
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Verified Certificates via SAT and Computer Algebra Systems for the
Ramsey R(3, 8) and R(3, 9) Problems

Zhengyu Li1 , Conor Duggan2 , Curtis Bright3 and Vijay Ganesh1

1Georgia Institute of Technology, USA
2University of Waterloo, Canada
3University of Windsor, Canada

brian.li@gatech.edu, c4duggan@uwaterloo.ca, cbright@uwindsor.ca, vganesh45@gatech.edu

Abstract
The Ramsey problem R(3, k) seeks to determine
the smallest value of n such that any red/blue edge
coloring of the complete graph on n vertices must
either contain a blue triangle (3-clique) or a red
clique of size k. Despite its significance, many pre-
vious computational results for the Ramsey R(3, k)
problem such as R(3, 8) and R(3, 9) lack formal
verification. To address this issue, we use the
software MATHCHECK to generate certificates for
Ramsey problems R(3, 8) and R(3, 9) (and sym-
metrically R(8, 3) and R(9, 3)) by integrating a
Boolean satisfiability (SAT) solver with a com-
puter algebra system (CAS). Our SAT+CAS ap-
proach significantly outperforms traditional SAT-
only methods, demonstrating an improvement of
several orders of magnitude in runtime. For in-
stance, our SAT+CAS approach solves R(3, 8)
(resp., R(8, 3)) sequentially in 59 hours (resp., in
11 hours), while a SAT-only approach using state-
of-the-art CADICAL solver times out after 7 days.
Additionally, in order to be able to scale to harder
Ramsey problems R(3, 9) and R(9, 3) we further
optimized our SAT+CAS tool using a parallelized
cube-and-conquer approach. Our results provide
the first independently verifiable certificates for
these Ramsey numbers, ensuring both correctness
and completeness of the exhaustive search process
of our SAT+CAS tool.

1 Introduction
Ramsey Theory studies the existence of substructures with
order within sufficiently large structures. The classical Ram-
sey R(3, k) problem seeks the smallest integer n (known as
the Ramsey number) such that any red/blue edge coloring of
the complete graph on n vertices must contain either a blue
triangle or a red k-clique. This problem is often framed as the
“party problem”: determining the minimum number of guests
required to ensure that either three guests all know each other
or k guests are mutual strangers. Despite its simple formu-
lation, computing Ramsey numbers is notoriously difficult,
with only nine non-trivial values known to date, despite ex-
tensive research.

Most contemporary methods of finding non-trivial Ramsey
numbers rely heavily on the use of computer programs such
as NAUTY [McKay and Piperno, 2014] to enumerate graphs
exhaustively. However, NAUTY cannot generate a formal cer-
tificate certifying that the enumeration is indeed exhaustive,
thus raising the possibility that these results may have errors
in them. In this paper, we apply MATHCHECK [Zulkoski
et al., 2015] and combine satisfiability solvers with com-
puter algebra systems (SAT+CAS) [Bright et al., 2022] to
not only produce formal certificates for Ramsey numbers but
also achieve significant speedups compared to SAT-only ap-
proaches. A key component of our implementation is the
use of the IPASIR-UP interface [Fazekas et al., 2023] that
facilitates seamless integration of external learned clause ad-
dition within modern SAT solvers. Specifically, we leverage
IPASIR-UP to implement the CADICAL+CAS framework as
part of MATHCHECK. In this work, we focus on providing
certificates of completeness for the exhaustive search com-
ponents required to determine R(3, k) and R(k, 3). It is im-
portant to emphasize that our approach does not constitute a
formal proof of the Ramsey number. Instead, our certificates
ensure correctness and completeness for the parts of the proof
involving exhaustive graph enumeration. To follow the es-
tablished convention in Ramsey theory, this paper begins by
discussing the Ramsey number R(3, k). In later sections we
find R(k, 3) aligns better with our computational approach,
but R(3, k) = R(k, 3), as these are symmetric by definition.

1.1 Our Contributions
1) Certified Ramsey numbers: In this paper, we extend
the well-known SAT+CAS tool MATHCHECK [Zulkoski et
al., 2015] (see Figure 1) to solve Ramsey problems of type
R(3, k) and R(k, 3), and provide certificates of correctness.1
These certificates ensure the correctness of the exhaustive
search process, though we cannot claim complete formal
proofs since the SAT encodings have not been formally ver-
ified. We verify the values of two Ramsey numbers for
k = 8 [McKay and Min, 1992] and k = 9 [Grinstead and
Roberts, 1982], whose proofs rely heavily on graph enumer-
ation. To our knowledge, these are the only two known Ram-
sey numbers that have not been verified with proof certifi-
cates.

1All results can be reproduced using the public code from https:
//github.com/ConDug/MathCheckRamsey.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/ConDug/MathCheckRamsey
https://github.com/ConDug/MathCheckRamsey

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

2) Speedup over SAT-only approaches: We show that our
sequential and parallel SAT+CAS tools significantly outper-
form SAT-only approaches (see Table 2). This speedup is
achieved through the isomorph-free exhaustive generation
technique employed by MATHCHECK, which reduces the
search space by dynamically blocking symmetric branches.
3) Parallel cube-and-conquer SAT+CAS MATHCHECK:
We introduce a parallel cube-and-conquer SAT+CAS tool by
integrating ALPHAMAPLESAT [Jha et al., 2024] as the cub-
ing solver and MATHCHECK as the conquering solver. We
solved and certified R(8, 3) = 28 in 8 hours of wall clock
time, and in doing so decreased the total CPU time spent
solving to 6.2 hours (while the sequential version spent 18.5
hours just solving), and solved and verified R(9, 3) = 36 in
26 hours (while the sequential version timed out after 7 days).

2 Preliminaries
2.1 SAT+CAS for Combinatorial Problems
A conflict-driven clause learning (CDCL) [Marques-Silva et
al., 2021; Marques-Silva and Sakallah, 1999; Bayardo Jr.
and Schrag, 1997] satisfiability (SAT) solver takes as input
a Boolean formula in conjunctive normal form (CNF) and
determines whether there exists an assignment of variables
making the formula evaluate to true, in which case the for-
mula is satisfiable (SAT). Otherwise, the formula is unsatis-
fiable (UNSAT). Thanks to the rich advancement made by
the SAT community, state-of-the-art CDCL SAT solvers can
solve many instances with millions of variables efficiently.
However, SAT solvers face challenges when solving hard
combinatorial problems such as the Ramsey problem due to
the large amount of symmetry in the search space.

