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Abstract

Multi-modal point cloud completion, which utilizes
a complete image and a partial point cloud as in-
put, is a crucial task in 3D computer vision. Pre-
vious methods commonly employ a cross-attention
mechanism to fuse point clouds and images. How-
ever, these approaches often fail to fully leverage
image information and overlook the intrinsic geo-
metric details of point clouds that could comple-
ment the image modality. To address these chal-
lenges, we propose an interleaved attention en-
hanced Transformer (IAET) with three main com-
ponents, i.e., token embedding, bidirectional token
supplement, and coarse-to-fine decoding. TAET in-
corporates a novel interleaved attention mechanism
to enable bidirectional information supplementa-
tion between the point cloud and image modal-
ities. Additionally, to maximize the use of the
supplemented image information, we introduce a
view-guided upsampling module that leverages im-
age tokens as queries to guide the generation of
detailed point cloud structures. Extensive experi-
ments demonstrate the effectiveness of IAET, high-
lighting its state-of-the-art performance on multi-
modal point cloud completion benchmarks in vari-
ous scenarios. The source code is freely accessible
at https://github.com/doldolOuO/IAET.

1 Introduction

Point cloud, as a common 3D data format, is widely used
in real-world scenarios such as autonomous driving [Chen
et al., 2024], medical treatment [Liu er al., 2023], and
robotics [Cheng ef al., 2022]. Given its importance and
versatility, many researchers are currently interested in 3D
computer vision. Owing to inherent limitations of 3D sen-
sor devices and environmental factors, point cloud data col-
lected in real-world settings is often sparse and incomplete,
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(a) Cross-attention mechanism
used in existing methods

(b) The proposed interleaved
attention mechanism

Figure 1: An illustration of our core idea. Subfigure (a) illustrates
that existing methods typically employ a cross-attention mechanism
to fuse point cloud and image data, where information transfer is
unidirectional (from the image to the point cloud). In contrast,
Subfigure (b) demonstrates that the proposed method utilizes an in-
terleaved attention mechanism to enable bidirectional information
transfer between the point cloud and image modalities.

which adversely impacts downstream tasks such as point
cloud segmentation [Du et al., 2024c; Liang ef al., 2023;
Du et al., 2024b], registration [Zhang er al., 2023b; Mu et al.,
2024], and detection [Pei et al., 2023; Zhang et al., 2021b].

Single-modal point cloud completion [Fei et al., 2022,
Tesema et al., 2024], restoring the incomplete input to 3D ob-
jects with complete shapes, is proposed to address this chal-
lenge. From the perspective of the generated completion re-
sults, existing methods can be divided into two categories.
Some approaches [Huang et al., 2020; Alliegro et al., 2021;
Yu et al., 2021] focus on generating missing shapes, while
others [Yuan er al., 2018; Zhou et al., 2022; Wang et al.,
2024] directly produce complete geometric structures. Both
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usually encode the incomplete input into a global represen-
tation. The difference lies in the decoding part; the for-
mer usually restores the global representation to the shape
of the missing area, while the latter restores the global repre-
sentation to a complete 3D object. While the above meth-
ods have achieved remarkable results, they are still diffi-
cult to recover enough details of the missing areas due to
the incompleteness of partial input [Zhang et al., 2021a;
Zhang et al., 2022].

To address this challenge, a straightforward approach in-
troduces additional modality information to assist point cloud
completion. Zhang et al. [Zhang et al., 2021a] propose
a view-guided point cloud completion (ViPC) framework
that, for the first time, combines image information with
point cloud information for point cloud completion. No-
tably, the major challenge in view-guided point cloud com-
pletion is how to efficiently utilize image modality. To ad-
dress this challenge, CSDN [Zhu et al., 2024] proposes a
novel IPAdaIN module to transfer global shape information
of image modality to that of point cloud modality. Differ-
ent from CSDN, most methods such as XMFNet [Aiello et
al., 2022], CDPNet [Du et al., 2024al, and EGIINet [Xu et
al., 2024] adopt a cross-attention mechanism to fuse point
cloud and image modalities. As shown in Figure 1, although
the above methods have achieved certain performance, they
do not fully utilize the image information and ignore that the
structural information in the point cloud representation can
enhance the geometry of the image representation.

