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Abstract
While current time series research focuses on de-
veloping new models, crucial questions of select-
ing an optimal approach for training such models
are underexplored. Tsururu, a Python library intro-
duced in this paper, bridges SoTA research and in-
dustry by enabling flexible combinations of global
and multivariate approaches and multi-step-ahead
forecasting strategies. It also enables seamless inte-
gration with various forecasting models. Available
at https://github.com/sb-ai-lab/tsururu.

1 Introduction
A fundamental task in time series analysis is forecasting,
which involves predicting future values Xt+1:H over a hori-
zon H at timestep t, given the historical data X1:t and known
covariates Z1:H for all time points [Salinas et al., 2020;
Kim et al., 2024]. Later in this paper, we consider multivari-
ate data comprising multiple time series within the dataset.

To advance forecasting capabilities, various libraries have
been developed to benchmark state-of-the-art (SoTA) models,
including tslib [Wang et al., 2024], neuralforecast [Olivares
et al., 2022], uni2ts [Aksu et al., 2024] (for in-context learn-
ing models), pytorch-forecasting [Beitner, 2020] (has earlier
deep learning models), BasicTS [Shao et al., 2024]. How-
ever, they are suboptimal for real-world scenarios. They often
rely on fixed forecasting strategies, offer constrained support
for exogenous variables, and face difficulties in the usage of
custom datasets. These factors limit their suitability for in-
dustrial scenarios. A potential solution is a time series li-
brary that seamlessly handles diverse datasets, including non-
aligned ones or those with exogenous features.

Indeed, some of the issues above are partially covered in
existing practically oriented time series libraries. Almost all
such libraries use global approach [Januschowski et al., 2020;
Montero-Manso and Hyndman, 2021] (useful for non-aligned
series) and support exogenous variables: Darts [Herzen et
al., 2022], sktime [Király et al., 2025], gluonts [Alexan-
drov et al., 2020], tslearn [Tavenard et al., 2020], skforecast
[Amat Rodrigo and Escobar Ortiz, 2024], AutoTS [Catlin,
2021] (global for aligned time series only), ETNA [Alekseev

et al., 2021], mlforecast [Morales, 2021]. However, some of
them could not use exogenous features as input, like tslearn
[Tavenard et al., 2020], and tsspiral [Cerliani, 2023] or work
only in the multivariate setting, such as tsai [Oguiza, 2023].

Nevertheless, the full predictive potential of time series
models remains unexplored, as the impact of forecasting
strategies [Taieb, 2014] has received limited attention. Clas-
sical time series forecasting is based either on a recursive
strategy [Gustin et al., 2018] or a multi-input-multi-output
(MIMO) strategy [Bontempi, 2008; Bontempi and Taieb,
2011; Kline, 2004]. Recent research claimed that the ques-
tion of which strategy to use is still open [Green et al., 2024].
Notably, most state-of-the-art neural networks are trained us-
ing the MIMO strategy. However, incorporating additional
forecasting strategies demonstrates that MIMO is not always
optimal (see Section 3). Only Darts, sktime, skforecast and
tspiral have at least three strategies. Nevertheless, they offer
only a narrow pool of preprocessing methods. For example,
none of them is integrated with the LastKnownNormalizer —
subtraction or division on the last element in available history.
Our experiments show that this rarely used preprocessing en-
hances forecasting performance significantly (see Section 3).

Given the weaknesses of existing time series libraries, this
paper introduces Tsururu (Fig. 1), the modular framework
for both practitioners and researchers that makes combinable
global/multivariate approaches, different forecasting strate-
gies, and models. This flexibility connects state-of-the-art
research with real-world business applications.

2 Framework Design
The Tsururu architecture (Fig. 1) facilitates the comparison
of configurations and the development of task-specific fore-
casting systems, incorporating strategies with support for ex-
ogenous variables.