Computer Algebra Systems (CASs) like Maple [Bernardin
et al., 2024], Mathematica [Wolfram, 2003], Magma [Bosma
et al., 1997], and SageMath [Stein and Joyner, 2005] are
storehouses of mathematical knowledge, containing state-of-
the-art algorithms from many mathematical areas. Therefore,
many mathematical constraints can be easily expressed in a
CAS, whereas an off-the-shelf SAT solver is limited to ex-
pressions in Boolean logic.

Both SAT and CAS have their drawbacks when solving
combinatorial problems. SAT solvers can perform scalable
searches but lack the mathematical domain knowledge re-
quired to prune out symmetries in the search space. On the
other hand, CASs have rich mathematical capabilities but
lack scalability when dealing with enormous search spaces.
To combine the best of both worlds, we leverage MATH-
CHECK to dynamically provide mathematical context to the
SAT solver to only enumerate non-isomorphic graphs in the
search space. Specifically, we use a CAS to generate block-
ing clauses that are passed to the SAT solver dynamically
via a programmatic interface. These clauses block the SAT
solver from exploring symmetric branches of the search tree
(see Section 5). The SAT+CAS paradigm has been applied to
solving hard combinatorial problems such as the Williamson
conjecture [Bright et al., 2020], Lam’s problem [Bright et
al., 2021], the Erdős-Faber-Lovász Conjecture [Kirchweger
et al., 2023a], the Kochen–Specker problem [Li et al., 2024;
Kirchweger et al., 2023b], and integer factorization [Ajani

R(p, q) p = 3 p = 4 p = 5
q = 3 6
q = 4 9 18
q = 5 14 25 43–46
q = 6 18 36–40 59–85
q = 7 23 49–58 80–133
q = 8 28 59–79 101–193
q = 9 36 73–105 133–282

Table 1: Exact values and bounds for Ramsey numbers R(p, q). The
bolded values are the Ramsey numbers verified in this paper. Some
values are excluded from the table since R(p, q) = R(q, p).

and Bright, 2024]. We show that SAT+CAS is orders of mag-
nitude faster than a SAT-only approach without compromis-
ing the verifiability of the result.

2.2 Ramsey Problems
Ramsey’s theorem states that for every p, q ∈ N, there exists
an n ∈ N such that every graph of order n contains either
a p-clique or an independent set of size q. An m-clique is
a complete subgraph of order m and an independent set is a
subset of mutually unconnected vertices. The Ramsey prob-
lem is defined as finding the smallest integer n, denoted as
R(p, q), for some given p and q. A common and equivalent
reformulation is as follows: for every p, q ∈ N, there exists
an n ∈ N such that any red/blue coloring of the edges of
the complete graph of order n, denoted Kn, contains a blue
monochromatic p-clique or a red monochromatic q-clique. A
Ramsey (p, q)-graph is a graph without a p-clique and with-
out an independent set of size q. Ramsey (p, q;n)-graphs and
(p, q;n; e)-graphs are (p, q)-graphs on n vertices and (p, q)-
graphs on n vertices with e edges, respectively. All graphs are
assumed to be simple and undirected unless stated otherwise.

2.3 Correctness of Results
Correctness of results is a long-standing problem in the field
of computer-assisted proofs, particularly for results that re-
quire extensive enumeration that cannot be checked by hand.
Verification is of utmost importance, as it provides a formal
guarantee that the result is correct. Without verification, one
has to trust the correctness of the program, and this could al-
low undetected software or administrative errors to compro-
mise the validity of the proof. For example, recent work un-
covered consistency issues in previous computational resolu-
tions of Lam’s problem, highlighting the difficulty of relying
on search code for nonexistent results [Bright et al., 2021].
For prominent combinatorial problems such as Ramsey prob-
lems relying on extensive computations, formal verification
is a way to increase trust in the results.

3 Previous Work
3.1 Classical Ramsey Numbers
Gauthier and Brown (2024) formally proved R(4, 5) = 25
using a SAT solver, verifying a result originally obtained in
1995 using computational search [McKay and Radziszowski,
1995]. Gauthier and Brown’s approach combined an interac-
tive theorem prover, a SAT solver, and gluing together gener-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

AlphaMapleSAT

Orderly
Generation via

SAT+CAS

Formal
Verification

Ramsey
Instance F

DRAT fileProof
Checker

CAS

CaDiCaL

Blocking
Clause

Partial
Solution

x3

x1 x4

x5 x9

t f

t f

x8 x7

f t

F1 := F ? x3 ? x1 ? x5

Figure 1: Flowchart of the parallelized tool. ALPHAMAPLESAT
is used as the cubing solver, and CADICAL + CAS is used as the
conquering solver.

alizations of colored graphs as described below. Graph gluing
refers to inserting an n × n adjacency matrix and an m ×m
adjacency matrix along the main diagonal of a larger empty
matrix, to form an (m + n) × (m + n) adjacency matrix.
The remaining off-diagonal entries are then filled in subject
to some constraints (in this case the Ramsey constraints) in
an exhaustive way. A generalization of a colored graph is
a colored graph with some edges uncolored. A (p, q)-graph
generalization with one uncolored edge represents the (p, q)-
graph where the uncolored edge can be colored red or blue.
They constructed exact covers for sets of (3, 5;m)-graphs and
(4, 4;n)-graphs, reducing the number of graph gluings re-
quired. Their method took over 2.5 years of CPU time, but
they estimate it would have taken 44 years without general-
izations. This represents a very recent advancement in the
formal verification of results concerning Ramsey numbers,
showcasing the potential of certifiable computational meth-
ods.

Fujita et al. (2013) used a soft-constraint approach to im-
prove the lower bound of R(4, 8) from 56 to 58. They in-
troduced two types of soft constraints: zebra soft-constraints
and unit soft-constraints. These could be iteratively removed,
with their selection based on the number of conflicts relating
to a soft-constraint. This allowed for efficient propagation of
edge assignments and significantly reduced the search space.

SAT Modulo Symmetries (SMS) is a framework developed
for graph generation and enumeration [Kirchweger and Szei-
der, 2021]. It leverages the SAT solver CADICAL [Biere
et al., 2024] with a dedicated symmetry propagator to check
the canonicity of partial solutions. SMS is implemented us-
ing the IPASIR-UP interface [Fazekas et al., 2023], which
allows the integration of user-defined symmetry propagators
directly into the solving process, enabling efficient dynamic
symmetry-breaking constraints. This approach has been ap-
plied to verify smaller Ramsey numbers, such as R(3, 5)
and R(4, 4) [Kirchweger and Szeider, 2024], but has not yet

been extended to larger instances. SMS uses a row-wise lex-
icographic ordering of the adjacency matrix for comparing
graphs, whereas our method uses a column-wise ordering of
edge variables above the diagonal—our method requires the
latter ordering because of a particular property not satisfied
by the ordering used by SMS (see Property 2 in Section 5).
In addition, SMS performs canonicity checks on partially de-
fined graphs during the solving process, while our approach
only performs canonicity checks on fully defined subgraphs
(whenever an upper-left submatrix becomes fully known).
We opted for SAT+CAS due to the availability of its verifi-
cation capability, which is not currently provided in the SMS
repository.