To address above challenges, we propose the interleaved
attention enhanced Transformer (IAET) consisting of three
parts, i.e., token embedding, bidirectional token supplement,
and coarse-fine decoding. Different from previous methods
that use a cross-attention mechanism to fuse point cloud and
image modalities in a unidirectional manner, we adopt a bidi-
rectional information transfer strategy to enhance the inter-
action between modalities. Specifically, we employ existing
2D and 3D feature extractors to generate image tokens and
point cloud tokens. Subsequently, we propose the interleaved
attention mechanism which enables mutual supplementation
between the point cloud and image tokens. Finally, we utilize
the supplemented image tokens to guide the transformation of
point cloud tokens into the completion results. ITAET demon-
strates state-of-the-art performance on the multi-modal point
cloud completion benchmark datasets. The main contribu-
tions of this paper are as follows.

* For multi-modal point cloud completion, we suggest
the interleaved attention enhanced Transformer (IAET)
which aims to fully use image information to assist the
point cloud completion process.

* We propose an interleaved attention mechanism to en-
able bidirectional information supplement across modal-
ities, that is, enhancing point cloud representations with
richer semantic detail and infusing image representa-
tions with supplementary geometric information.

* We propose a view-guided upsampling module introduc-
ing image information to enhance the generation of more
detailed and accurate completion results. Specifically,
this module utilizes image information as a query to re-

trieve relevant point cloud representations, enabling it to
capture point clouds’ local geometric structures.

2 Related Work

2.1 Single-modal Point Cloud Completion

PCN [Yuan et al., 2018] is introduced as the first end-to-end
framework for point cloud completion. Building on PCN,
TopNet [Tchapmi ef al., 2019] proposes a tree-structured de-
coder that allows generation of completion results with arbi-
trary resolutions. Subsequently, Liu et al. [Liu et al., 2020]
develop a morphing and sampling network that achieves com-
pletion results with smooth surfaces. PF-Net [Huang et al.,
2020] marks a notable advance by focusing on generating
the shape of missing regions using a multi-resolution en-
coder and a point pyramid decoder. To further refine miss-
ing shapes, PoinTr [Yu er al., 2021] pioneers the use of a
full Transformer [Vaswani et al., 2017] architecture for point
cloud completion, signaling the potential of Transformers for
this task. Recently, SDT [Zhang er al., 2023a] introduces a
skeleton-detail Transformer that emphasizes skeleton points
in coarse completion results, while Seedformer [Zhou et al.,
2022] applies an upsample Transformer to increase point den-
sity. More recently, PointAttN [Wang et al., 2024] presents
a fully attention-based network architecture to enhance the
completion of partial objects.

2.2  Multi-modal Point Cloud Completion

The development of devices such as cross-modal sensors has
enabled multi-modal point cloud completion. As pioneers in
this field, Zhang et al. [Zhang et al., 2021a] are the first to
construct a multi-modal point cloud completion dataset incor-
porating both point cloud and image data and propose ViPC
for multi-modal point cloud completion. A key challenge
in multi-modal point cloud completion lies in effectively
leveraging image information to aid point cloud completion.
To address this challenge, CSDN [Zhu et al., 2024] intro-
duces a novel IPAdaIN module, which facilitates the trans-
fer of global shape information from images to point clouds.
XMFNet [Aiello et al., 2022] first uses the cross-attention
mechanism to fuse modality and point cloud representation,
achieving excellent performance. CDPNet [Du er al., 2024a]
and EGIINet [Xu et al., 2024] also use the cross-attention
mechanism to fuse the two modalities. Specifically, the for-
mer uses a two-stage network to complete partial input. The
latter focuses on the extraction and aligning of two modal-
ities’ features. Compared with ViPC and CSDN, XMFNet,
CDPNet, and EGIINet, which use the cross-attention mecha-
nism to fuse image and point cloud features, have better com-
pletion performance. However, the information transmission
approach that utilizes the cross-attention mechanism to fuse
point clouds and images is unidirectional, specifically trans-
ferring information from the image to the point cloud. This
approach does not fully exploit the potential of the image data
and overlooks the fact that the geometric information inherent
in the partial point cloud could enhance the geometric repre-
sentation of the image modality. IAET aims to explore the im-
pact of bidirectional information transmission between point
cloud and image on multi-modal point cloud completion.
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Figure 2: Overview of the proposed IAET consists of token embedding, bidirectional token supplement, and coarse-fine decoding.