Multi-series prediction strategies. Tsururu supports both
Global and Multivariate approaches for all models for
handling multiple time series [Januschowski et al., 2020;
Montero-Manso and Hyndman, 2021]. The Global approach
fits a single model to all time series, treating them as inde-
pendent, while the Multivariate approach allows the model
to capture dependencies between them. Moreover, each deep
learning model in Tsururu supports Channel Independence
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Figure 1: a) The architecture of the proposed Tsururu framework. Most existing libraries typically support either (1) global and multivariate
forecasting or (2) multiple forecasting strategies, but not both. Tsururu enables the exploration of all possible combinations of available ML
and DL models with various forecasting strategies, preprocessing techniques, and the global/multivariate setting. b) The inference stage of
the forecasting process for each strategy. FH stands for forecasting horizon.

(CI) and Channel Mixing (CM) modes [Han et al., 2024].
The last one controls the interaction between series in the
multivariate setting.

Multi-step-ahead prediction strategies. Different strate-
gies can be applied to multi-step forecasting. Recursive
(Rec) [Weigend, 2018] trains a single model to predict the
next point (MH = 1), iteratively extending predictions across
the forecast horizon and using previous predictions to update
the features in the test data. MH denotes the model horizon,
i.e., the number of points which the model outputs in a sin-
gle step. Tsururu also supports the hybrid Recursive-MIMO
(Rec-MIMO) strategy (MH > 1), which follows the recur-
sive strategy but generates multiple-step predictions at each
iteration instead of a single point. Direct (Dir) [Weigend,
2018] uses separate models for each prediction step with
model horizon length, constructing the full forecast horizon.
MIMO [Bontempi, 2008] trains a single model to simul-
taneously predict the entire forecast horizon (MH = H).
FlatWideMIMO (FWM) uses a single model to predict a
specific point in the forecasting vector, with the horizon index
explicitly provided as an input feature. While rarely used, this
strategy can be effective.

Pipeline and Data Transformations. Tsururu’s pipeline
applies sequential transformations to time series data, catego-
rized into three types: Series-to-Series are used for data pre-
processing and feature generation, Series-to-Features build
a “wide” series matrix with lagged versions of generated fea-
tures, Features-to-Features perform window-based process-
ing, such as LastKnownNormalizer (LKN), based on normal-
izing values by the most recent observed one in available his-
tory, i.e. in corresponding row of the “wide” series matrix.
Tsururu supports separate transformations for features and
targets, allowing more data preparation flexibility.

Models. Tsururu offers classical ML and deep learning
models. For ML, it includes boosting methods like CatBoost
[Prokhorenkova et al., 2018] and SketchBoost [Iosipoi and
Vakhrushev, 2022], with SketchBoost chosen for its speed in
GBDT training [Friedman, 2001]. DL models are grouped
into linear (DLinear [Zeng et al., 2023], CycleNet [Lin et
al., 2024]), CNN-based (TimesNet [Wu et al., 2023]), and

Transformer-based (PatchTST [Nie et al., 2023], GPT4TS
[Zhou et al., 2023]).

Data flow. In Tsururu, data moves through a structured
pipeline. First, time series pass through preprocessing. Next,
some relevant features are generated: categorical encod-
ings and datetime features. Once these features are in place,
Tsururu operates at the index level, converting “long” into
“wide” series through lag transformations. This protocol
prevents leakage from future values, supports dynamic fea-
ture generation, and reduces memory overhead. Afterward,
Tsururu applies the beforehand chosen multi-step forecast-
ing strategy and selects either the Global or Multivariate ap-
proach. Window normalization can then be used to rescale
each observation in wide data to the most recent known value,
thus helping to cope with local shifts in the data distribu-
tion. Finally, the prepared dataset and model are passed to the
Trainer module. The Trainer is responsible for the training
process. It also uses cross validator (CV) to generate vali-
dation splits. When multiple splits exist, a separate model is
trained for each split, and their predictions are averaged dur-
ing inference. The validation set can also be used for early
stopping. The final model is then validated using backtesting
and rolling validation methods to ensure robustness (note that
it is not the same as CV in Trainer).