More recently, Codel et al. (2024) introduced verified
proof checking tools for the substitution redundancy (SR)
proof system [Buss and Thapen, 2021; Gocht and Nordström,
2021; Rebola-Pardo, 2023], a powerful generalization of the
propagation redundancy (PR) [Heule et al., 2020] and reso-
lution asymmetric tautology (RAT) proof systems [Järvisalo
et al., 2012; Heule and Biere, 2018; Wetzler et al., 2014].
Their work presents the first verified SR proof checker, imple-
mented in the LEAN theorem prover [de Moura et al., 2015],
and demonstrates SR’s ability to produce significantly shorter
proofs than RAT for certain problems. They provide a con-
cise 38-clause SR proof of R(4, 4) ≤ 18. Their experimental
results show SR proofs are on average 99.6% smaller than
equivalent RAT proofs, while their verified checker performs
comparably to existing fast PR checkers. Although no current
state-of-the-art SAT solvers support SR reasoning, this work
lays the groundwork for potential advancements in SAT solv-
ing techniques, offering a path to more powerful reasoning
and shorter proofs for complex problems.

3.2 Tri-color Ramsey Problems
An (r1, . . . , rk;n) Ramsey colouring is an edge k-coloring
of Kn with no monochromatic Kri in color i. The multi-
color Ramsey number R(r1, . . . , rk) is the smallest n such
that no such coloring exists. Codish et al. (2016) resolved
the long-standing open problem R(4, 3, 3) by showing that
no (4, 3, 3; 30) coloring exists. They partitioned the search
space into six ⟨a, b, c⟩-regular cases, where each vertex has
fixed degrees in the three colors

⟨13, 8, 8⟩, ⟨14, 8, 7⟩, ⟨15, 7, 7⟩,
⟨15, 8, 6⟩, ⟨16, 7, 6⟩, or ⟨16, 8, 5⟩.

All cases were proven unsatisfiable via SAT solving except
⟨13, 8, 8⟩. For that case, they generated all 3-colorings of
K13 without monochromatic triangles and attempted to ex-
tend each to K30. The full computation required 128 CPU
years, parallelized across 456 threads.

3.3 Directed Ramsey Graphs
A tournament is a directed graph where for every pair of ver-
tices, exactly one directed edge exists. A tournament is tran-
sitive if for all vertices u, v, and w, the presence of edges
uv and vw implies the existence of uw. The directed Ram-
sey number R(k) is the smallest number of vertices such that
every tournament on that many vertices contains a transitive
subtournament of size k.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Neiman et al. (2022) improved the known bounds on R(7)
to 34 and 47 using SAT solving. For the upper bound, they
encoded tournaments avoiding transitive subtournaments of
size 7 and exhaustively searched all possibilities up to 46 ver-
tices. For the lower bound, they applied a SAT solver to show
no 33-vertex transitive-free tournament exists. Their ap-
proach combined constraint encodings with techniques such
as self-subsuming resolution.

3.4 Previous Work on R(3, 8) and R(3, 9)

McKay and Min (1992) computationally showed R(3, 8) =
28. Their method involved generating all graphs up to iso-
morphism on 20–22 vertices without 3-cliques and without
independent sets of size 7. They used a recursive generation
procedure and the graph isomorphism tool NAUTY to remove
isomorphic graphs.

Graver and Yackel (1968) made significant progress on
R(3, 9) before the problem was ultimately solved by Grin-
stead and Roberts (1982). Graver and Yackel proved
R(3, 9) ≥ 35 and showed a (3, 9; 36)-graph must be reg-
ular of degree 8 and must contain a (3, 8; 27; 80)-subgraph.
Grinstead and Roberts computationally showed that no
(3, 8; 27; 80)-graphs exist, thereby proving R(3, 9) = 36.
Their method involved a series of lemmas on the structure
of various subgraphs of (3, 8; 27; 80)-graphs and used graph
gluing techniques combined with computational searches.

Since the previous approaches to R(3, 8) and R(3, 9) re-
lied on uncertifiable computational methods for graph enu-
meration, we therefore present certifiable proofs using the
SAT+CAS paradigm.

4 Encoding Ramsey Problems
We now discuss the encodings we used to translate the Ram-
sey problem into formulas in conjunctive normal form (CNF).
In addition to the direct encoding of Ramsey graphs, we in-
troduce encodings that further narrow down the search space
by limiting symmetries, vertex degrees, and the number of
edges in the graph.

4.1 Encoding Ramsey Graphs
The Ramsey problem is encoded for a predefined n, p, and q
by deriving a Boolean formula in conjunctive normal form as-
serting the existence of a Ramsey (p, q)-graph of order n. The
encoding enforces every p-clique to have at least one edge in
the opposing (red) color and every q-clique to have at least
one edge in the opposing (blue) color, i.e.,∧

Kp⊆Kn

∨
e∈Kp

¬e and
∧

Kq⊆Kn

∨
e∈Kq

e,

where the variable e is assigned true (⊤) when the corre-
sponding edge is colored blue and is assigned false (⊥) when
the corresponding edge is colored red. A satisfying assign-
ment of the encoding corresponds to finding a (p, q)-graph of
order n, and therefore R(p, q) > n. Similarly, an unsatisfi-
able result means no such colorings exist for this particular n,
i.e., all colorings contain a blue p-clique or a red q-clique, and
therefore R(p, q) ≤ n.

4.2 Symmetry Breaking Constraints
In order to break the symmetries of the problem, we first add
static constraints enforcing a lexicographic ordering on rows
of the graph’s adjacency matrix. After that, we use the dy-
namic symmetry breaking capabilities of a CAS to break the
remaining symmetries.

The partial static symmetry breaking constraints were de-
veloped by Codish et al. (2019). These enforce a lexicograph-
ical ordering on the rows of a graph’s adjacency matrix and
block the solver from exploring certain symmetric portions of
the search space before the CAS is called. This is beneficial
as there is an overhead associated with calling the CAS.

