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Abstract

The scarcity of health care resources, such as
ventilators, often leads to the unavoidable con-
sequence of rationing, particularly during public
health emergencies or in resource-constrained set-
tings like pandemics. The absence of a universally
accepted standard for resource allocation protocols
results in governments relying on varying crite-
ria and heuristic-based approaches, often yielding
suboptimal and inequitable outcomes. This study
addresses the societal challenge of fair and effec-
tive critical care resource allocation by leveraging
deep reinforcement learning to optimize policy de-
cisions. We propose a transformer-based deep Q-
network that integrates individual patient disease
progression and interaction effects among patients
to enhance allocation decisions. Our method aims
to improve both fairness and overall patient out-
comes. Experiments using metrics such as nor-
malized survival rates and interracial allocation rate
differences demonstrate that our approach signif-
icantly reduces excess deaths and achieves more
equitable resource allocation compared to severity-
and comorbidity-based protocols currently in use.
Our findings highlight the potential of deep rein-
forcement learning to address critical health care
challenges.

1 Introduction
The Institute of Medicine (IOM) defines Crisis Standards of
Care as “a substantial change in usual health care opera-
tions and the level of care it is possible to deliver, which is
made necessary by a pervasive (e.g., pandemic influenza) or
catastrophic (e.g., earthquake) disaster” [Gostin et al., 2012].
These guidelines recognize that pandemics can strain health
systems into an absolute scarcity of health care resources and
could result in the unavoidable consequence of rationing.

Following the IOM framework, state governments
throughout the U.S. have developed allocation protocols for
critical care resources during the pandemic [Piscitello et al.,
2020]. Consistent with the broad consensus of ethicists and

stakeholders [Emanuel et al., 2020], these protocols aim to
triage patients via a pre-specified and transparent policy.

Societal Challenges: Despite adhering to a general frame-
work, critical details of these protocols vary widely across
the U.S. [Piscitello et al., 2020]. The protocols also differ in
whether they prioritize younger patients or those without pre-
existing medical conditions. For example, the SOFA proto-
col (used in New York [VEN, 2015]) focuses on maximizing
short-term survival and does not consider age or pre-existing
conditions; multiprinciple protocols (used in Maryland and
Pennsylvania) give preference to younger patients and those
without comorbidities [Biddison et al., 2019]. However, all
these protocols assign a static priority score, lacking the flex-
ibility to account for the severity of scarcity and the specific
patient pool they are competing against, which leaves room
for improvement in patient outcomes.

Beyond the lack of a universally accepted protocol, there is
also a pressing societal challenge regarding health equity in
resource allocation. Empirical assessments indicate that ex-
isting allocation protocols disproportionately disadvantaged
Black patients, who were significantly less likely to receive
ventilators [Bhavani et al., 2021]. Furthermore, the SOFA
score, widely used in triage decisions, has been shown to be
only moderately effective in predicting mortality for mechan-
ically ventilated patients [Raschke et al., 2021]. Addition-
ally, evidence suggests that SOFA scores may inadvertently
assign higher severity scores to Black patients, which could
lead to their lower prioritization for life-saving interventions.
[Ashana et al., 2021] These disparities highlight the urgent
need to improve both the effectiveness and fairness of allo-
cation protocols to ensure that critical resources are allocated
efficiently and equitably among all patients.

Multidisciplinary Collaboration Given that resource al-
location decisions are made sequentially and must adapt to
evolving patient conditions, reinforcement learning (RL) pro-
vides a natural framework for optimizing allocation proto-
cols. RL can leverage large-scale patient data and has the
potential to learn optimal allocation strategies that maxi-
mize lives saved while ensuring fairness across demographic
groups. Developing such an approach requires a multidisci-
plinary effort that brings together health informaticians and
AI researchers. By integrating expertise in clinical decision-
making, health data science, and AI, we can design an RL
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Figure 1: An illustration for our study formulation. Each color represents a separate patient.

model tailored to the complexities of real-world health crises.
In this study, we investigate the use of RL for optimiz-

ing critical care resource allocation policies. Our goal is to
develop an adaptive, data-driven allocation policy that max-
imizes survival rates while promoting fairness in rationing
across different racial populations. Our main contributions
are summarized as follows:

• We formulate fair health care resource allocation as a
multi-objective deep reinforcement learning problem, by
integrating the utilitarian and egalitarian objectives into
the RL rewards.

