust pre-
processing and diverse model architectures, which can be
adapted to various tasks and models thanks to the modular
structure and code flexibility, allows researchers and practi-
tioners to integrate the framework into their work quickly.

Beyond its strong performance, PyTorch-Lifestream offers
practical advantages, including flexible data-loading options,
efficient inference, and a modular codebase that facilitates
customization. By providing a user-friendly interface for
unimodal and multimodal sequence processing, our library
lowers the barrier to adopting advanced sequence-based tech-
niques while remaining extensible for evolving research and
industry needs.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
The work of A. Savchenko on Section 2 was supported by the
Ministry of Economic Development of the RF (code 25-139-
66879-1-0003).

References
[Alexandrov et al., 2020] Alexander Alexandrov, Kon-

stantinos Benidis, Michael Bohlke-Schneider, Valentin
Flunkert, Jan Gasthaus, Tim Januschowski, Danielle C.
Maddix, Syama Rangapuram, David Salinas, Jasper
Schulz, Lorenzo Stella, Ali Caner Türkmen, and Yuyang
Wang. GluonTS: Probabilistic and Neural Time Series
Modeling in Python. Journal of Machine Learning
Research, 21(116):1–6, 2020.

[Apache Arrow, 2016] Apache Software Foundation Apache
Arrow. Apache arrow, 2016.

[Babaev et al., 2022] Dmitrii Babaev, Nikita Ovsov, Ivan
Kireev, Maria Ivanova, Gleb Gusev, Ivan Nazarov, and
Alexander Tuzhilin. CoLES: Contrastive learning for
event sequences with self-supervision. In Proceedings
of the 2022 International Conference on Management of
Data, SIGMOD/PODS ’22. ACM, June 2022.

[Bacry et al., 2017] E. Bacry, M. Bompaire, S. Gaı̈ffas, and
S. Poulsen. tick: a Python library for statistical learning,
with a particular emphasis on time-dependent modeling.
ArXiv e-prints, July 2017.

[Baevski et al., 2020] Alexei Baevski, Henry Zhou, Abdel-
rahman Mohamed, and Michael Auli. wav2vec 2.0: a
framework for self-supervised learning of speech repre-
sentations. In Proceedings of the 34th International Con-
ference on Neural Information Processing Systems, NIPS
’20, Red Hook, NY, USA, 2020. Curran Associates Inc.

[Bardes et al., 2021] Adrien Bardes, Jean Ponce, and Yann
LeCun. Vicreg: Variance-invariance-covariance regu-
larization for self-supervised learning. arXiv preprint
arXiv:2105.04906, 2021.

[Bazarova et al., 2025] Alexandra Bazarova, Maria Koval-
eva, Ilya Kuleshov, Evgenia Romanenkova, Alexander
Stepikin, Aleksandr Yugay, Dzhambulat Mollaev, Ivan
Kireev, Andrey Savchenko, and Alexey Zaytsev. Learning
transactions representations for information management
in banks: Mastering local, global, and external knowl-
edge. International Journal of Information Management
Data Insights, 5(1):100323, 2025.

[Boosters, 2025a] Boosters. Alfa Battle 2 Overview, 2025.
[Online; accessed 11-February-2025].

[Boosters, 2025b] Boosters. Rosbank Challenge 1
Overview, 2025. [Online; accessed 11-February-2025].

[Bromley et al., 1993] Jane Bromley, Isabelle Guyon, Yann
LeCun, Eduard Säckinger, and Roopak Shah. Signature
verification using a ”Siamese” time delay neural network.
Advances in neural information processing systems, 6,
1993.

[Chen et al., 2020] Ting Chen, Simon Kornblith, Moham-
mad Norouzi, and Geoffrey E. Hinton. A simple frame-
work for contrastive learning of visual representations.
ArXiv, abs/2002.05709, 2020.

[Clark, 2020] K Clark. Electra: Pre-training text encoders
as discriminators rather than generators. arXiv preprint
arXiv:2003.10555, 2020.

[Devlin et al., 2019] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. BERT: Pre-training of
deep bidirectional transformers for language understand-
ing. In Jill Burstein, Christy Doran, and Thamar Solorio,
editors, Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 4171–4186, Minneapo-
lis, Minnesota, June 2019. Association for Computational
Linguistics.

[Gorishniy et al., 2022] Yury Gorishniy, Ivan Rubachev, and
Artem Babenko. On embeddings for numerical features
in tabular deep learning. Advances in Neural Information
Processing Systems, 35:24991–25004, 2022.