These clauses are constructed in the following manner: for
an adjacency matrix A of a graph of order n, define Ai,j as
the ith row of A without columns i and j. The clauses en-
force that Ai,j is lexicographically equal or less than Aj,i for
all 1 ≤ i < j ≤ n. These clauses introduce O(n3) auxil-
iary variables and clauses. Based on our empirical evidence,
these constraints provide a significant speed-up by breaking
symmetries statically and were included in all instances.

4.3 Cardinality Constraints
Cardinality constraints are used to further reduce the search
space by limiting both the degree of vertices and the num-
ber of edges in Ramsey graphs. Specifically, it is known that
every vertex v of a Ramsey (p, q;n)-graph satisfies

n−R(p, q − 1) ≤ degb(v) ≤ R(p− 1, q)− 1

where degb(v) is the number of blue edges on ver-
tex v [Graver and Yackel, 1968]. We also leverage theoretical
results to restrict the number of edges allowed in the Ramsey
graph when proving the value of R(3, 9) in Section 7.

We encoded these constraints using the totalizer encoding
of Bailleux and Boufkhad (2003). The totalizer uses a bi-
nary tree to create relationships between auxiliary variables.
Each node in the tree is assigned a value and a set of unique
variables. Suppose we wish to encode between l and u of m
variables are true. We form a binary tree with m leaf nodes
and associate each leaf node to one of these variables. For
a non-leaf node r with children a, b, let R = {r1, . . . , rm0

},
A = {a1, . . . , am1}, and B = {b1, . . . , bm2} be the set of
variables assigned to r, a and b respectively. The following
conjunction of clauses is related to the node r:∧

0≤α≤m1
0≤β≤m2
0≤σ≤m0
α+β=σ

(¬aα ∨ ¬bβ ∨ rσ) ∧ (aα+1 ∨ bβ+1 ∨ ¬rσ+1)

with a0, b0, and r0 assigned true and am1+1, bm2+1, and
rm0+1 assigned false. These clauses ensure that the number
of variables assigned true in R is equal to the number of vari-
ables assigned true in A ∪ B. Finally, the clauses

∧
1≤i≤l ci

and
∧

u+1≤i≤m ¬ci specify that between l and u of our origi-
nal m variables are true where c1, . . . , cm denote the variables
associated with the root node of the tree. This encoding uses
O(m logm) new variables and O(mu) clauses after applying
unit propagation and removing satisfied clauses.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

5 Orderly Generation Using SAT+CAS
When searching for graphs using a SAT solver, the static
symmetry breaking constraints introduced previously do not
block all isomorphic copies—in fact, most symmetries re-
main in the search space. Therefore, we use a symbolic com-
putation method to block the remaining symmetries dynami-
cally during the solving process. Specifically, we implement
an isomorph-free graph generation technique called orderly
generation that was developed independently by Read (1978)
and Faradžev (1978).

We say an adjacency matrix AG of a graph G is canonical
if every permutation of the graph’s vertices produces a ma-
trix lexicographically greater than or equal to AG, where the
lexicographical order is defined by concatenating the above-
diagonal entries of the columns of the adjacency matrix start-
ing from the left. In other words, the canonical matrix of a
graph is the lexicographically-least (lex-least) way of repre-
senting the graph’s adjacency matrix.

An intermediate matrix of AG is a square upper-left sub-
matrix of AG. If AG is of order n then its intermediate matrix
of order n − 1 is said to be its parent, and A is said to be a
descendant of its intermediate matrices. The orderly genera-
tion method is based on the following two consequences of
this definition of canonicity:

(1) Every isomorphic class of graphs has exactly one canon-
ical (lex-least) representative.

(2) If a matrix is lex-least canonical, then its parent is also
lex-least canonical.

This definition of canonicity is particularly useful as the
contrapositive of the second property implies that if a ma-
trix is not canonical, then all of its descendants are also not
canonical. Therefore, any noncanonical intermediate matrix
encountered during the search can be blocked immediately,
as none of its descendants are canonical.

To implement the orderly generation algorithm in a SAT
solver, when the solver finds a partial assignment correspond-
ing to an intermediate matrix, the canonicity of this matrix is
determined by a canonicity-checking routine implemented in
the CAS (Figure 1). The CAS explores permutations of the
graph’s vertices and evaluates whether any of these permuta-
tions result in a lexicographically smaller adjacency matrix—
if so, the matrix is not canonical. If the CAS finds a permuta-
tion that demonstrates the noncanonicity of the matrix, then
a blocking clause is learned which removes this matrix and
all of its descendants from the search. Otherwise, the matrix
is canonical and the SAT solver proceeds as normal. When a
matrix is noncanonical, the canonicity-checking routine pro-
vides a witness (a permutation of the vertices producing a
lex-smaller adjacency matrix), which allows for the verifica-
tion of MATHCHECK’s result without trusting the CAS.

Even though R(3, k) and R(k, 3) share the same value, in
the context of the CNF encoding the R(3, k) and R(3, k) in-
stances are different with R(k, 3) containing a much higher
number of negative literals. An important observation in our
experiments is that solving R(k, 3) is consistently faster than
solving R(3, k), despite these instances being equivalent due
to symmetry. This behavior persists even when the CAS is

CADICAL + CAS CADICAL only
k R(3, k) R(k, 3) R(3, k) R(k, 3)
7 14.3 s 8.2 s 564.3 s 220.7 s
8 112.1 h 18.5 h > 7 days > 7 days

Table 2: Comparison of sequential runtime for instances R(3, k) and
R(k, 3) with k = 7 and 8. “CADICAL + CAS” indicates solutions
using CADICAL with CAS, while “CADICAL only” uses CADI-
CAL without CAS. Cardinality constraints are excluded for k = 7
to avoid making the instance too easy, but included for k = 8. Ex-
periments were conducted on Dual Xeon Gold 6226 processors run-
ning at 2.70 GHz.

turned off (see Table 2). We solved R(3, k) and R(k, 3) for
k = 8 and 9 and included both runtimes in Section 8.

6 Parallelization
In order to scale our technique up to k = 9, parallelization
is used to reduce the wall clock time. We use a cube and
conquer technique which splits the CNF instance into tens of
thousands of subproblems and solves them in parallel.

6.1 Cube and Conquer
Cube and conquer [Heule et al., 2012] is a parallelization
technique whereby a set of simpler instances are solved, and
the aggregate result is equivalent to solving the original in-
stance. Initially developed to solve SAT instances arising
from computing van der Waerden numbers [Ahmed et al.,
2014], many combinatorial problems have since been at-
tacked using this technique, such as Lam’s Problem [Bright et
al., 2021], the Boolean Pythagorean Triples Problem [Heule
et al., 2016], Schur number five [Heule, 2018], and the
Kochen–Specker problem [Li et al., 2024].