3 Method

3.1 Overview

As shown in Figure 2, IAET mainly consists of three parts,
i.e., token embedding, bidirectional token supplement, and
coarse-fine decoding. During the token embedding stage, a
partial point cloud P and a full image [ are transformed into
point cloud tokens F'p and image tokens F using PointNet++
[Qi et al., 2017b] and ResNet [He et al., 20161, respectively.
In the bidirectional token supplement stage, interleaved at-
tention mechanisms are applied to enhance the point cloud to-
kens and image tokens, resulting in supplemented point cloud
tokens F'% and supplemented image tokens . Finally, in the
coarse-fine decoding stage, the supplemented point cloud to-
kens F' are processed through a coarse decoder, producing a
coarse point cloud Fy. The coarse point cloud Fp, along with
the supplemented point cloud tokens F'% and supplemented

image tokens F7, is then refined using three view-guided up-
sampling modules to generate the completion outcome Ps.
Next, we will provide a detailed introduction to the two parts,
i.e., bidirectional token supplement and coarse-fine decoding,
along with their key components.

3.2 Bidirectional Token Supplement

Existing methods usually use a cross-attention mechanism to
fuse the representation of point clouds and images. This uni-
directional method of information transmission fails to fully
utilize the rich information embedded in images and over-
looks the geometric features of point clouds, which have the
potential to enhance image representation. Unlike previous
approaches, IAET employs a bidirectional token supplemen-
tation strategy during the fusion of the two modalities. This
strategy facilitates the generation of a more informative point
cloud representation while incorporating geometric informa-
tion into the image representation. As illustrated in Figure
2, this process is implemented through multiple interleaved
attention mechanisms.

Interleaved Attention Mechanism. To concisely illustrate
the principle underlying the interleaved attention mechanism,
we designate the inputs to this mechanism as point cloud to-
kens Fp and image tokens F7, as depicted in Figure 3. Ini-
tially, the point cloud enhances the information content of the
image. In this process, image tokens F serve as the query,
while point cloud tokens F'p serve as the key and value. The
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Figure 3: Overview of the interleaved attention mechanism.

corresponding mathematical formulation is as
Qr = MLP(Fy),
Kp = MLP(Fp), (1)
V4 = MLP(Fp),

where MLP(+) is the multi-layer perceptron. Then, the ge-
ometric information Hp is obtained from the query Q}, key
K}, and value V2, and the formula is as
T
QI
Hp = Softmax(———)Vp, 2
P ( \/CTl ) P ( )
where Softmax(-) is the Softmax function and /d; is the
dimension of query Q}, key K5, and value V2. Finally, the
geometric information extracted from point cloud tokens is
supplemented to the image tokens, and its formula is as

F; = MLP(Hp + Fy), (3)

where F7 is the supplemented image tokens. Subsequently,
a similar operation is performed to facilitate the information
transfer from supplemented image tokens to point cloud to-
kens. In this step, point cloud tokens F'p are utilized as query,
while supplemented image tokens F serve as key and value.
The corresponding mathematical formulation is as

Q% = MLP(Fp),
K} = MLP(Fy), €
VZ = MLP(F}).