• We propose a Transformer-based parametrization of the
deep Q-network that significantly reduces the complex-
ity of the classical deep-Q network while making allo-
cation decisions based on individual patient disease pro-
gression and interactions among patients.

• We apply our approach to a large, diverse, multi-hospital
real-world clinical datasets. Experiments show that our
approach leads to fair allocation of critical care resources
among different races, while maintaining the overall
utility with respect to patient survival.

2 Related Work
Health care resource scarcity, especially during pandemics
and in intensive care settings, requires decision strategies that
balance outcomes, equity, and crisis management [Emanuel
and Wertheimer, 2006; Truog et al., 2006; Persad et al.,

2009]. Despite these goals, implicit and explicit discrimi-
nation has long permeated healthcare, resulting in numerous
instances of biased outcomes [Dresser, 1992; Tamayo-Sarver
et al., 2003; Chen et al., 2008].

RL, given its inherent capacity for goal-oriented learning
and sequential decision-making, holds promise for develop-
ing optimized allocation strategies. However, like other ma-
chine learning methods, RL can inadvertently reinforce dis-
parities by favoring majority groups and failing to incorpo-
rate fairness objectives [Mehrabi et al., 2021]. Indeed, RL
may further exacerbate inequities across patient populations
if fairness considerations are neglected [Liu et al., 2018;
Ahmad et al., 2020; Rajkomar et al., 2018; Pfohl et al., 2021;
Wang et al., 2022; Li et al., 2022].

Existing work on resource allocation has primarily fo-
cused on one-time or rollout-based distribution, such as vac-
cine allocation [Awasthi et al., 2022; Rey et al., 2023;
Cimpean et al., 2023], often using multi-armed bandit ap-
proaches. These methods, however, are ill-suited for complex
scenarios requiring repeated, daily allocation decisions.

RL has also been applied to simulate pandemic trajectories,
guide lockdown strategies [Zong and Luo, 2022], project ven-
tilator needs [Bednarski et al., 2021], and allocate PCR tests
for COVID-19 screening [Bastani et al., 2021]. For a com-
prehensive summary of RL applications in healthcare, see the
survey by [Yu et al., 2021]. Nonetheless, many of these ef-
forts prioritize efficiency over long-term fairness, leaving crit-
ical gaps in addressing disparities in high-stakes resource al-
location.
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3 Problem Formulation
We formulate the ventilator allocation problem as a day-to-
day sequential decision problem, as illustrated in Figure 1.
Our objective is to optimize the triage protocol regard-
ing who should receive health resources under scarcity,
with the goal of saving more lives during a health cri-
sis. This optimization by no means influences physicians’
medical decisions regarding whether a patient should be
ventilated or not. Therefore, in our formulation and exper-
iments, all patients are prescribed ventilation by physicians
but might not receive one due to resource limitation.

3.1 State Space
The state space S describes the current clinical condi-
tions of all patients in the hospital, as well as their
ventilation status. Each state is represented by s =
[x1, x2, · · · , xN , I1, I2, · · · , IN ] ∈ S ⊆ RkN+N , where
xi ∈ [0, 1]k ⊆ Rk denotes the current medical condition
of the patient on bed i, and indicator Ii ∈ {0, 1} denotes
whether the bed i has been ventilated. Apart from normal
medical conditions of patients, we consider three special con-
ditions: Survived, Dead, and Vacant, corresponding to
the cases where the patient in this bed is recovered or dead
after ventilation, as well as currently no patient in this bed.
They act as terminators for patients or separators between pa-
tients in the same bed. Such designs separate different pa-
tients on the same bed explicitly, so that the tasks of learning
the progression of medical conditions given ventilation and
the task of recognizing the end of each patient can be decou-
pled. The intensive care units have up to N beds. Here we
only consider ventilator scarcity, but bed scarcity can be anal-
ogously modeled. In the following, we give a rigorous formu-
lation of the RL model for both cases of without and with the
consideration of the fairness in distributing ventilators.