Let vi be a variable appearing in the Boolean formula F .
Then solving instances F1 := F ∧ vi and F2 := F ∧ ¬vi is
equivalent to solving F , and if either F1 or F2 is satisfiable
then F is satisfiable. We say vi is the splitting variable and
consider F1 and F2 as subinstances of F . If a subinstance is
still hard, an unassigned variable (subject to some selection
criteria) in the subinstance can be split on. This splitting can
be repeated until some stopping criteria is reached.

When choosing the appropriate cubing solver, there are two
main factors to consider: one is the time it takes to generate
all cubes, and the other is the quality of the cubes, which
can be measured by the time required to solve the hardest
cube. Two cubing solvers we tried are MARCH CU [Heule et
al., 2012] and ALPHAMAPLESAT [Jha et al., 2024]. We use
ALPHAMAPLESAT as it generates a large set of cubes faster
without compromising the quality of the cubes.

ALPHAMAPLESAT introduces a novel approach to cube
challenging combinatorial instances. At its core, ALPHA-
MAPLESAT employs a Monte Carlo Tree Search (MCTS)
based lookahead cubing technique, setting it apart from tra-
ditional cube-and-conquer solvers. This method allows for a
deeper heuristic search to identify effective cubes while main-
taining low computational costs.

We define eliminated variables to be variables that are ei-
ther assigned a ⊤/⊥ value or propagated to be ⊤/⊥ by a
simplification solver (CADICAL with orderly generation).

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

To determine when to stop cubing the instance further, we
used the number of eliminated variables as the stopping cri-
teria. If the number of eliminated variables is greater than
a predefined threshold, the cubing stops for this subinstance.
Given the original formula ϕ, each time ALPHAMAPLESAT
chooses an edge variable x to split on, the formula ϕ ∧ x and
ϕ∧¬x are generated and simplified using CADICAL + CAS,
so that ALPHAMAPLESAT can choose the next splitting vari-
able based on the simplified formula, since this contains
CAS-derived clauses and therefore blocking clauses from or-
derly generation are incorporated during the cubing process.

Following cubing, the cubes are “conquered”, i.e., solved
by a SAT+CAS solver. Ideally, the solver can solve all cubes.
However, when our solver could not solve an instance with-
out producing a proof file larger than 7 GiB, the instance was
passed back to ALPHAMAPLESAT to be cubed again. 7 GiB
was chosen as the maximum file size because we found that
the DRAT-trim proof checker [Wetzler et al., 2014] could ver-
ify such proofs without exceeding our memory limit of 4 GiB.
This process of alternating cubing and conquering continues
for difficult instances until all cubes can be solved with proof
files smaller than 7 GiB. To solve cubes efficiently across
multiple CPUs, we utilized Python’s multiprocessing library.

7 Theory of R(3, 9) and R(9, 3)

Directly applying a SAT+CAS solver to the R(9, 3) prob-
lem is difficult. As the problem is significantly harder than
the R(8, 3) problem, we leverage theoretical results to re-
formulate the problem. Grinstead and Roberts (1982) com-
bined theory and computation to show that R(3, 9) = 36,
leveraging theoretical results from Graver and Yackel (1968).
This section highlights key theoretical results from Graver
and Yackel’s paper. The following lemma, from Section 3
of Graver and Yackel (1968), forms the basis of the original
proof of R(3, 9) = 36. We also use it in our proof and ver-
ification, since the lemma does not rely on computation and
can be proved mathematically.

Lemma 1. A (3, 9; 36)-graph contains a (3, 8; 27; 80)-graph.
A (9, 3; 36)-graph contains a (8, 3; 27; 271)-graph.

Graver and Yackel improved the bounds on many Ram-
sey numbers and on the minimum number of edges in Ram-
sey graphs. They constructed a (3, 9)-graph on 35 vertices,
thereby showing R(3, 9) > 35. Specifically for R(3, 9),
Grinstead and Roberts derived a sequence of lemmas on the
structures of various subgraphs of (3, 8; 27; 80)-graphs. They
computationally proved structures in (3, 8; 27; 80)-graphs
cannot exist in order to show R(3, 9) ≤ 36 via Lemma 1.
They estimated 5 × 1010 machine operations and 2.5 × 104

seconds of computation, but note the time could be improved
using machines with more efficient bitstring operations as
computations were performed on a Honeywell Level 66 com-
puter. The second part of the lemma is derived from the
fact that

(
27
2

)
− 80 = 271, thus a (9, 3; 36)-graph contains

a (8, 3; 27; 271)-graph.
We apply a parallelized SAT+CAS tool to a CNF encod-

ing asserting the existence of a (8, 3; 27; 271)-graph. We ob-
tained an UNSAT result (see Section 8.3), therefore showing

that no (8, 3; 27; 271)-graphs exist. By Lemma 1, this im-
plies R(9, 3) ≤ 36, and since a (3, 9; 35)-graph exists, this
implies R(9, 3) = R(3, 9) = 36. In doing so, we do not rely
on the method employed by the authors of the original proof
to show the nonexistence of (3, 8; 27; 80)-graphs, since they
rely on unverified computational results. To simplify our en-
coding, we do not rely on any additional theoretical results on
(3, 8; 27; 80)-graphs or (8, 3; 27; 271)-graphs, aside from the
vertex degree constraints mentioned in Section 4.3.

8 Results and Verification

8.1 Experimental Setup
We performed both SAT+CAS solving and verification in
parallel by integrating ALPHAMAPLESAT with the MATH-
CHECK tool. The R(8, 3) result was obtained on a cluster
of Dual Xeon Gold 6226 processors @ 2.7 GHz and used 24
CPUs, while the R(9, 3) result was computed on a cluster of
Dual AMD Epyc 7713 CPUs @ 2.0 GHz and used 128 CPUs.

By default, MATHCHECK uses a pseudo-canonical check
and stops the canonical check early if the CAS takes too long
to determine canonicity. To optimize solving performance,
we enabled full canonicity checking and this adjustment re-
sulted in a 2× improvement in solving time. Even after en-
abling a full canonical check, a minority of the total solving
time is spent in the CAS—for R(8, 3), the CAS accounts for
7% of the total solving time, while for R(9, 3), it accounts
for 38%. Although a full canonicity check is more expensive,
it generates more symmetry-blocking clauses and ultimately
enhances the solver’s efficiency for this problem.

