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Abstract

We propose a self-play approach to generating
strategies for playing in multi-player games, where
strategies are represented as computer code. We
use large language models (LLMs) to generate
pieces of code to play in the game, which we refer
to as generated bots. We engage the LLM generated
bots in competitions, designed to generate increas-
ingly stronger strategies. We follow game theoretic
principles in organizing these tournaments, and use
a Policy Space Response Oracle (PSRO) approach.
We start with an initial set of LLM generated bots,
and continue in rounds for adding new bots into the
population. Each round adds a bot to the popula-
tion by asking the LLM to produce code for play-
ing against a bot representing the Nash equilibrium
mixture over the current population. Our analysis
shows that even a few rounds are sufficient to pro-
duces strong bots for playing the game. Our demo
shows the process for the game of Checkers. We
allow users to select initial bots in the population,
run the process, inspect how the bots evolve over
time, and play against the generated bots.

1 Introduction

The recent innovation wave on Large Language Models
(LLMs) has uncovered exciting applications, from transla-
tion to code generation [Li er al., 2022; Fan et al., 2023;
Liu et al., 2024a; Hou er al., 2024]. We focus on leverag-
ing LLM code generation for playing in multi-player games.
Traditional game Al techniques have achieved remarkable
successes in many games, but many computationally in-
tensive methods such as Minimax search algorithms [Allis,
1994], Monte Carlo Tree Search (MCTS) [Browne et al.,
2012], or reinforcement learning (RL) [Silver er al., 2018;
Zhang et al., 2021; Perolat et al., 2022] result in game play-
ing policies that are not interpretable [Angelov et al., 2021].
LLMs offer a transformative approach through their ability to
reason about strategy and generate code.

Our contribution: We propose a method for iteratively
improving game-playing strategies using LLMs within a self-
play framework guided by game theory. We use the frame-
work of Policy Space Response Oracles (PSRO) [Lanctot et

al., 2017; Zhang et al., 2024a], which iteratively adds strate-
gies to a population by responding to the Nash equilibrium
over the current strategies. Our key innovation lies in us-
ing a self-play approach that considers strategies expressed in
computer code. We use an LLM to generate candidate pieces
of code, and engage these bots in fournaments where they
play the game one against the other. The LLM prompt asks
for it to generate code for playing the game so as to maxi-
mize its win-rate against an opponent whose code is given in
the prompt and reflects the current population of opponents.
Thus, we use the LLM to generate increasingly more sophisti-
cated strategies. Figure 1 shows an overview of our approach.
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Figure 1: An overview of our approach, LLM-PSRO. We begin with
a population of bots for playing the game (hand-written or LLM gen-
erated). In each round we: a. approximate the win-rate of each bot
in the population against each other over many games and construct
a payoff matrix with these win-rates; b. Approximate the Nash equi-
librium in the game expressed as the payoff matrix; c. Generate code
for the round’s Mixture Bot, which calls each underlying bot with its
probability under the Nash equilibrium. d. Get response candidates
for the Mixture Bot by asking the LLM to generate code for playing
in the game so as to best win against the Mixture bot’s code; e. Se-
lect the best-response candidate, with the best win-rate against the
Mixture Bot, and add it to the bot population.
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Although the approach is general and can be applied to any
multi-player game, we demonstrate it on the game of Check-
ers. Checkers possesses strategic depth and requires care-
ful planning and adaptation [Griffith, 1974; Schaeffer et al.,
2007; Mandziuk et al., 2007; Knauer et al., 20201, making it
a challenging testbed that allows us to rigorously evaluate the
effectiveness of our approach in LLM-driven gameplay.

2 Methods

We now describe our approach, using Checkers as an exam-
ple. To iteratively improve gameplay, we grow a population
of a bots for playing the game. Here, each bot is represented
as the source code in Python for playing Checkers (based on
a shared Python Checkers game engine).

Initialization We start with an initial population of bots
Py = (by,...,by). We can either use hand-crafted bots, or
query the LLM to generate a bot (code) for playing the game.
We then proceed in multiple rounds of generating a new bot
to add to the population. Each round r begins with payoff
table construction, where for the current population of bots,
we play all possible pairwise match-ups (bot b; vs. bot b;).
We estimate the expected score s; ; of bot b; playing against
bot b; by running £ = 1000 games between them and taking
the mean score (in Checkers, —1 for a loss, O for a tie, and
+1 for a win). This data forms a payoff matrix P", where
entry P; ; is the estimate for s; ;. The payoff table captures
the relative strengths of the bots in the current population.