3 Experimental Results
Setup. We examine such models as SketchBoost, DLinear,
PatchTST, GPT4TS, and CycleNet, exploring both global
and multivariate approaches (with either Channel Indepen-
dence or Channel Mixing) and forecasting strategies: Re-
cursive (with model horizon MH equal to 1 or 6), MIMO,
and FlatWideMIMO. These models are evaluated on the ILI
dataset1, a challenging weekly time series with annual pe-
riodicity and distinct temporal structures, to showcase the
library’s capabilities and highlight the importance of non-
default model-approach-strategy combinations.

For all settings, we used a cosine-based scheduler for over
50 epochs, with the learning rate set to 0.0001, and per-

1https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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123

SS + LKN
SS

SS + DN

Critical Difference Diagram

Figure 2: A critical difference diagram visualizes the ranking of
preprocessing methods across other fixed hyperparameters of the
pipeline. Methods not connected by a horizontal line are signifi-
cantly different. Here, we consider StandardScaler (SS) with Last-
KnownNormalizer (LKN) or DifferenceNormalizer (DN)

Hyperparam Value NN models Boosting Overall
Rank Median MAE Rank Median MAE Rank Median MAE

Datetime False 1.3819 1.0087 1.3333 1.6050 1.3743 1.0448
Features True 1.6181 1.1323 1.6667 1.6174 1.6257 1.1785

ID Features False 1.7262 1.0780 1.5714 1.6174 1.6952 1.1319
True 1.2738 1.0024 1.4286 1.5898 1.3048 1.0611

Mode
Global 1.5476 1.0056 1.0952 1.5648 1.5476 1.0735

Multivariate CI 2.2619 1.1217 NaN NaN 2.2619 1.1217
Multivariate CM 2.1905 1.1319 1.9048 1.6248 2.1905 1.2129

FlatWideMIMO 3.9375 1.3080 2.8889 1.6208 3.7719 1.3543
Prediction MIMO 1.7500 1.0280 2.4444 1.6072 1.8596 1.0621
Strategy Recursive (MH = 1) 2.4167 1.0314 2.7778 1.6066 2.4737 1.0763

Recursive (MH = 6) 1.8958 1.0228 1.8889 1.5816 1.8947 1.0541

Table 1: Comparison of hyperparameters of data manipulation
pipeline. For boosting, there is no Multivariate CI mode by con-
struction; only Multivariate CM mode is available. MH stands for
the model horizon of the Recursive strategy.

formed parameter updates at the end of each batch. We
fixed batch size to 32, history to 96, and horizon to 24. The
model hyperparameters (i.e., hidden dimension, the number
of attention heads, etc.) were left unchanged from their ear-
lier configurations in the initial works [Zhou et al., 2023;
Zeng et al., 2023]. In cases where the authors had not tested
their models on ILI, we retained the hyperparameters for
ETTh1 [Zhou et al., 2021].

Results. As shown in Figure 2, LKN significantly out-
performs default preprocessing strategies, demonstrating its
effectiveness despite not being adopted in common libraries.
We use delta-mode normalization (based on subtraction from
the current value, the previous one for DifferenceNormalizer
(DN), and the most recent one in available history for LKN).

Table 1 presents the results of an ablation study on hyper-
parameters of the data manipulation pipeline, analyzing the
impact of date and id features inclusion, forecasting mode,
and strategy selection on model performance. The id features
improved model accuracy, while including date features led to
worse performance for both neural networks and GBDT. The
Global approach outperformed the multivariate one, achiev-
ing the lowest rank and median MAE across all models. The
MIMO strategy ranked best for neural networks, while Rec-
MIMO (MH = 6, see Section 2) achieved the lowest median
MAE. For GBDT, Rec-MIMO (MH = 6) is the best strategy
in rankings and median MAE. Thus, this hybrid approach is
rarely used but is a competitive alternative.

