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Abstract

DAVE is a framework for assisting the analysis of
documents in knowledge-intensive domains, based
on an entity-centric approach supported by annota-
tions of named entities in the documents. DAVE
supports search & filtering, document exploration,
question answering, and knowledge refinement. It
is released as an open-source project that the com-
munity can further develop. DAVE’s distinguish-
ing features are: the integration of a chatbot in-
terface based on recent RAG solutions into well-
established entity-powered faceted search, the fu-
sion of search and filtering features provided by
entity-level annotations with the capability to ask
questions on annotated documents; human-in-the-
loop functions to consolidate knowledge while ex-
ploring information, allowing users to improve an-
notations from NLP algorithms.

1 Introduction

Digitalization has expanded access to large document collec-
tions, making vast amounts of previously inaccessible infor-
mation available in digital form. To support users find useful
information in document collections and analyze their con-
tent, different paradigms have been established to account
for different information needs, from exploratory search in-
terfaces [Liu er al., 20241, which typically combine search
and filtering functionalities (e.g., under the faceted search
paradigm), to question answering systems. The latter ones
have become more popular with the advent of Large Lan-
guage Models (LLMs). Supported by Retrieval Augmented
Generation (RAG) architectures, LLMs simplify the develop-
ment of systems that answer questions in natural language on
top of specific document collections [Lewis et al., 2020].

Notably, many domains are inherently entity-centric,
where factual information is closely linked to entities that de-
fine the context and relevance of a document. For instance, in
fields like law and healthcare, professionals seek information
on case laws, regulations, diseases, and treatments to support
precise search and compliance monitoring. As a result, their
information needs are strongly entity-driven.

Consequently, a crucial step toward building entity-aware
systems is the adoption of Entity Extraction (EE) approaches

to identify and classify entity mentions (i.e., Named Entity
Recognition [Li et al., 2022]) and identify links across these
mentions. These links can be derived indirectly using back-
ground Knowledge Bases (KBs) by applying Named Entity
Linking (NEL) techniques [Sevgili et al., 2022] (all mentions
linked to the same identifier in the KB are deemed to refer to
the same entity) or directly by applying co-reference resolu-
tion techniques [Logan IV ef al., 2021]. The two approaches
can also be somehow combined in end-to-end pipelines com-
bining different components [Pozzi er al., 2023al. The re-
sult of these EE extraction techniques can be used to attach
entity-level annotations to the documents, supporting down-
stream applications for document search and filtering, for
example, exploiting faceted search or other semantic search
interfaces [Tunkelang, 2022]. However, it is worth noting
that EE techniques or more sophisticated methods based on
these techniques, are being increasingly used also in RAG
applications to improve retrieval and answer formulation in
chatbots. Flagship examples of these initiatives are Graph
RAG approaches [Edge et al., 2024]. Nonetheless, even more
lightweight approaches that enrich content and questions with
entities have been shown extremely effective in vertical do-
main [Xu et al., 2024]. Yet, while both these two paradigms,
faceted search and chatbots, can take advantage of entities,
their integration is, to the best of our knowledge, limited.
Even when used to improve RAG techniques behind chatbots,
entities remain in the background.

In this paper, we introduce DAVE, a tool for assisted analy-
sis of document collections in knowledge-intensive domains.
The tool goal is to support search needs that span across dif-
ferent points of the extractive vs. abstractive spectrum, as
discussed in [Worledge er al., 2024]. It features a graphical
user interface (GUI) that enables users to visualize, explore,
and query documents. Our tool is specifically tailored for do-
mains where entities are first-class citizens in document anal-
ysis and provide the main following features: (i) an entity-
driven faceted search interface for entity-driven exploration;
(ii) a conversational interface supporting complex natural lan-
guage queries; (iii) seamless integration of faceted search and
conversational interaction to refine document sources; (iv)
a human-in-the-loop mechanism for refining entity annota-
tions, ensuring corrections are propagated throughout the sys-
tem.

DAVE is designed as an open system and is released as
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Figure 1: The DAVE framework applied to documents referring to the Bologna massacre of August 2, 1980 [Bologna Massacre, 2024].

open source under the Apache-2.0 license. Documentation,
source code, and demonstration videos are available on the
project GitHub page'.

