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Abstract
We formulate a Coverage Path Planning (CPP)
problem for a helicopter or a UAV tasked with
mapping ground-level radiation while avoiding
radiation that is too strong. We introduce a simula-
tion environment that incorporates digital elevation
models, altitude-dependent measurement footprints
and realistic flight constraints, as well as state-
of-the-art radiation scenario simulations, such as
nuclear explosions, provided by the German Fed-
eral Office for Radiation Protection. We highlight
the complexity of radiological survey missions and
demonstrate the necessity for new CPP approaches
that address these unique challenges. The code to
our simulation environment can be found under
https://github.com/JohannBlake/Aerial-Coverage-
Path-Planning-in-Nuclear-Emergencies.

1 Introduction
Nuclear power is becoming increasingly relevant as a source
of clean energy. However, nuclear emergencies, such as the
explosion at the Fukushima nuclear power plant, serve as
stark reminders of the risks associated with nuclear technolo-
gies. Radiation poses significant hazards to both people and
the environment, necessitating effective monitoring and inter-
vention strategies.

1.1 Motivation
Following incidents involving radioactive contamination, a
critical task for government agencies is to map radiation lev-
els in affected areas. This is currently done using helicopters
equipped with radiation measurement devices, which collect
two key data types: (1) the local dose rate, i.e., the radia-
tion intensity reaching the helicopter at its position, and (2)
the ground radiation level, i.e., the radiation intensity at the
surface.

The goal is to cover the area of interest to create a map of
ground radiation levels while avoiding excessive local dose
rates, which can contaminate equipment and endanger per-
sonnel. Existing flight paths are not optimized for radiation
avoidance.

Our research enables the German Federal Office for Radi-
ation Protection to plan real-time flight paths for helicopters

and UAVs, ensuring effective and safe deployment during nu-
clear emergencies. While UAVs can withstand higher radia-
tion exposure than manned helicopters, limits remain due to
contamination risks.

1.2 Simulation Requirements for CPP in Nuclear
Emergencies

Our simulation models CPP in nuclear emergencies with high
realism, extending into three dimensions to allow a helicopter
to adjust its altitude while surveying and avoiding radiation.
Flight dynamics are modeled through an action-based system,
where the agent controls its heading and altitude via continu-
ous angular adjustments. This ensures that movement adheres
to realistic aerial constraints.

A downward-facing measurement cone defines the sur-
veyed area, with its size determined by altitude and terrain.
Higher altitudes expand coverage and lower radiation expo-
sure but reduce measurement quality.

The helicopter’s path should minimize sharp turns, as fre-
quent course changes are difficult to execute and degrade
measurement accuracy. To enhance realism, we integrate de-
tailed terrain data and radiation maps, including state-of-the-
art simulations of nuclear incidents from the German Federal
Office for Radiation Protection.

Our system accounts for the dynamic nature of radiation
exposure, which varies with time and altitude and is only
known at explored positions. This requires analyzing radi-
ation gradients experienced at the already explored positions
to adjust flight paths in real-time. In mountainous regions, op-
timizing altitude is challenging due to sparse rewards, which
are only given for measuring new areas at the correct eleva-
tion, complicating policy development.

1.3 Distinction From Existing Work
Although our problem shares similarities with CPP in un-
known environments—such as the one described in [Jonnarth
et al., 2024], which includes applications like autonomous
vacuum navigation—existing CPP methodologies do not di-
rectly apply to our setting. This is because of the differ-
ent dynamics of radiation avoidance (Radiation gradients in-
stead of strict borders), height maintenance, the constraint on
turns and the flight paths one can follow due to the three-
dimensional nature of the environment.
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2 Definition of the Task
The primary objective of our flight planning task is to max-
imize the covered area while strictly adhering to radiation
limits. Radiation avoidance can be approached in two ways:
making sure the local dose rate at any given time does not ex-
ceed a legally enforced limit or ensuring that the cumulative
dose over the entire mission remains below thresholds vital
for health and contamination control.