After that, we use complete image tokens with geometric in-

formation to supplement incomplete point cloud tokens and
its formula is as

T
LS
Vdz

H; = Softmax( WE, 6)
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where /ds is the dimension of query Q%, key K7, and value
V7. Finally, point cloud tokens are supplemented with ex-
tracted image information H7, and its formula is as

Fp =MLP(H; + Fp). (6)

The output of an interleaved attention mechanism is supple-
mented point cloud tokens Fp and supplemented image to-
kens FI.

In summary, the proposed bidirectional token supplement
integrates several interleaved attention mechanisms to en-
able effective mutual supplementation of information be-
tween point clouds and images. Moreover, the enriched im-
age representation is leveraged to guide the subsequent point
generation process, ensuring the comprehensive utilization of
image information.

3.3 Coarse-Fine Decoding

This section provides a detailed explanation of the final stage
of IAET. In the coarse-fine decoding stage, IAET utilizes the
supplemented point cloud tokens F'9 to reconstruct a coarse
point cloud Py through deconvolution and MLPs. Subse-
quently, as shown in Figure 2, the coarse point cloud Py, sup-
plemented point cloud tokens '3, and supplemented image
tokens F7 are processed through three view-guided upsam-
pling modules to produce the final completion result Ps.
View-Guided Upsampling Module. To fully leverage image
information, IAET embeds the supplemented image tokens
into the proposed upsampling module. This enables the use of
image data to guide the capture of fine-grained details within
the point cloud tokens. As illustrated in Figure 4, to suc-
cinctly explain the principle of the view-guided upsampling
module, we consider the inputs of the i-th module to be image
tokens F; € RM*C point cloud tokens Fj, € RV*C, and
a low-resolution point cloud P; € RN*3_ First, we use co-
sine similarity to calculate the similarity matrix A € RV*M
between each point cloud token and the image token. The
formula is as

LT
Aij = %,
i 2 - [1f5ll2 @)

A = Softmax(A),

where f; € R and f; € R denote i-th point cloud to-
ken and j-th image token, respectively. Softmax(-) denotes
the Softmax function. After that, the image tokens and point
cloud tokens are processed through an MLP to generate the
queries and keys, while the point cloud is processed via Point-
Net [Qi et al., 2017a] to derive the values. The formula is as

Q = MLP(F),

K = MLP(F}), ®)

V' = PointNet(F;),
where Q € RM*C K € RV*C and V € RV*C denote
queries, keys, and values. Each query ¢;(i = 1,2,..., M)
represents the shape features of a local region within the im-

age, while each key k;(: = 1,2,..., N) represents the geo-
metric features of a local region in the point cloud. Next, we
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Figure 4: Overview of the view-guided upsampling module.

employ the K-nearest neighbor (KNN) algorithm to identify
the K nearest keys for each query, with the goal of retriev-
ing relevant point cloud shapes corresponding to each image
shape. Specifically, we use Euclidean distance to quantify
the similarity between a query and a key, and the resulting
values are passed through a Softmax function to compute the
corresponding weights W € RM*EXC  Then, point cloud
features are aggregated based on the shape of each image and
its formulation is as
K
b= (wouv),i=1,2,...,M, )

j=1

where V' € RM*C contains M values and wi € R'*C de-
note j-th weight produced by ¢-th image token. Finally, the
point cloud tokens F5t' € R#NXC output by the i-th module
are produced, and its formulation as

Fitt = DeConv(AV). (10)

And a high-resolution point cloud P;; € R*V*3 output by
the i-th module is produced, and its formulation as

Piyy = tile(P;) + MLP(F5™), an

where tile(-) is the copy operation aiming to copy the coordi-
nates of the point cloud P; y times.