Next we approximate the Nash equilibrium distribu-
tion over the bots, by taking the the payoff table and ap-
plying the fictitious play (FP) [Brown, 1951] method. FP
iteratively simulates bots playing against the average strat-
egy of their opponents. This process converges to the Nash
Equilibrium distribution, which represents the optimal mixed
strategy for the current population. Hence the Nash approxi-
mation takes in the payoff matrix P" and returns an optimal
mixture over the current bots — a probability x} for each bot
b; (where Zi x; = 1). We use the weights z} to construct
the code for the Mixture Bot b for the round. The Mix-
ture Bot code does not employ a single fixed strategy, but
rather before playing each game it samples a bot b; from the
current population according to the probability distribution
(2], x5, ...,27), where d is the size of the bot population in
round 7; it then uses the sampled bot’s strategy to decide on
moves in the game. The Mixture Bot embodies the optimal
mixed strategy derived from the Nash Equilibrium.

We use the Mixture Bot for generating a new bot to add
to the population. We generate a new bot by prompting the
LLM to examine the code of the Mixture Bot (given in the
prompt), and to generate a new bot code so as to best de-
feat the Mixture Bot. Our LLM prompt asks the LLM to
generate a best response to the current Mixture Bot, and in-
cludes the full code of the Mixture Bot (including the code for
each of the sub-strategies it employs, i.e. the previous gener-
ation bots). As generating a best response bot is a challenging
task, we repeat the LLM query ¢ times, each time generating
a new candidate bot, cq, ..., c;. The win-rate of each of these
against the Mixture Bot b is estimated over £ = 1000 games,
and the best new bot is selected and added to the population.

By applying the above process m times, we obtain m ad-
ditional bots in the population (and m Mixture bots). These
are stronger and stronger bots, as each of these is designed to
perform well against all the previous generations. Hence the
LLM queries generate increasingly more effective strategies
in response to the evolving mixture bot, so the process gradu-
ally improves the overall playing strength. Our full algorithm,
called LLM-PSRO, is given in Algorithm 1.

Algorithm 1 LLM-PSRO: LLM-based Population Self-play
for Game Playing Strategy Improvement

Require: Game simulator (e.g., Checkers engine)

Require: LLM for code generation

Require: Initial population of bots Py = (b1, ...,bp)
1: for r =1tomdo

2: fori =1to|P._1| do > Payoff table
3: for j =1to|P._1| do
4: Estimate s; ; over k games.
5: P;:J < Siyj
6: end for
7: end for
8: (a1,...,a]p,_,|) < FP(P") > Nash Equilibrium
9: b" < MixtureBot(z7, . .., errq\)
10: fort =1to T do > LLM Best Response
11: ¢t + LLM_Generate(b") > Prompt LLM with b"
12: Estimate win_rate(c;, b") over k games
13: end for
14: bnew — arg max; win_rate(cz, b")
15: P. < Py U{bpew}
16: end for
17: Return P,

3 Results and Conclusions

We evaluate the ability of our procedure to identify increas-
ingly strong strategies in the game. We run the LLM-PSRO
procedure, using Codel.lama-7b-Instruct-hf as our LLM, for
m = 5 rounds in n = 20 independent runs, each starting with
an initial population of 3 bots (obtained by querying an LLM
to produce code for playing in the game in the absence of
additional instructions regarding an opponent). We examine
the total probability mass placed by the Nash equilibrium on
these initial bots, in each round (averaged over the n = 20
runs). We expect that as the new population bots grow in
strength, less mass would be placed on the original bots, as
they lose more and more to the newer generations.

The result of the analysis are shown in Figure 2. The blue
line is the total probability mass on the original 3 bots (with
the shaded area shown the standard deviation over the dif-
fernet LLM-PSRO runs). Even if the quality if the new bots
is similar to the original bots, we would expect the mass on
the original bots to diminish as mass would also be placed on
the new bots; however, if their quality was the same as the
bots, we’d expect their total mass to be proportional to their
share of the population, which is plotted as a dashed red line
in the figure (“Expected mass”). Figure 2 shows that the mass
on the original bots diminishes more quickly than their share


https://huggingface.co/codellama/CodeLlama-7b-Instruct-hf
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Figure 2: Nash probability mass on initial population of bots, over
the LLM-PSRO rounds (averaged over n = 20 runs). Lower number
reflect more mass on the new generation of bots, indicating that the
newer bots are stronger.

of the population, indicating the newly generated bots are of
higher quality. In fact, after only 5 rounds, the original 3 bots
obtain a mass of only about L "50 the newer bots are mostly
optimized against the previous generations of LLM-generated
bots. This indicates that the LLM-PSRO method is generat-
ing increasingly stronger bots, and very quickly surpasses the
quality of the initial population of bots. Our tool lets users se-
lect bots for the initial population (using pre-coded strategies,
or by typing in strategies). It then runs the process, and allows
inspecting the code for the bots added at each iteration. It dis-
plays the Nash equilibrium weights in each round, indicating
the relative strengths of the bots in each generation.