2  Framework Main Functionalities

Knowledge-intensive domains feature extensive collections
of complex documents where information is highly factual
and deeply connected to real-world entities. Moreover, de-
tails about a single entity are often distributed across multiple
documents within the corpus. Recognizing that entities are
the cornerstone of effective document analysis in knowledge-
intensive domains, DAVE proposes an entity-centric explo-
ration approach that goes beyond the exploitation of entity
mentions, e.g., as an output of a NER algorithm, supporting
mentions linked to entity identifiers and clusters of mentions
referring to the same entity.

DAVE provides users with a number of functionalities to
address the outlined requirements, which are discussed with
examples in legal documents exploration (Figure 1):

* Search & Filter: Users can retrieve documents by en-
tering keywords, which is ideal when they have a clear
idea of what they are looking for. Additionally, they
can refine their search results by applying multiple fil-
ters. For instance, users can filter the corpus based on
specific individuals and locations. Figure illustrates the
Search & Filter functionalities (the blue section), which
allow users to retrieve documents by keyword and refine
results through entity-based filters. For example, a user
reviewing documents from a trial might search for the
keyword “appeal”. To narrow the focus, they could use
the filtering panel on the left, which organizes filters by
entity type (e.g., person, location). By selecting “Licio

"https://github.com/unimib-datAI/DAVE

Gelli” from the list of identified entities, the user can
dynamically refine the results, isolating only those doc-
uments where his name appears, with both the result set
and available filters updating accordingly.

¢ Explore: Users can browse the full list of entities iden-
tified in each document and navigate directly to sections
where they are referenced. In the figure, after selecting a
document in the Search & Filter interface, it can be ex-
plored in detail via the Explore interface (green section).
The entire document is shown with highlighted entity
mentions based on type, and a list of entities grouped
by mention appears on the left. For example, in the fig-
ure, the entity “Valerio Fioravanti” is mentioned 4 times.
Clicking any mention takes the user directly to the cor-
responding text span.

¢ Conversational Question Answering (QA): Natural
language queries are supported, allowing users to ask
questions about entities and factual information across
multiple documents. In the example (yellow section),
the user asks the chatbot about the appeal grounds raised
by Prosecutor Squadrini in the Musumeci and Belmonte
case, and the DAVE chatbot responds with relevant doc-
ument passages.

* Knowledge Refinement: Users can refine entity clus-
ters, ensuring that corrections are reflected across all
system functionalities. In the figure (red section), the
user has identified that the entities “Corte d’Assise di
Bologna” and “Corte di Assise di Bologna” with their
respective mentions are actually equivalent, therefore is
collapsing the two entity clusters into one.

DAVE also supports search composability, enabling users
to combine Search, Filter, and Conversational Question An-
swering. By filtering results before querying the RAG-LLM


https://github.com/unimib-datAI/DAVE

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

system, the chatbot works with a more focused document
set, improving answer precision and relevance. Additionally,
DAVE ensures data privacy through on-premise servers and
access controls, crucial for sensitive domains.

By offering this suite of functionalities, DAVE enables pre-
cise control and in-depth understanding of large corpora, pro-
viding diverse exploration and search capabilities tailored to
knowledge-intensive domains and specialized users. To this
aim we implemented these functionalities by mixing the fol-
lowing techniques and technologies:

 Entity-centric management. Entity-level annotations
are represented in the GATE format [Cunningham,
2002] and stored in a MongoDB database; the DB
stores information about the annotations for every en-
tity mentions, entity identifiers, and links between an-
notations and entity identifiers. The current prototype
considers annotations resulting from pipelines that ap-
ply algorithms for NER, Named Entity Linking (with
links to Wikipedia), NIL Prediction (to identify enti-
ties not represented in Wikipedia), and NIL Cluster-
ing (to cluster NIL entities and create identifiers for
each cluster)[Pozzi et al., 2023a; Pozzi et al., 2023b;
Bellandi et al., 2024]. As a result, each entity mention
can be linked to an entity identifier, either external (e.g.
a Wikipedia URI), or internal (identifying a local clus-
ter). Each cluster is associated with a default surface
form used to display the entities in the interface.