In conclusion, the coarse-fine decoding framework of
IAET consists of a coarse decoder and several view-guided
upsampling modules to generate the completed point clouds.
Specifically, image information is integrated into the pro-
posed view-guided upsampling module, where image tokens
serve as queries to guide the generation of offset values for
high-resolution point clouds. This approach is designed to
produce fine-grained completion results with sufficient local
details.
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Methods

CD | / F-Score 1

Avg Airplane Cabinet

Car Chair Lamp Sofa Table

Watercraft

Single-modal Methods

AtlasNet [Groueix et al., 2018]
FoldingNet [Yang et al., 2018]
PCN [Yuan et al., 2018]
TopNet [Tchapmi et al., 2019]
PF-Net [Huang et al., 20201
MSN [Liu ez al., 2020]
GRNet [Xie et al., 2020]
PoinTr [Yu et al., 20211
SDT [Zhang et al., 2023al

6.271/0.331

3.873/0.551 2.515/0.551
3.171/0.601
2.851/0.683
4.246/0.473 3.166/0.636  4.807/0.291

6.062/0.410 5.032/0.509 6.414/0.304 4.868/0.379 8.161/0.326 7.182/0.426 6.023/0.318 6.561/0.469 4.261/0.551
5.242/0.432 6.958/0.237 5.307/0.300 8.823/0.204 6.504/0.360 6.368/0.249 7.080/0.351
5.619/0.407 4.246/0.578 6.409/0.270 4.840/0.331
4.976/0.467 3.710/0.593 5.629/0.358 4.530/0.405 6.391/0.388 5.547/0.491
4.4537/0.399 3.602/0.453 4.478/0.489 5.185/0.559 4.113/0.409 3.838/0.614 2.871/0.656
3.793/0.578 2.038/0.798 5.060/0.378 4.322/0.380 4.135/0.562 4.247/0.652 4.183/0.410 3.976/0.615 2.379/0.708
1.916/0.767 4.468/0.426 3.915/0.446 3.402/0.575 3.034/0.694 3.872/0.450 3.071/0.639 2.160/0.704
1.686/0.842 4.001/0.516 3.203/0.545 3.111/0.662 2.928/0.742 3.507/0.547 2.845/0.723
3.607/0.363 5.056/0.398 6.101/0.442 4.525/0.307 3.995/0.574 2.856/0.602

3.882/0.518
7.44170.323 6.331/0.456 5.668/0.293 6.508/0.431 3.510/0.577
528170361 5.381/0.528 3.350/0.615

1.737/0.780

SeedFormer [Zhou ef al., 2022]  2.902/0.688 1.716/0.835 4.049/0.551 3.392/0.544 3.151/0.668 3.226/0.777 3.603/0.555 2.803/0.716 1.679/0.786
PointAttN [Wang er al., 2024]  2.853/0.662 1.613/0.841 3.969/0.483 3.257/0.515 3.157/0.638 3.058/0.729 3.406/0.512 2.787/0.699 1.872/0.774
Multi-modal Methods
ViPC [Zhang et al., 2021a] 3.308/0.591 1.760/0.803 4.558/0.451 3.183/0.512 2.476/0.529 2.867/0.706 4.481/0.434 4.990/0.594 2.197/0.730
CSDN [Zhu et al., 2024] 2.570/0.695 1.251/0.862 3.670/0.548 2.977/0.560 2.835/0.669 2.554/0.761 3.240/0.557 2.575/0.729 1.742/0.782
CDPNet [Du et al., 2024a] 1.706/0.758 0.764/0.934 2.755/0.587 2.141/0.638 1.769/0.752 1.213/0.850 2.231/0.641 1.675/0.789 1.102/0.869

XMEFNet [Aiello ef al., 2022]
EGIINet [Xu et al., 2024]

1.443/0.796  0.572/0.961
1.211/0.836  0.534/0.969

1.980/0.662
1.921/0.693

1.754/0.691
1.65570.723

1.403/0.809 1.810/0.792
1.204/0.847 0.776/0.919

1.702/0.723
1.552/0.756

1.386/0.830  0.945/0.901
1.227/0.857 0.802/0.927

IAET (Ours) 1.090/0.860 0.503/0.980 1.397/0.782 1.648/0.725 1.196/0.850 0.668/0.934 1.401/0.795 1.200/0.867 0.704/0.950
Table 1: Comparison of CD and F-Score under known categories on ShapeNet-ViPC.
3.4 Loss KITTIL KITTI [Geiger ef al., 2012] is a real-world dataset.