With fairness in consideration, we further record the cu-
mulative numbers of total and ventilated patients of different
ethnoracial groups in the state vector, denoted by nk,mk ∈ R
respectively, where k ∈ {B,W,A,H} denotes 4 ethnora-
cial group in the dataset: non-Hispanic Black, non-Hispanic
White, non-Hispanic Asian, Hispanic. Thus, each state s =
[x1, · · · , xN , I1, · · · , IN , nB , nW , nA, nH ,mB ,mW ,mA,
mH ] ∈ S ⊆ RkN+N+8 describes the medical and ventila-
tion status of all current patients, as well as the number of
cumulative total and ventilated patients of different groups.

3.2 Action Space
For both cases, the action spaceA is a discrete space denoting
whether each bed is on ventilation or not. Let us use 1 to
denote ventilate and 0 otherwise, so the action space A ⊆
{0, 1}N . Note that we have two constraints on actions:

• Capacity Constraint: A ⊆ {a ∈ {0, 1}N :
∑N

i=1 ai ≤
C}, where C is the ventilator capacity of the hospital.

• Withdrawal Constraint (optional): a patient who has
been ventilated must not be withdrawn until they no
longer need it or are discharged.: A ⊆ {a ∈ {0, 1}N :
ai = 1 if Ii = 1, i = 1, 2, · · · , N}, where Ii in the
state information denotes whether current patient on bed
i has been ventilated before. We apply this constraint

following [Bhavani et al., 2021]. However, in real clin-
ical practice, the withdrawal of a ventilator from one
patient to save another raises ethical issues and has not
reached a consensus (e.g., ranging from no mechanism
in the Maryland protocol to an explicit SOFA-based ap-
proach in the New York protocol). Therefore, we also in-
clude the results without this constraint in Appendix A.5
1 to provide a comprehensive picture across the spec-
trum, considering both extremes where withdrawal is ei-
ther considered or not at all.

Therefore, the action space is shrunk to A = {a ∈ {0, 1}N :∑N
i=1 ai ≤ C and ai = 1 if Ii = 1, ∀i = 1, 2, · · · , N}.

3.3 Transition Model
For ease of notation, we denote the three special conditions
Survived, Dead, and Vacant as 1,−1,0 ∈ Rk respec-
tively. In the case without fairness consideration, given cur-
rent state s = [x1, x2, · · · , xN , I1, I2, · · · , IN ] and action
a = [a1, a2, · · · , aN ], it will transit to the next state s′ =
[x′

1, x
′
2, · · · , x′

N , I ′1, I
′
2, · · · , I ′N ] in the following coordinate-

wise way:

• If xi ̸= 0,1,−1, then the patient will transit to Dead
condition if not ventilated:

P clinical
i (x′

i|s, a) =


1 if ai = 0, x′

i = −1,
0 if ai = 0, x′

i ̸= −1,
pon(x′

i|xi) if ai = 1, x′
i ̸= 0,

0 if ai = 1, x′
i = 0,

where pon(x′
i|xi) denotes the probability of a patient

transiting from medical condition xi to x′
i given ven-

tilation. The ventilation status is naively transited
P vent
i (I ′i|s, a) = 1 if I ′i = ai and 0 otherwise. We did

not use computational methods to simulate pon(x′
i|xi),

as the progression of patients’ conditions is high-
dimensional and difficult to model. Instead, we only
used real clinical trajectories by sampling from real-
world clinical databases.
Following existing clinical literature (e.g., [Bhavani et
al., 2021]), we assume that patients who needed venti-
lators but did not receive one will die. Thus, there will
be no patients waiting for a ventilator, as the inability
to receive ventilation will result in their immediate de-
ceased and removal from the dataset. However, such
an assumption might be over-pessimistic. Therefore, in
Appendix A.6, we also explore scenarios where patients
not being allocated ventilators does not lead to immedi-
ate fatalities, which validates the broader applicability of
our proposed methods.