Beyond radiation considerations, the flight path’s sim-
plicity is crucial. Excessive maneuvering makes piloting
more challenging, increases fuel consumption, and can un-
dermine measurement accuracy due to tilt-induced changes
in the orientation of both the helicopter and the measurement
equipment. Furthermore, maintaining the correct flight alti-
tude—typically around 90m above ground— is necessary to
ensure optimal measurement quality. Finally, the helicopter
must always return to the airport or base within a predeter-
mined time frame, which further constrains the design of the
flight plan. Last but not least minimizing the overall flight
time is paramount in CPP missions.

2.1 Definition as a Markov Decision Process
(MDP)

We formulate the flight planning task as an MDP defined by
the tuple (S,A, T,R).

The State Space S includes the helicopter’s measured area,
area of interest, history of local dose rates with their positions,
helicopter’s current position and direction, elevation data, and
remaining time.

The Action Space A is defined as the set of continuous
two-dimensional vectors in the range [−1, 1]2, where each
component specifies a directional adjustment along the hori-
zontal and vertical axes (see Section 3).

The Transition Function T is governed by the mechan-
ics of the environment, including the helicopter’s movement
dynamics, altitude-dependent radiation exposure, and inter-
actions with the terrain and radiation scenarios detailed in
Section 3.

The objective consists of 5 components.
• R1: Maximize the measured area at the optimal altitude

of 90m.
• R2: Adhere to radiation exposure limit, ensuring safety

limits are not exceeded.
• R3: Minimize the amount of turns.
• R4: Minimize the overall flight time to enhance opera-

tional efficiency.
• R5: Ensure the helicopter returns to the base within the

specified time frame.
We define the Reward Function R as:

R(s, a) =

5∑
i=1

wiRi(s, a)

wherewi are weighting factors that balance the importance
of each objective.

Alternatively, we can use constrained RL by treating radi-
ation exposure as a constraint.

Figure 1: The height of points corresponds to the digital elevation
model, red indicates the measured area, black represents the unmea-
sured area, the ”Inferno” color map depicts the radiation scenario,
and the orange line shows the helicopter’s flight path.

Figure 2: One original (left) with two derived radiation scenarios.

3 Simulation Environment

We use OpenAI’s standardized Gymnasium interface due to
its strong open-source support, which simplifies development
[Towers et al., 2024]. Our simulation environment features
the following components.

Geo data. Terrain data is obtained from the digital eleva-
tion model available as GeoTIFF files from the ALOS Global
Digital Surface Model (AW3D30) project [Japan Aerospace
Exploration Agency (JAXA), 2024]. The helicopter’s posi-
tion, orientation, and altitude are represented as geospatial
data, ensuring accurate integration with the terrain model.

Radiation data. We received a limited number of radiation
scenarios from the German Federal Office for Radiation Pro-
tection and generated alternative scenarios based on the orig-
inals to improve the model’s generalization capabilities, en-
suring robust performance across a variety of tasks. This was
done by translating and distorting the original images. Figure
2 displays examples of an original and two generated radia-
tion scenarios.

Local Dose Rate. Given a radiation scenario as the one de-
picted in Figure 1 where the color of each point xk, yk in the
inferno coloring scheme represents the level of the radiation
LDRsource(xk, yk) for this single point at the ground. The
local dose rate LDR(x, y, 0) at a point (x, y) and height 0 is
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calculated using inverse distance weighting

LDR(x, y, 0) =

∑
k

LDRsource(xk,yk)
d2
k∑

k
1
d2
k

,

where dk is the distance between (x, y) and the k-th
known point. We adjust the result for height h by scaling
LDR(x, y, 0) in an inverse logarithmic manner, ensuring that
the local dose rate decreases as altitude increases.