Consistent with previous methods, IAET uses chamfer dis-
tance (CD) [Fan et al., 2017] as the loss function, and its for-
mula is as

‘CCD(PP |P| Zmlan pH2

(12)
min ||p — pll3,
IPI Z

I)EP

where P and P are the completion result and ground truth,
respectively. CD is commonly used to quantify the similarity
between two point clouds. Since IAET employs a coarse-
to-fine decoding strategy, it generates completion results at
multiple resolutions, namely Py, P;, P», and Ps. The ground
truth corresponding to each resolution is utilized as the final
loss function to train the model and specific formulation is as

3
L= Lop(Pi,P), (13)

=0

where P;(i = 0,1,2,3) denotes the ground truth correspond-
ing to the resolution of completion results P;(i = 0,1,2,3),
which are generated using the farthest point sampling [Qi et
al., 2017b] strategy.

4 Experiments and Analyses

4.1 Datasets

ShapeNet-ViPC. ShapeNet-ViPC [Zhang et al., 2021a] is a
multi-modal dataset containing images and point clouds. It
contains 13 categories and a total of 38,328 objects. Each ob-
ject contains 24 views, so ShapeNet-ViPC contains 919,872
samples in total. Each sample consists of a partial point
cloud, a complete point cloud, and an image sizing 138 x
138. Same as with previous methods [Zhang et al., 2021a;
Zhu et al., 2024; Aiello et al., 2022; Xu et al., 2024], we con-
duct known category experiments on 8 categories and gener-
alization experiments on the remaining categories.

KITTI used in this experiment was created by Wu et al. [Wu
et al., 2025] Specifically, it contains 156 different car sam-
ples, each of which contains an incomplete point cloud and a
complete image sizing 224 x 224. Since KITTI does not con-
tain real labels, we train each method on the car category of
a multi-modal point cloud benchmark [Wu et al., 2025] and
test them on KITTL

4.2 Experimental Settings

Metrics. Consistent with all previous multi-modal methods
[Zhang et al., 2021a; Zhu er al., 2024; Aiello er al., 2022,
Du et al., 2024a; Xu et al., 2024], we use CD and F-Score as
evaluation metrics. CD is the same as formula (12). F-Score
is a harmonic mean of precision and recall. Precision mea-
sures the number of points in the predicted point cloud that
are close to the ground-truth point cloud, while recall quanti-
fies the number of points in the ground-truth point cloud that
are covered by the predicted point cloud. The formula of F-
Score is as

F-Score — 2 - Precision - Recall

Precision + Recall’

Precision = min ||p — plj5 < >7
o (minlp i< ).,

peP

1
e I [ min||p — 2<6 5
|P|Z (pep 1p—plls < )

Recall =

where e > 0 is a threshold, P and P are predicted point cloud
and ground-truth point cloud, and I(-) is the indicator func-
tion. Consistent with previous methods [Zhang et al., 2021a;
Zhu et al., 2024; Aiello et al., 2022; Du et al., 2024a;
Xu et al., 2024], we set € = 0.01.

Implementation Details. All experiments are performed on
a NVIDIA RTX A6000. We use the Adam [Kingma and Ba,
2015] optimizer with an initial learning rate of 0.001. The
learning rate decayed every 20 epochs with a decay rate of
0.7. Our method converges after 200 epochs with a batch size
of 64.
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Figure 5: Comparison of visualization under known categories on ShapeNet-ViPC.
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Figure 6: Comparison of visualization under unknown categories on ShapeNet-ViPC.