• If xi = 0,1 or −1, the action does not influence the
transition dynamic:

P clinical
i (x′

i|s, a) =


0 if x′

i = 1 or −1,
1− qi(s) if x′

i = 0,

qi(s) · ξ(x′
i) if x′

i ̸= 0,1,−1,

1https://arxiv.org/pdf/2309.08560
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where ξ(·) denotes the distribution of the initial medi-
cal condition of a patient when admitted to the critical
care units, and qi(s) denotes the probability of a new
incoming patient staying in bed i. Note qi(s) depends
on how new patients are distributed to empty beds. It
satisfies qi(s) = 0 if the bed i is already occupied, and∑N

i=1 qi(s) = E ∼ Poisson(Λ) assuming the number of
incoming patients E obeys an Poisson distribution with
parameter Λ. The ventilation status does not matter at
this point, we can set P vent

i (I ′i|s, a) = 1 if I ′i = 0 and 0
otherwise.

Given above discussion for transition dynamics of each indi-
vidual patients/bed, the overall transition probability can be
written as

P = (P clinical
0 , · · · , P clinical

N , P vent
0 , · · · , P vent

N ) (1)

We further consider the progress of the number of cumu-
lative patients and ventilated patients of each ethnic group,
whose deterministic transitions are naive by their definitions.

3.4 Reward
The reward function consists of the following three parts:

• Terminal condition Rt: If a patient is discharged alive
after being on a ventilator, a positive reward of 1 is given.
If a patient requires a ventilator but is not able to receive
one, or dies after being on a ventilator, a penalty of -1 is
given: Rt(s, a) =

∑N
i=1 1[xi = 1]−

∑N
i=1 1[xi = −1].

• Ventilation cost Rv: if a ventilator is used, it occurs a
small negative reward:Rv(s, a) =

∑N
i=1 ai.

• Fairness penalty Rf : in the case with fairness con-
sideration, we consider the cumulative total and ven-
tilated patients of different ethnoracial groups. We
expect the distribution of ventilators is equitable in
terms of the proportion of ventilated patients of all
ethnoracial groups. Therefore, a penalty of KL-
divergence between the frequency distributions of in-
coming patients of different ethnoracial groups Dn

d∼
[nB , nW , nA, nH ]/(nB + nW + nA + nH) and ven-
tilated patients of different ethnoracial groups Dm

d∼
[mB ,mW ,mA,mH ]/(mB +mW +mA+mH) is con-
sidered: Rf (s, a) = KL (Dn∥Dm).

Thus, the reward function is given by

R(s, a) = Rt(s, a) + µ ·Rv(s, a) + λ ·Rf (s, a), (2)

where the parameter λ ≥ 0 balances the trade-off between
ventilation effectiveness and fairness. In the case without fair-
ness consideration, we set λ = 0. µ is a small scalar that con-
trols ventilation costs and can be selected through parameter
fine-tuning or clinical expertise.

4 Method
In our formulation, due to the resource constraints imposed
through the restricted action sets and the fairness require-
ments via reward penalties, the interaction effects among the
patients need to be considered. However, modeling all pa-
tients jointly poses computational and memory challenges

due to the combinatorial nature of the action space. Address-
ing such a formulation necessitates a Q network with dimen-
sions proportional to the size of the state space |S| and action
space |A|, resulting in a complexity up to O(N ×2N ), where
N represents the ICU bed capacity. This complexity makes it
impractical to naively construct and train such a Q network,
given the challenges in collecting a sufficient number of data
points. In practical terms, the intensive care units of health
systems typically have hundreds of beds (N ≥ 100), making
the computational demands and data requirements for train-
ing such a network unattainable. Also, naively concatenating
all patients’ state vectors introduces an order among patients,
which may cause the model to learn artificial factors on that
order and potentially bias the model.

To circumvent the computational intractability without los-
ing the consideration of the interaction effects among pa-
tients, we therefore propose Transformer-based Q-network
parametrization, which inherits the classical Q-learning
framework with new parametrization and greedy action se-
lection tailored to our problem structure. In our formulation,
the transition of states is partially decomposable because a
single patient’s clinical conditions depend only on their pre-
ceding clinical conditions and ventilation status. Therefore,
we can reshape the state from a one-dimensional long vec-
tor to a two-dimensional matrix, with the i-th row as [xi, Ii]
for patient i. In case the fairness features nk,mk are also
considered, we can replicate them N times and append them
to the end of each row. The Q-network is parametrized as
Tθ : Rdim(S) → RN×2, whose input is the reshaped state
matrix. The i-th row of the output Tθ(s)i ∈ R2 corresponds
to the Q-value contributed by the i-th patient given the cur-
rent state s and the action ai on the i-th patient. We adopt
an additive form of the joint Q-value, which estimates the
trade-off between effectiveness and fairness when allocating
under the constraints and considering the clinical conditions
of all patients: Q(s, a) =