Table 3 includes “simplification time” for our cube-and-
conquer tool. During cubing, each variable split triggers a
brief CADICAL+CAS simplification (10,000 conflicts), with
the simplified instance passed back to AMS. This tracks elim-
inated variables and crucially allows AMS to leverage CAS-
derived clauses for balanced cube generation.

8.2 Solving R(3, 8) and R(8, 3)

The Ramsey number R(3, 8) = 28 was confirmed by obtain-
ing an UNSAT result for the encoding asserting the existence
of a 28-vertex (8, 3)-graph and a SAT result in 288 seconds
for the encoding asserting the existence of a 27-vertex (8, 3)-
graph. Solving R(8, 3) on 28 vertices can be done sequen-
tially (as shown in Table 2) or in parallel.

For R(8, 3), we used the cardinality constraints from Sec-
tion 4.3, implying that the degree of each vertex is between
20 and 22. Cubing was performed until 120 edge variables
were eliminated. If a cube was not solved after producing a
7 GiB certificate, further cubing was applied, eliminating an
additional 40 variables.

A total of 41 cubes were generated, each returning UN-
SAT. With parallelization, the problem was solved in approxi-
mately 8 hours of wall clock time and the combined certificate
files amounted to 5.8 GiB. We applied the same techniques
to solve R(3, 8), where each vertex has a degree between 5
and 7. We observed that solving the R(8, 3) instance is about
6× faster than solving R(3, 8) sequentially.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Instance Cubing Time Simplification Time Solving Time Verification Time Wall Clock Time
R(8, 3) 1,360 s 1,217 s 19,811 s 22,328 s 8 hrs
R(9, 3) 15,530 s 42,482 s 697,575 s 473,874 s 26 hrs

Table 3: Summary of experimental results for solving R(8, 3) and R(9, 3) in parallel.

8.3 Solving R(3, 9) and R(9, 3)

Solving R(9, 3) corresponds to solving the R(8, 3; 27; 271)
problem, as mentioned in Section 7. This instance must
be solved using the parallelized MATHCHECK tool, as
R(8, 3; 27; 271) is much more challenging to solve sequen-
tially in a reasonable amount of wall clock time.

Cardinality constraints were applied similarly, enforcing
that each vertex must have a degree between 19 and 22, and
that the graph must contain exactly 271 edges. Cubing con-
tinued until 100 edge variables were eliminated. If a cube was
not solved after producing a 7 GiB certificate, further cubing
eliminated an additional 40 variables.

A total of 2,486 cubes were generated, each returning UN-
SAT. With parallelization, the problem was solved in approx-
imately 26 hours of wall clock time and the combined proof
files amounted to 289 GiB. Similarly, R(3, 9) is solved using
the same cubing cutoff criteria. We witnessed that solving the
R(9, 3) instance is about 6× faster than solving R(3, 9).

8.4 Verification of Results
The SAT+CAS approach produces verifiable certificates, en-
abling an independent third party to confirm the solver’s re-
sults. These certificates ensure that the SAT solver’s search is
exhaustive and that the learned clauses provided by the CAS
are correct. As a result, only the correctness of the proof
verifier—a relatively simple piece of software—needs to be
trusted, rather than the SAT solver or the CAS itself.

Verification was performed using the DRAT-trim proof
checker [Wetzler et al., 2014] modified to support clauses
specified to be trusted. Clauses derived from the CAS were
prefixed with the character ‘t’ to mark them as trusted, and
they were verified separately. A Python script applied the
witness permutations to confirm that each noncanonical ad-
jacency matrix produced a lexicographically smaller matrix,
verifying the correctness of the CAS-derived clauses. Since
the script verifies that each CAS-derived clause in the DRAT
proof blocks only noncanonical partial assignments, we do
not rely on the correctness of the somewhat complicated
canonical check in the CAS. Furthermore, this verification
approach addresses the soundness of the overall search re-
gardless of potential communication issues between the CAS
and the SAT solver.

When using the cube-and-conquer approach, it is criti-
cal to ensure that the generated cubes collectively partition
the search space. Completeness was verified by recursively
checking that for any literal x forming a cube ϕ ∧ x, all ex-
tensions of the complementary literal ϕ ∧ ¬x were covered
by the set of generated cubes. This process confirmed that
R(8, 3) = R(3, 8) = 28 and R(9, 3) = R(3, 9) = 36. In
addition, we ran R(8, 3) on the same machine sequentially
and obtained a runtime of 66,504 seconds (see Table 3), how-
ever, the total CPU time combining cubing, simplification,

and solving was only 22,388 seconds. Therefore, cube-and-
conquer achieved a reduction in total CPU time compared
to sequential solving. This mirrors the efficiency gains ob-
served in the Boolean Pythagorean Triples problem [Heule et
al., 2016], where cube-and-conquer reduced the total solving
time from 2,125 days to 2 days using 800 cores, effectively
reducing the computational effort to 1,600 CPU days.

While our approach produces certificates of completeness
for exhaustive search procedures, these certificates do not
constitute formal proofs of the corresponding Ramsey num-
bers. Rather, they serve as computational validation of the
most resource-intensive components of the argument, i.e., the
parts which in practice cannot be checked by hand. To en-
able full formal verification of a Ramsey number within our
pipeline, two key elements remain unverified: the correctness
of the SAT encoding and the correctness of the custom script
used to validate clauses generated by the CAS.

9 Conclusion
Using SAT+CAS, we significantly improve the efficiency
of a SAT solver on Ramsey problems and provide the first
independently-checkable proof of the result R(3, 8) = 28 of
McKay and Min from 1992. We verify that R(3, 9) ≤ 36
(and therefore R(3, 9) = 36) with less dependency on theo-
retical results than previous approaches. This result was first
shown by Grinstead and Roberts in 1982 but was never before
verified by independently checkable certificates.

SAT+CAS has been demonstrated to be an effective
problem-solving and verifying tool for Ramsey problems.
When combined with previously known domain knowledge
about Ramsey problems, the search space can be reduced and
thus the effectiveness of the SAT+CAS method is improved.
More difficult Ramsey problems often have larger encodings
and require an excessive amount of memory. Thus, reducing
problems using domain knowledge has the additional ben-
efit of reducing the encoding size. Future applications of
SAT+CAS to Ramsey problems include the verification of
all known Ramsey numbers and determining the values of
R(3, 10), R(4, 6), or R(5, 5), which remain open problems.
While our certificates are independently checkable and en-
sure correctness of each individual SAT instance, a fully for-
mal proof of the main theorem would require formalizing
the correctness of the CNF encoding, verifying the checker
used to validate UNSAT claims, verifying the correctness of
Lemma 1, and connecting the SAT results to the formal def-
inition of the Ramsey number in a proof assistant such as
LEAN or COQ. We leave this comprehensive formalization
to future work.