4 Related Work

Game playing has been a foundational topic in Al since
its early days, with classical algorithms such as Alpha-Beta
pruning [Knuth and Moore, 1975] and MCTS [Coulom,
2006]. Combining these with deep reinforcement learn-
ing has allowed achieving super-human abilities in many
games [Campbell et al., 2002; Silver et al., 2018; Pero-
lat et al., 2022] However, these require extensive training
and result in game playing policies which are not inter-
pertable by humans [Hernandez-Leal et al., 2019; Angelov
et al., 2021]. LLMs offer an alternative approach for game-
playing. Researchers used LLMs to model rational players in
game theoretic and multi-agent settings [Zhang er al., 2024b;
Fan et al., 2024; Guo et al., 2024; Huang et al., 2024]. Some
work also uses game theoretic solutions to augment LLMs in
strategic settings [Gemp er al., 2024].

In contrast to these approaches we do not ask the LLM to
directly play in a game; Such a direct prompting approach
can result in suboptimal or inconsistent strategies, highlight-

ing the need for a more structured solution [Guo er al., 2024;
Huang er al., 2024]. Rather, in our approach the role of
the LLM is to generate a bot (an agent) for playing in
the game. As we use the LLM to generate game playing
code, our method is more akin to LLM software engineer-
ing agents (SWE-Agents), that produce piece of software for
task [Liu er al., 2024b; Xia et al., 2024; Yang et al., 2024;
Nathani ef al., 2025]. Some such existing work also com-
bines SWE-Agents with search techniques [Antoniades et al.,
2024]. Although we use LLMs to write software, we differ
from SWE-Agents in that we allow for competition between
the codes based on a game theoretic recipe.

Researchers have employed many game theoretic methods
for improving decision making. Classical recipes from game
theory such as fictitious play [Hofbauer and Sandholm, 2002]
are designed to select minimally exploitable mixed strategies.
Recipes based on approximating equilibria have been used
for many settings such as security games [Tambe, 2011] and
generative models [Aung et al., 2022]. Some such game the-
ory models have been used to optimize the performance of
multi-agent reinforcement learning systems such the Strat-
ego board game [Perolat et al., 2022] or the Starcraft video
game Nash league [Vinyals ef al., 2019]. We leverage the Pol-
icy Space Response Oracle framework [Lanctot et al., 2017,
Zhang et al., 2024a] but adapt it for code generating LLMs,
which is very different from the setting of reinforcement
learning for which is has been previously applied.

5 Conclusions

We proposed an approach combining LLM code generation
and self-play, that allows for generating bots to play in games.
We follow the Policy Space Response Oracle [Lanctot et al.,
2017] pattern, but operates in the space of programs where
strategies are represented as computer code. By combining
LLM bot generation with PSRO, we generate strong oppo-
nents whose code is fully readable and interpertable by hu-
mans. Hence, the produced bots can be edited and refined by
humans, and their decision-making process is transparent.

There are several interesting directions for future work.
First, are there alternative algorithms that could achieve a
higher performance? Second, we leverage both the code
generation ability of LLMs and their strategic reasoning.
One might consider ways to strengthen strategic reasoning
in LLMs. One option is leveraging synthetic data, such as
the outcomes of previous tournaments. Further, we have ob-
served that in many cases the code generation abilities of
the LLM could also be improved. Synthetic data produced
through the tournaments between the LLM generated pro-
grams can also be leveraged to improve the coding ability
of the underlying LLMs. Finally, our demo focuses on the
game of Checkers, where the agent interaction is competi-
tive (zero-sum) and the environment is deterministic, and the
entire state is observed by all the players. How should it
be changed for cooperative domains [Nagarajan and SoSié,
2008; Bachrach et al., 2020; Bachrach and Porat, 2010;
Sidji er al., 2024] or those with partial observability or in-
creased stochasticity [Bowling and Veloso, 2000; Bachrach
et al., 2012; Alsadat and Xu, 2024]?
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