∑N
i=1 Tθ(s)i,ai

. We leverage the
Transformer architecture [Vaswani et al., 2017] for Tθ. Each
row in the reshaped s are considered as an input patient to-
ken. As our input to the model is essentially an orderless set
of patients’ conditions with indefinite size, Transformers are
a natural fit for our problem because Transformers without
positional encodings are permutationally-invariant and can
handle inputs with arbitrary sizes. Each Transformer layer
is composed of a feed-forward layer and a multi-head atten-
tion layer. The feed-forward layer acts independently on each
element of the input as a powerful feature extractor, while the
attention layer is able to capture the interaction effects be-
tween all the elements. This quadratic complexity of Trans-
former architecture also results in a significant reduction in
the network’s complexity, decreasing it from O(N ×2N ) to a
more manageable O(N2). We also provide robust empirical
results to demonstrate the effectiveness and advantages of our
proposed transformer-based parametrization compared to the
classical deep Q-network in Appendix A.4.

In this parametrization, the greedy action shall be searched
within the valid action space A to accommodate the
withdrawal and capacity constraints: πθ(a|s) : a∗ =

argmaxa∈A
∑N

i=1 Tθ(s)i,ai . Under our parametrization and
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the additive form of the Q-value, this constrained greedy
search can be efficiently solved by first allocating ventila-
tors to those who have already been allocated (withdrawal
constraint), where a∗i = 1 ⇔ Ii = 1. Subsequently,
the remaining (C −

∑N
i=1 Ii) ventilators are allocated to the

newly admitted patients for whom the ventilation improve-
ment di = Tθ(s)i,1 − Tθ(s)i,0 ranks at top-(C −

∑N
i=1 Ii)

among all their competitors (capacity constraints).
We also develop a simulator, Simu(X ;C,Λ), constructed

from real-world clinical trajectories to create the replay buffer
for training the proposed model. This simulator maintains the
clinical trajectory of each patient while randomizing their rel-
ative admission order. X is a set of clinical trajectories from
all patients in the training cohort, with each trajectory being
of various lengths covering all the clinical conditions of a pa-
tient in the critical care unit. At each time step in the simu-
lator, we sample the initial conditions of E patients from X
without replacement. E is determined by a Poisson distribu-
tion with parameter Λ, inferred from the distribution of venti-
lator requests in the training cohort. We apply a protocol Π to
allocate the available C ventilators when the sum of existing
patients and newly admitted E patients exceeds the capacity
C. Patients who are not allocated ventilators or those who
are discharged (either alive or deceased) are removed from
the ongoing simulator and returned to the sampling pool. Pa-
tients who are allocated ventilators progress to the next time
step of their own trajectory based on the transition function
pon(x′

i|xi). With this simulator setup, we can generate MDP
tuples of indefinite length.

We combine the Transformer q-network parametrization
with Double-DQN (TxDDQN) [Van Hasselt et al., 2016],
a variant to the original DQN [Mnih et al., 2013] capable of
to reduce overestimation. We summarize our proposed model
and simulator in Algorithm 1.

5 Experiments
5.1 Dataset
The dataset is sourced from Northwestern Medicine Enter-
prise Data Warehouse (NMEDW), including electronic health
records, pathology data from multiple real-world hospitals
and research laboratories. We collected 11,773 ICU admis-
sions that have been allocated mechanical ventilators between
March 15, 2020 and January 15, 2023. We filtered the pa-
tients with age between 18 and 95 for consideration. We re-
moved admissions with a ventilator allocation duration ex-
ceeding 30 days to eliminate anomalies in the data. We ex-
tracted 38 features for each admission, including SOFA com-
ponents, vital signs, demographics, comorbidities (see Ap-
pendix A.1 for the list of features and their statistics).