[Hoffer and Ailon, 2015] Elad Hoffer and Nir Ailon. Deep
metric learning using triplet network. In Similarity-based
pattern recognition: third international workshop, SIM-
BAD 2015, Copenhagen, Denmark, October 12-14, 2015.
Proceedings 3, pages 84–92. Springer, 2015.

[Karpukhin et al., 2024] Ivan Karpukhin, Foma Shipilov,
and Andrey Savchenko. Hotpp benchmark: Are we good
at the long horizon events forecasting?, 2024.

[Liu et al., 2019] Yinhan Liu, Myle Ott, Naman Goyal,
Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta:
A robustly optimized bert pretraining approach, 2019.

[Mollaev et al., 2024] Dzhambulat Mollaev, Alexander
Kostin, Maria Postnova, Ivan Karpukhin, Ivan A Kireev,
Gleb Gusev, and Andrey Savchenko. Multimodal bank-
ing dataset: Understanding client needs through event
sequences, 2024.

[Musgrave et al., 2020] Kevin Musgrave, Serge J. Belongie,
and Ser-Nam Lim. Pytorch metric learning. ArXiv,
abs/2008.09164, 2020.

[ODS.AI, 2025] ODS.AI. Sberbank Sirius Lesson Competi-
tion, 2025. [Online; accessed 11-February-2025].

[Oord et al., 2018] Aaron van den Oord, Yazhe Li, and Oriol
Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

[Padhi et al., 2021] Inkit Padhi, Yair Schiff, Igor Melnyk,
Mattia Rigotti, Youssef Mroueh, Pierre Dognin, Jerret
Ross, Ravi Nair, and Erik Altman. Tabular transformers
for modeling multivariate time series. In Proceedings of
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 3565–3569. IEEE, 2021.

[Pedregosa et al., 2011] Fabian Pedregosa, Gaël Varoquaux,
Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Weiss, Vincent Dubourg, et al. Scikit-learn: Machine
learning in python. Journal of machine learning research,
12(Oct):2825–2830, 2011.

[Radford et al., 2019] Alec Radford, Jeffrey Wu, Rewon
Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners.
OpenAI blog, 1(8):9, 2019.

[Tavenard et al., 2020] Romain Tavenard, Johann Faouzi,
Gilles Vandewiele, Felix Divo, Guillaume Androz,
Chester Holtz, Marie Payne, Roman Yurchak, Marc
Rußwurm, Kushal Kolar, and Eli Woods. Tslearn, a ma-
chine learning toolkit for time series data. Journal of Ma-
chine Learning Research, 21(118):1–6, 2020.

[Vasilev et al., 2024] Alexey Vasilev, Anna Volodkevich,
Denis Kulandin, Tatiana Bysheva, and Anton Klenitskiy.
Replay: a recommendation framework for experimenta-
tion and production use. In 18th ACM Conference on Rec-
ommender Systems, RecSys ’24, page 1191–1194. ACM,
October 2024.

[Wang, 2020] Phil Wang. x-transformers: A flexible trans-
former implementation in pytorch, 2020. GitHub reposi-
tory.

[Wolf, 2019] T Wolf. Huggingface’s transformers: State-
of-the-art natural language processing. arXiv preprint
arXiv:1910.03771, 2019.

[Yugay and Zaytsev, 2024] Aleksandr Yugay and Alexey Za-
ytsev. Uniting contrastive and generative learning for event
sequences models. ArXiv, abs/2408.09995, 2024.

[Zbontar et al., 2021] Jure Zbontar, Li Jing, Ishan Misra,
Yann LeCun, and Stéphane Deny. Barlow twins: Self-
supervised learning via redundancy reduction. In Inter-
national conference on machine learning, pages 12310–
12320. PMLR, 2021.

[Zhao et al., 2022] Wayne Xin Zhao, Yupeng Hou, Xingyu
Pan, Chen Yang, Zeyu Zhang, Zihan Lin, Jingsen Zhang,
Shuqing Bian, Jiakai Tang, Wenqi Sun, Yushuo Chen,
Lanling Xu, Gaowei Zhang, Zhen Tian, Changxin Tian,
Shanlei Mu, Xinyan Fan, Xu Chen, and Ji-Rong Wen.
Recbole 2.0: Towards a more up-to-date recommendation
library. In CIKM, pages 4722–4726. ACM, 2022.

[Zong et al., 2024] Yongshuo Zong, Oisin Mac Aodha, and
Timothy Hospedales. Self-supervised multimodal learn-
ing: A survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2024.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