4.3 Results on ShapeNet-ViPC

Results on Known Categories. In eight known categories,
we compare the proposed IAET with all multi-modal point
cloud completion methods, such as ViPC [Zhang er al.,
2021a], CSDN [Zhu et al., 2024], XMFNet [Aiello et al.,
2022], CDPNet [Du et al., 2024al, and EGIINet [Xu et
al., 2024], and some representative single-modal point cloud
completion methods, such as AtlasNet [Groueix et al., 2018],
FoldingNet [Yang et al., 2018], PCN [Yuan et al., 2018], Top-
Net [Tchapmi et al., 2019], PF-Net [Tchapmi et al., 2019],
MSN [Liu et al., 2020], GRNet [Xie et al., 2020], PoinTr
[Yu et al., 2021], SDT [Zhang et al., 2023al, SeedFormer
[Zhou er al., 2022], and PointAttN [Wang erf al., 2024]. Table
1 presents the quantitative experimental results. Our method
has the best result in all categories. Figure 5 presents the qual-
itative comparison of the experimental results. The first, sec-
ond, third, fourth, fifth, and sixth rows correspond to the air-
plane, cabinet, car, lamp, sofa, and watercraft categories, re-
spectively. In the airplane, cabinet, and sofa categories, only

our method generates objects with smooth surfaces, whereas
the completion results from other methods exhibit outlier
points. In the car category, our method is the only one ca-
pable of generating smooth surfaces. In the lamp example,
only our method can generate the missing lamp arm, while
other methods seem unable to recover this shape. A similar
observation can be made in the watercraft category. Despite
the challenges in generating irregular shapes such as sails,
only our method successfully reconstructs portions of the sail
structures.

4.4 Generalization Ability Evaluation

Results on Unknown Categories of ShapeNet-ViPC. To as-
sess the generalization capability of the proposed method on
unseen categories, we follow the experimental setup of previ-
ous studies [Zhu et al., 2024; Xu et al., 2024], training on
eight known categories and testing on four unknown cate-
gories. Specifically, we compare the performance of IAET
against all existing multi-modal point cloud completion meth-
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Figure 7: Comparison of visualization on KITTIL.

CD |
Avg  Bench Monitor Speaker Cellphone
Single-modal Methods
PF-Net [Huang er al., 2020] 5011 3.684 5304 7.663 3.392

Methods

MSN [Liu er al., 2020] 4.684 2613 4.818 8.259 3.047
GRNet [Xie et al., 2020] 4.096 2367 4.102 6.493 3422
PoinTr [Yu et al., 2021] 3.755  1.976 4.084 5913 3.049

SDT [Zhang et al., 2023al 6.001  4.096 6.222 9.499 4.189
SeedFormer [Zhou et al., 2022]  5.215  3.228 4.464 8.520 4.646
PointAttN [Wang et al., 2024]  3.674  2.135 3.741 5973 2.848

Multi-modal Methods
ViPC [Zhang et al., 2021al 4.601  3.091 4.419 7.674 3.219

CSDN [Zhueral,2024]  3.656 1.834  4.115 5690  2.985
CDPNet [Du eral., 2024a] 4462 3.122 4100  7.611 3.013
XMFNet [Aiello eral., 20221 2.671 1278 2806  4.823 1.779
EGIINet [Xueral,2024] 2354 1047 2513 4282 1.575
IAET (Ours) 1573 1030 1497  2.682  1.084

Table 2: Comparison of CD under unknown -categories on

ShapeNet-ViPC.