We split our data into 3 splits, 5,455 admissions between
March 15, 2020 and July 14, 2021 were used as training data;
1,047 admissions between July 15, 2021 and October 14 2021
were used as validation data on which we selected the best
hyper-parameters for testing; 5,271 admissions between Oc-
tober 15, 2021 and January 15, 2023 were used as test data.
The patient distribution of different races and the ventilator
demands on each day are shown in Appendix A.1. We assume
that the original dataset obtained from health systems reflects

Algorithm 1 Transformer-based Double Deep Q Network
Input: Simu(X ;C,Λ), discount factor γ, learning rate α,
batch size |B|, loss function Lc,network update frequency h,
network update parameter τ
Initialize: Primary network Tθ0 ; Target network Tθ′ , θ′ ←
θ0; Allocation protocol Π ← πθ0 ; D ← Φ; s(0) by sampling
initial medical conditions of Pois(Λ) patients from X
for e = 0 to E ▷ Training loop in epochs

for t = 0 to T − 1 ▷ Construct a ring replay buffer
a ∼ πθe(s)

▷ πθ(a|s) : a∗ = argmaxa∈A
∑N

i=1 Tθ(s)i,ai

s′ ∼ P (s, a) ▷ Eq. (1) for P (s, a)
D ← D ∪ {(s, a, s′, R(s, a)} ▷ Eq. (2) for R(s, a)

θe,0 ← θe
for g = 0 to G− 1 ▷ Gradient steps

Sample mini-batch B ⊂ D ▷ B = {(s, a, s′, r}|B|

for i = 0 to N ▷ Search next action a′∗

di = (Tθe,g (s
′)i,1 − Tθe,g (s

′)i,0) ▷ Vent. improv.
if I ′i = 1 then

a′i ← 1 ▷ Withdrawal constraint
elif di ranks top- (C − |I ′|) in {di | I ′i = 0}then

a′i ← 1 ▷ Capacity constraint
else a′i ← 0

θe,g+1 ← θe,g−α ·∇θLc[
∑N

i=1 Tθe,g (s)i,ai , R(s, a)+

γ ·
∑N

i=1 Tθ′(s′)i,a′
i
] ▷ Policy update

if g mod h = 0 then θ′ ← τ · θe,g+1 + (1 − τ) · θ′
θe ← θe,G

a scenario where there was an abundant supply of ventilators
available. We aim to investigate the effectiveness of various
protocols in mitigating excess deaths in ventilator scarcity.

This setup differed from conventional RL settings, which
are trained and evaluated solely on a simulator. We had sep-
arate validation and testing sets. This design allowed us to
compare the proposed method with existing protocols in real-
world hospital operational settings, enhancing the effective-
ness and generalizability of our model. Additionally, ventila-
tor demands may fluctuate due to seasonality and outbreaks.
A test set spanning a whole year can assess our method’s vul-
nerability to these seasonal request surges.

5.2 Baseline Protocols
Our proposed method was compared with the following ex-
isting triage protocols: Lottery: Ventilators are randomly
assigned to patients who are in need. Youngest First: The
highest priority is given to the youngest patients. SOFA: Pa-
tients’ prioritization is discretized into three levels (0-7: high,
8-11: medium, and 11+: low) with the lottery serving as the
tiebreaker. Multiprinciple (MP): Each patient is assigned a
priority point based on their SOFA score (0-8: 1, 9-11: 2,
12-14: 3, 14+: 4). Patients with severe comorbidities receive
an additional 3 points. In case of ties, priority is given to
patients in a younger age group (Age groups: 0–49, 50–69,
70–84, and 85+). If ties still exist, a lottery is conducted to
determine the final allocation. Decision Tree (DT): Grand-
Clément et al. [Grand-Clément et al., 2021] introduced a
data-driven decision-tree-based approach for optimizing ven-
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Survival Fairness Allocation Rates