* Keyword and Faceted Search: The Search engine
uses keyword matching to efficiently retrieve relevant
documents and serves as the foundation for several
other functionalities. To support the Search & Filter
and Explore functionalities, DAVE employs the well-
established faceted search paradigm. This technique
provides filtering facets based on entities, allowing users
to refine their search results. By providing a structured
way to narrow down results, faceted search enhances the
user’s ability to explore large corpora. Users can apply
filters either across the entire corpus or within a subset
of documents for a more granular exploration.

¢ Human-in-the-Loop (HITL): The Knowledge Consol-
idation feature follows the HITL paradigm, ensuring
continuous user involvement in refining the system.
Users can correct and refine annotations and entity clus-
ters, and these corrections are reflected across all system
functionalities. This active participation helps the sys-
tem improve over time, ensuring a pay-as-you-go con-
solidation of the background data as proposed for simi-
lar tasks [De Castilho et al., 2024; De Paoli et al., 2019;
Cutrona et al., 2019; Cruz et al., 2016].

* Retrieval Augmented generation (RAG): The Con-
versational QA functionality is powered by an LLM-
based chatbot, implemented through the RAG paradigm.
This enables users to ask fact-based queries about enti-
ties across multiple documents. While LLMs excel in
natural language understanding and zero-shot learning,
RAG ensures responses are grounded in retrieved doc-
uments, addressing concerns about hallucinations and
limited knowledge, which is crucial in certain domains.

3 Applications, Main Contributions and
Demonstration

DAVE has been used in prototypes for Italian projects in the
legal domain [Batini et al., 2024] with the goal of showing
stakeholders Al-powered search functionalities, we have ex-
perimented DAVE in i) search on court decision in civil tri-
als [Bellandi er al., 20241, ii) criminal investigations and chat
analysis [Pozzi et al., 2025], and iii) analysis of the documen-
tation about the Bologna massacre of August 2, 1980.

In relation with related work, we discuss below the three
main novelties that we believe DAVE presents as a system:

* Mixing entity-driven faceted search and conversational
assistant. Entity-driven faceted search is a mainstream
technology in many knowledge-driven scenarios where
documents are analyzed using entity extraction (EE)
methods [Guo et al., 2023; Hirsch et al., 2021]. On
the other hand, RAG systems on pre-filtered data have
been studied, with approaches like agent-based filter-
ing [Poliakov and Shvai, 2024], metadata-based filter-
ing [Chang er al., 2024], and natural language infer-
ence [Yoran et al., 2023]. Our work combines faceted
search with a RAG system, enabling dynamic, entity-
driven document filtering.

* Integrating interactive entity-driven knowledge consol-
idation in an information exploration interface. Sev-
eral platforms support text annotations, with Doc-
cano [Nakayama er al., 2018] being widely used; Very
recent work has surveyed interactive approaches to im-
prove annotations, minimize user effort, manage an-
notation teams, support pre-annotated data, and enable
customizable task design [De Castilho er al., 2024].
While we haven’t fully integrated the advanced anno-
tation quality methods from [Klie et al., 2020], our ap-
plication is the first to integrate incorporate interactive
methods editing into an exploratory search interface, fo-
cusing on improving entity clustering, a key challenge
in end-to-end EE pipelines.

 Entity-centric RAG prototyping and grounding. Frame-
works like LangChain [Chase, 2022] facilitate rapid
prototyping and configuration of RAG systems, while
tools such as RAGAS [Es et al., 2024] and RAGChecker
[Ru ef al., 2024] allow for detailed evaluation through a
wide range of metrics. However, existing applications
do not support the prototyping of highly entity-centric
LLM-RAG systems that enable direct analysis of the
corpus and its entities to verify factual accuracy, mak-
ing effective debugging more challenging.

These innovations arise from the need for domain experts
to thoroughly analyze and explore documents annotated by
entity extraction pipelines, using established, user-friendly
search paradigms and allowing experts to improve the system
by refining annotations. A first quantitative evaluation where
DAVE outputs are compared to outputs of top-tier models
is ongoing in the context of a Civil Appeal Proceedings use
case [Agazzi et al., 2024].

During the demonstration session, users are guided in ex-
ploring a document collection using DAVE'’s features.
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