Table 2 provides the independent ranking of models based
on test and validation MAE. In this evaluation, we also con-
sidered an alternative scaling approach using ratio normal-
ization without an initial StandardScaler for boosting mod-
els. Our results confirm that GPT4TS outperformed all other
models. Notably, the Rec-MIMO strategy with MH = 6
achieved the best overall test MAE. However, on the vali-

rank Model Strategy MAE (test) Model Strategy MAE (val)

1 GPT4TS Recursive (MH = 6) 0.7804 GPT4TS MIMO 0.2713
2 GPT4TS Recursive (MH = 1) 0.7822 GPT4TS Recursive (MH = 6) 0.2833
3 PyBoost FlatWideMIMO 0.7921 GPT4TS Recursive (MH = 1) 0.2938
4 GPT4TS MIMO 0.7926 PatchTST MIMO 0.3005
5 PatchTST Recursive (MH = 6) 0.8630 PatchTST Recursive (MH = 6) 0.3050
6 PatchTST MIMO 0.8769 DLinear Recursive (MH = 6) 0.3169
7 PatchTST Recursive (MH = 1) 0.8949 PatchTST Recursive (MH = 1) 0.3180
8 DLinear Recursive (MH = 6) 0.9193 DLinear MIMO 0.3205
9 DLinear MIMO 0.9220 PyBoost FlatWideMIMO 0.3239
10 DLinear Recursive (MH = 1) 0.9314 DLinear Recursive (MH = 1) 0.3313

Table 2: Best 10 combinations model-strategy based on MAE on
validation and test subsets.

Model MAE (Original) MSE (Original) MAE (Ours) MSE (Ours)

DLinear 1.081 2.215 1.037 ± 0.004 2.227 ± 0.010
PatchTST 0.754 1.319 0.716 ± 0.043 1.239 ± 0.103
GPT4TS 0.881 2.063 0.896 ± 0.024 2.028 ± 0.054
TimesNet 0.934 2.317 0.927 ± 0.031 2.033 ± 0.155
CycleNet 1.073* 2.400* 1.051 ± 0.013 2.345 ± 0.049

Table 3: Original vs. Ours. Metrics for the ILI dataset with a fore-
casting horizon of 24. Values marked with * indicate that the corre-
sponding metric was not taken from the original paper but computed
using the official implementation. Results are presented as mean ±
standard deviation, calculated across three seeds.

dation set, the highest-ranked strategy was MIMO. Interest-
ingly, FlatWideMIMO combined with boosting models also
ranked among the top strategies, demonstrating that GBDT
can be competitive when paired with non-standard multi-
step-ahead forecasting approaches. The diversity of top-
ranked models and strategies underscores the importance of
exploring rarely used model-strategy combinations.

Reproducibility. To validate the accuracy of our time se-
ries library, we reproduce results from previous studies us-
ing Tsururu and compare them to the metrics reported in the
original papers (Table 3). The close alignment between these
metrics demonstrates the fidelity of our implementations.

4 Conclusion
This paper introduces Tsururu, an open-source Python li-
brary for ablating all-with-all combinations of preprocess-
ing, time series models, forecasting approaches, and strate-
gies. It can be easily integrated with new SoTA models for
fair benchmarking while providing key industrial features,
such as exogenous variables and a Global approach to han-
dling non-aligned time series. It also supports channel mix-
ing and channel-independent forecasting, rarely used in ex-
isting libraries. Our experiments show the advantages of us-
ing rarely employed preprocessing (like LastKnownNormal-
izer) and combining strategies (like Recursive for PatchTST).
Moreover, combining a Recursive strategy with the Global
approach makes short time-series forecasting feasible, with
extended horizons and support for custom datasets. The ex-
tended results for other datasets can be found in our reposi-
tory. An ability to handle non-aligned series represents our
essential advantage of combining regimes and strategies.

Future work includes incorporating Rectify [Taieb, 2014],
and DirRec [Sorjamaa and Lendasse, 2006], building a uni-
versal neural network constructor, testing patching tech-
niques, and supporting time series with mixed discretization
(daily, monthly, weekly, etc.) within multivariate datasets.
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Ethical Impact
The framework’s methods and specifications do not di-
rectly relate to ethical concerns. However, high-stakes do-
mains such as healthcare and finance, where time series are
widespread, require careful attention. Before deploying our
library in such contexts, a thorough evaluation is essential to
ensure it does not support decisions that could negatively im-
pact individuals or organizations.
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