F-Score 1
Avg Bench Monitor Speaker Cellphone

Methods

Single-modal Methods
PF-Net [Huang et al., 2020] 0468 0584  0.433 0.319 0.534

MSN [Liu e al., 2020] 0.533  0.706 0.527 0.291 0.607
GRNet [Xie et al., 2020] 0.548  0.711 0.537 0.376 0.569
PoinTr [Yu et al., 2021] 0.619  0.797 0.599 0.454 0.627

SDT [Zhang et al., 2023al 0327 0479 0268 0.197 0.362
SeedFormer [Zhou et al., 2022]  0.590  0.736 0.598 0.410 0.615
PointAttN [Wang et al., 2024]  0.605 0.764  0.591 0.428 0.637

Multi-modal Methods

ViPC [Zhang et al., 2021al 0.498  0.654 0.491 0.313 0.535
CSDN [Zhu et al., 2024] 0.631  0.798 0.598 0.485 0.644
CDPNet [Du et al., 2024al 0.589 0.714 0.593 0.418 0.629
XMEFNet [Aiello e al., 2022]  0.710  0.862 0.677 0.556 0.748
EGIINet [Xu er al., 2024] 0.750  0.902 0.716 0.591 0.792
IAET (Ours) 0.807  0.903 0.810 0.615 0.899

Table 3: Comparison of F-Score under unknown categories on
ShapeNet-ViPC.

ods, such as ViPC [Zhang et al., 2021al, CSDN [Zhu et al.,
2024], XMFNet [Aiello et al., 2022], CDPNet [Du et al.,
2024al, and EGIINet [Xu er al., 2024], and some represen-
tative single-modal point cloud completion methods, such as
PF-Net [Tchapmi et al., 2019], MSN [Liu ef al., 2020], GR-
Net [Xie et al., 2020], PoinTr [Yu et al., 2021], SDT [Zhang
et al., 2023a], SeedFormer [Zhou et al., 2022], and PointAttN
[Wang er al., 2024]. Tables 2 and 3 present the quantitative
results of the experiments. Our method achieves the best per-
formance across four unknown categories, demonstrating its
superior generalization ability. Figure 6 presents a qualitative
comparison of the experimental results, with the first, sec-
ond, and third rows corresponding to the monitor, speaker,
and cellphone categories, respectively. In the monitor exam-

ple, IAET generates a more compact screen along with de-
tailed features of the bracket. For the speaker sample, only
IAET is able to produce a circular global shape. Additionally,
TAET successfully generates a complete cell phone shape in
the cellphone sample.

Results on Real-Scene KITTI. To assess the effectiveness
of TAET in real-world scenarios, we compare the qualitative
results of all multi-modal point cloud completion methods,
such as ViPC [Zhang et al., 2021al, CSDN [Zhu et al., 2024],
XMFNet [Aiello et al., 2022], CDPNet [Du et al., 2024a], and
EGIINet [Xu et al., 2024], on the KITTI dataset. As shown
in Figure 7, each row corresponds to a real car sample. Only
IAET generates completion results that closely resemble the
vehicle shape depicted in the image.

Model CD| F-Score
w/o interleaved attention mechanism  1.213 0.837
w/o view-guided upsampling module  1.251 0.832
IAET (Ours) 1.090 0.860

Table 4: Ablation study on IAET.

4.5 Ablation Study

This section evaluates the effectiveness of IAET’s core com-
ponents from a quantitative perspective. As shown in Table
4, the first row corresponds to IAET without interleaved at-
tention mechanisms, while the second row represents IAET
without view-guided upsampling modules. The experimental
results indicate that both components are critical to the overall
performance of IAET.

5 Conclusion

We propose IAET, a novel framework for multi-modal point
cloud completion. To fully leverage image information and
enhance its contribution to point cloud completion, we pro-
pose an interleaved attention mechanism to facilitate the mu-
tual supplement of point cloud and image features. Fur-
thermore, we propose a view-guided upsampling module
to utilize image information effectively, guiding the gener-
ation of high-quality completion results. Extensive quali-
tative and quantitative experiments demonstrate that IAET
achieves state-of-the-art performance on multi-modal point
cloud completion benchmarks.

In future work, we aim to enhance the performance of
multi-modal point cloud completion with more modalities
and large-scale model technologies.
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