The measured area. The measured area is defined as the
intersection of the downward-facing measurement cone and
the terrain. We have simulated the radius of the measuring
cone in dependence of the type of radiation (energy) accord-
ing to [Grasty et al., 1979].

Impact of actions on environment. At each point in time,
the agent’s current direction is given by a vector in R3. The
agent can change this direction by adjusting the horizontal
angle θ ∈ [−α, α], and the vertical angle φ ∈ [−β, β]. Af-
ter applying θ and φ, the agent follows the updated direction
vector for a fixed duration T . The parameters α, β, and T
must be chosen to reflect the flight dynamics of the specific
aerial vehicle (e.g., drone or helicopter). In our Gymnasium
environment, we choose a 2-dimensional continuous action
space [−1, 1]2 representing these angle changes.

Visualization via ”DECK.GL”. We use DECK.GL1 for its
GPU acceleration capabilities, enabling efficient rendering of
large datasets. It supports map integration, facilitating visu-
alization in a geospatial context, and is well-suited for real-
world deployment.

4 Demonstration Setup
Our MDP features a large state space and continuous actions,
making reinforcement learning (RL) more suitable for the
task than classical methods like a boustrophedon path (sys-
tematic back-and-forth movements). As shown in [Jonnarth
et al., 2024], RL effectively addresses similar CPP problems
and it allows integration of additional objectives, such as min-
imizing turns, by incorporating reward penalties for direction
changes.

We trained several models under varying environmental
conditions using the Twin Delayed Deep Deterministic Pol-
icy Gradient algorithm [Fujimoto et al., 2018] with Stable
Baselines3 [Raffin et al., 2021].

The Gymnasium environment’s observation space includes
the measured area, area of interest, history of local dose rates
with their positions, helicopter’s current position and direc-
tion, elevation data, and remaining time. The system is built
to allow further extension if necessary.

In our demonstration, we present example flight paths from
these models in flat and mountainous environments, with and
without radiation. The example policies can be found at
https://linktr.ee/johannblake, where you can find visual rep-
resentations of the paths discussed below.

1https://deck.gl/

4.1 Policies in a Flat Environment
No radiation, straightforward coverage reward. This
policy prioritizes direct traversal through unradiated regions
but leads to fragmentation of unmeasured areas. As a result,
flight time increases due to the need to revisit measured re-
gions.
No radiation, coverage with TV reward. Leveraging the
total variance (TV) reward from [Jonnarth et al., 2024], this
policy improves coverage efficiency while reducing fragmen-
tation. However, despite turn penalties, excessive maneuver-
ing remains.
With radiation, coverage with TV reward. This policy
covers the area efficiently but lacks penalties for directional
changes, leading to too many turns to navigate high-dose ar-
eas while respecting exposure limits.
With radiation, coverage with TV reward, punish turns.
By penalizing directional changes, this policy reduces turns
compared to the previous approach. However, fragmentation
and excessive turns are still present, highlighting the chal-
lenge of balancing radiation avoidance with path efficiency,
as shown in Figure 3.

4.2 Policy in a Mountainous Environment
When operating in mountainous terrains, the policies exhibit
even more pronounced deficiencies. Because of the steep
slopes and irregular terrain outside of the flat valley, the agent
struggles to sustain the optimal altitude consistently, leading
to sparse rewards, missing exploration and policy stagnation.

4.3 Impact of Reward Function and Environment
These examples underscore how the reward function and
environmental factors—such as radiation levels and terrain
topology—significantly influence the policies. The interplay
between maximizing coverage, minimizing turns, maintain-
ing optimal height and avoiding radiation creates a complex
optimization problem. Balancing these objectives poses sub-
stantial challenges, particularly in dynamic and uneven envi-
ronments like mountainous regions. The difficulty in achiev-
ing an optimal trade-off between these factors highlights the
inherent complexities in developing robust CPP strategies for
nuclear emergency scenarios.

Figure 3: A policy in flat terrain with too many turns but a path
avoiding radiation most of the time.
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