References
[Ahmed et al., 2014] Tanbir Ahmed, Oliver Kullmann, and

Hunter Snevily. On the van der Waerden numbers

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

w(2; 3, t). Discrete Applied Mathematics, 174:27–51,
September 2014.

[Ajani and Bright, 2024] Yameen Ajani and Curtis Bright.
SAT and lattice reduction for integer factorization. In Pro-
ceedings of the 2024 International Symposium on Sym-
bolic and Algebraic Computation, volume 46 of ISSAC
’24, page 391–399. ACM, July 2024.

[Bailleux and Boufkhad, 2003] Olivier Bailleux and Yacine
Boufkhad. Efficient CNF encoding of Boolean cardinality
constraints. In F. Rossi, editor, Principles and Practice of
Constraint Programming – CP 2003, volume 2833 of Lec-
ture Notes in Computer Science, pages 108–122, Berlin,
Heidelberg, 2003. Springer.

[Bayardo Jr. and Schrag, 1997] Roberto J. Bayardo Jr. and
Robert C. Schrag. Using CSP look-back techniques to
solve real-world SAT instances. In AAAI’97/IAAI’97,
pages 203–208. AAAI Press, 1997.

[Bernardin et al., 2024] L. Bernardin, P. Chin, P. DeMarco,
K. O. Geddes, D. E. G. Hare, K. M. Heal, G. Labahn, J. P.
May, J. McCarron, M. B. Monagan, D. Ohashi, and S. M.
Vorkoetter. Maple Programming Guide. Maplesoft, a di-
vision of Waterloo Maple Inc., 2024.

[Biere et al., 2024] Armin Biere, Tobias Faller, Katalin
Fazekas, Mathias Fleury, Nils Froleyks, and Florian Pol-
litt. CaDiCaL 2.0. In Arie Gurfinkel and Vijay Ganesh,
editors, Computer Aided Verification, CAV 2024, vol-
ume 14681 of Lecture Notes in Computer Science, page
133–152, Cham, 2024. Springer Nature Switzerland.

[Bosma et al., 1997] Wieb Bosma, John Cannon, and
Catherine Playoust. The Magma algebra system I:
The user language. Journal of Symbolic Computation,
24(3–4):235–265, 1997.

[Bright et al., 2020] Curtis Bright, Ilias Kotsireas, and Vijay
Ganesh. Applying computer algebra systems with SAT
solvers to the williamson conjecture. Journal of Symbolic
Computation, 100:187–209, 2020.

[Bright et al., 2021] Curtis Bright, Kevin K H Cheung, Brett
Stevens, Ilias Kotsireas, and Vijay Ganesh. A SAT-based
resolution of Lam’s problem. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pages
3669–3676, 2021.

[Bright et al., 2022] Curtis Bright, Ilias Kotsireas, and Vijay
Ganesh. When satisfiability solving meets symbolic com-
putation. Communications of the ACM, 65(7):64–72, June
2022.

[Buss and Thapen, 2021] Samuel R. Buss and Neil Thapen.
DRAT and propagation redundancy proofs without new
variables. Logical Methods in Computer Science, 17(2),
Apr 2021.

[Codel et al., 2024] Cayden R. Codel, Jeremy Avigad, and
Marijn J. H. Heule. Verified substitution redundancy
checking. In N. Narodytska and P. Rümmer, editors, Pro-
ceedings of Formal Methods in Computer-Aided Design,
FMCAD 2024, Formal Methods in Computer-Aided De-
sign, pages 186–196. TU Wien Academic Press, 2024.

[Codish et al., 2016] Michael Codish, Michael Frank, Avra-
ham Itzhakov, and Alice Miller. Computing the Ramsey
number R(4, 3, 3) using abstraction and symmetry break-
ing. Constraints, 21:375–393, 2016.

[Codish et al., 2019] Michael Codish, Alice Miller, Patrick
Prosser, and Peter J. Stuckey. Constraints for symmetry
breaking in graph representation. Constraints, 24:1–24,
2019.

[de Moura et al., 2015] Leonardo de Moura, Soonho Kong,
Jeremy Avigad, Floris van Doorn, and Jakob von Raumer.
The Lean theorem prover (system description). In Au-
tomated Deduction - CADE-25, volume 9195 of Lecture
Notes in Computer Science, page 378–388, Cham, 2015.
Springer.

[Faradžev, 1978] I. A. Faradžev. Constructive enumeration
of combinatorial objects. In Problèmes combinatoires et
théorie des graphes, pages 131–135, 1978.

[Fazekas et al., 2023] Katalin Fazekas, Aina Niemetz, Math-
ias Preiner, Markus Kirchweger, Stefan Szeider, and
Armin Biere. IPASIR-UP: User propagators for CDCL. In
26th International Conference on Theory and Applications
of Satisfiability Testing (SAT 2023). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2023.

[Fujita et al., 2013] Hiroshi Fujita, Miyuki Koshimura, and
Ryuzo Hasegawa. SCSat: A soft constraint guided SAT
solver. In M. Järvisalo and A. Van Gelder, editors, The-
ory and Applications of Satisfiability Testing–SAT 2013:
16th International Conference, Helsinki, Finland, July 8–
12, 2013., volume 7962 of Lecture Notes in Computer Sci-
ence, pages 415–421, Berlin, Heidelberg, 2013. Springer.

[Gauthier and Brown, 2024] Thibault Gauthier and Chad E.
Brown. A formal proof of R(4, 5) = 25. In Yves Bertot,
Temur Kutsia, and Michael Norrish, editors, 15th Inter-
national Conference on Interactive Theorem Proving (ITP
2024), volume 309 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 16:1–16:18, Dagstuhl, Ger-
many, 2024. Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik.

[Gocht and Nordström, 2021] Sebastian Gocht and Jakob
Nordström. Certifying parity reasoning efficiently using
pseudo-Boolean proofs. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 35, pages 3768–
3777, May 2021.

[Graver and Yackel, 1968] Jack E. Graver and James Yackel.
Some graph theoretic results associated with Ramsey’s
theorem. Journal of Combinatorial Theory, 4(2):125–175,
1968.

[Grinstead and Roberts, 1982] Charles M. Grinstead and
Sam M. Roberts. On the Ramsey numbers R(3, 8) and
R(3, 9). Journal of Combinatorial Theory, Series B,
33(1):27–51, 1982.

[Heule and Biere, 2018] Marijn J. H. Heule and Armin
Biere. What a difference a variable makes. In International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 75–92. Springer, 2018.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Heule et al., 2012] Marijn J. H. Heule, Oliver Kullmann,
Siert Wieringa, and Armin Biere. Cube and conquer:
Guiding CDCL SAT solvers by lookaheads. In Kerstin
Eder, João Lourenço, and Onn Shehory, editors, Hardware
and Software: Verification and Testing, volume 7261 of
Lecture Notes in Computer Science, pages 50–65, Berlin,
Heidelberg, 2012. Springer.

[Heule et al., 2016] Marijn J. H. Heule, Oliver Kullmann,
and Victor W Marek. Solving and verifying the boolean
Pythagorean triples problem via cube-and-conquer. In
Theory and Applications of Satisfiability Testing – SAT
2016, volume 9710 of Lecture Notes in Computer Science,
pages 228–245, Cham, 2016. Springer.

[Heule et al., 2020] Marijn J. H. Heule, Benjamin Kiesl, and
Armin Biere. Strong extension-free proof systems. Jour-
nal of Automated Reasoning, 64(3):533–554, 2020.

[Heule, 2018] Marijn J. H. Heule. Schur number five. In
Proceedings of the Thirty-Second AAAI Conference on Ar-
tificial Intelligence, volume 32, pages 6598–6606. AAAI
Press, 2018.

[Järvisalo et al., 2012] Matti Järvisalo, Marijn J. H. Heule,
and Armin Biere. Inprocessing rules. In International
Joint Conference on Automated Reasoning, pages 355–
370. Springer, 2012.

[Jha et al., 2024] Piyush Jha, Zhengyu Li, Zhengyang Lu,
Curtis Bright, and Vijay Ganesh. AlphaMapleSAT: An
MCTS-based cube-and-conquer SAT solver for hard com-
binatorial problems. arXiv:2401.13770, 2024.

[Kirchweger and Szeider, 2021] Markus Kirchweger and
Stefan Szeider. SAT modulo symmetries for graph
generation. In 27th International Conference on Princi-
ples and Practice of Constraint Programming, volume
210 of LIPIcs, pages 34:1–34:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021.

[Kirchweger and Szeider, 2024] Markus Kirchweger and
Stefan Szeider. SAT modulo symmetries for graph
generation and enumeration. ACM Trans. Comput. Logic,
25(3), jul 2024.

[Kirchweger et al., 2023a] Markus Kirchweger, Tomáš Peitl,
and Stefan Szeider. A SAT solver’s opinion on the Erdős-
Faber-Lovász conjecture. In 26th International Confer-
ence on Theory and Applications of Satisfiability Testing
(SAT 2023), volume 271 of Leibniz International Proceed-
ings in Informatics (LIPIcs), pages 13:1–13:17. Schloss-
Dagstuhl-Leibniz Zentrum für Informatik, 2023.

[Kirchweger et al., 2023b] Markus Kirchweger, Tomáš
Peitl, and Stefan Szeider. Co-certificate learning with SAT
modulo symmetries. In Proceedings of the Thirty-Second
International Joint Conference on Artificial Intelligence,
IJCAI ’23, 2023.

[Li et al., 2024] Zhengyu Li, Curtis Bright, and Vijay
Ganesh. A SAT solver + computer algebra attack on the
minimum Kochen–Specker problem. In Kate Larson, ed-
itor, Proceedings of the Thirty-Third International Joint
Conference on Artificial Intelligence, IJCAI-24, pages

1898–1906. International Joint Conferences on Artificial
Intelligence Organization, 8 2024.

[Marques-Silva and Sakallah, 1999] João P. Marques-Silva
and Karem A. Sakallah. GRASP: A search algorithm for
propositional satisfiability. IEEE Transactions on Comput-
ers, 48(5):506–521, 1999.

[Marques-Silva et al., 2021] João Marques-Silva, Inês
Lynce, and Sharad Malik. Conflict-driven clause learn-
ing SAT solvers. In Handbook of satisfiability, pages
133–182. IOS Press, 2021.

[McKay and Min, 1992] Brendan D. McKay and Zhang Ke
Min. The value of the Ramsey number R(3, 8). Journal
of Graph Theory, 16(1):99–105, 1992.

[McKay and Piperno, 2014] Brendan D. McKay and Adolfo
Piperno. Practical graph isomorphism, II. Journal of Sym-
bolic Computation, 60:94–112, 2014.

[McKay and Radziszowski, 1995] Brendan D. McKay and
Stanislaw P. Radziszowski. R(4, 5) = 25. Journal of
Graph Theory, 19(3):309–322, 1995.

[Neiman et al., 2022] David Neiman, John Mackey, and
Marijn Heule. Tighter bounds on directed Ramsey number
R(7). Graphs and Combinatorics, 38(5):156, 2022.

[Read, 1978] Ronald C. Read. Every one a winner. Annals
of Discrete Mathematics, 2:107–120, 1978.

[Rebola-Pardo, 2023] Adrià Rebola-Pardo. Even shorter
proofs without new variables. In Meena Mahajan and
Florian Slivovsky, editors, 26th International Conference
on Theory and Applications of Satisfiability Testing (SAT
2023), volume 271 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 22:1–22:20. Schloss dagstuhl–
Leibniz-Zentrum für Informatik, 2023.

[Stein and Joyner, 2005] William Stein and David Joyner.
SAGE: System for algebra and geometry experimentation.
ACM SIGSAM Bulletin, 39(2):61–64, June 2005.

[Wetzler et al., 2014] Nathan Wetzler, Marijn J. H. Heule,
and Warren A. Hunt. DRAT-trim: Efficient checking and
trimming using expressive clausal proofs. In C. Sinz and
U. Egly, editors, Theory and Applications of Satisfiabil-
ity Testing – SAT 2014, volume 8561 of Lecture Notes in
Computer Science, pages 422–429, Cham, 2014. Springer.

[Wolfram, 2003] Stephen Wolfram. The Mathematica Book,
Fifth Edition. Wolfram Research, Inc., 2003.

[Zulkoski et al., 2015] Edward Zulkoski, Vijay Ganesh, and
Krzysztof Czarnecki. MathCheck: A math assistant via
a combination of computer algebra systems and SAT
solvers. In Automated Deduction-CADE-25: 25th Interna-
tional Conference on Automated Deduction, Berlin, Ger-
many, August 1-7, 2015, Proceedings 25, pages 607–622.
Springer, 2015.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