Survival, % DPR, % Overall, % Asian, % Black, % Hispanic, % White, %

Lottery 75.17 ±0.45 96.89 ±1.55 75.60 ±0.28 74.95 ±1.81 75.65 ±1.10 76.08 ±0.90 75.68 ±0.33
Youngest 77.24 ±0.07 86.39 ±0.27 75.65 ±0.09 75.59 ±0.50 81.73 ±0.31 84.44 ±0.30 72.94 ±0.12
SOFA 80.88 ±0.32 92.37 ±1.01 77.92 ±0.25 75.06 ±1.44 73.58 ±0.77 78.66 ±1.24 79.10 ±0.45
DT 76.16 ±0.01 94.35 ±0.01 75.81 ±0.01 79.59 ±0.00 75.14 ±0.01 77.34 ±0.00 75.58 ±0.00
MP 81.99 ±0.14 90.68 ±0.95 78.34 ±0.20 77.91 ±1.48 74.33 ±0.66 81.96 ±0.56 78.81 ±0.34

TxDDQN 84.76 ±0.24 86.91 ±3.45 81.80 ±0.26 78.03 ±0.99 72.48 ±0.74 81.71 ±0.44 84.45 ±0.22
TxDDQN-fair-off 85.29 ±0.18 95.27 ±1.42 81.96 ±0.15 80.50 ±2.23 80.07 ±1.98 81.44 ±1.05 82.70 ±0.34
TxDDQN-fair 85.41 ±0.23 95.24 ±1.65 81.90 ±0.24 80.01 ±1.79 79.95 ±1.05 81.26 ±1.24 82.80 ±0.42

Table 1: Impact of triage protocols on survival, fairness, and allocation rates with limited ventilators (B = 40) corresponding to about 50%
scarcity. Fairness metric is demographic parity ratio (DPR, the ratio between the smallest and the largest allocation rate across patient groups,
100% indicating non-discriminative). Standard deviations are from 10 experiments with different seeds. We bold the protocols with the
highest survival rate, DPR, and overall allocation rates. We underline the protocols that fall within one standard deviation of the best result.

tilator allocation. Their protocol factors in the BMI, age, and
SOFA score, classifying patients into two priority levels. Ad-
mission time is the tie-breaker within the same priority level.

5.3 Off-policy and offline training
The maximum daily demand for ventilators in the validation
and testing sets is 85. Therefore, we trained 85 capacity-
specific protocol models C = 1, 2, · · · , 85. Ventilator ca-
pacity is normalized from [0, 85] to [0%, 100%]. We used
Λ = 12 because the number of daily newly admitted pa-
tients to the critical care units in our dataset follows a Poisson
distribution with Λ = 12. Our simulator supports both off-
policy and offline RL training settings [Levine et al., 2020].
In the off-policy RL setting, we iteratively update Π with
πθ when constructing the replay buffer. We refer to the off-
policy trained model without and with fairness consideration
as TxDDQN and TxDDQN-fair. In the offline setting, we
use existing heuristic-based protocol, MP, as Π to create a
large training set and do not update the training data dur-
ing the training process. This offline training process mimics
early-stage health crisis operations where resources are allo-
cated using existing protocols, and improvements are sought
thereafter. We refer the offline trained model with fairness
consideration as TxDDQN-fair-off. Our experiments were
conducted on firewall-protected servers. The training time for
each capacity-specific model was less than 30 minutes using a
single GPU. For hyper-parameter selections and the survival-
fairness Pareto frontier, please see Appendix A.2.

5.4 Evaluation
We evaluated the performance of our proposed protocol based
on normalized survival rates, with the survival number at no
shortage in ventilators as 100% and no patients alive when
no ventilator is available as 0%. Fairness was quantified by
comparing the allocation rates across four ethnoracial groups.
The allocation rate was calculated by dividing the total num-
ber of ventilators allocated by the sum of the ventilators re-
quested. The demographic parity ratio (DPR) [Bird et al.,
2020] served as the group metric of fairness, and it is de-
fined as the ratio between the smallest and largest group-level
allocation rate. A DPR value close to 1 signifies an equi-
table allocation, indicating a non-discriminatory distribution

among the different groups. Additionally, to gain insights
into the impact of protocols under varying shortage levels, we
visualized the survival-capacity curve (SCC) and allocation-
capacity curve (ACC). The Area Under the Survival-Capacity
Curve (AUSCC) serves as an indicator of the overall perfor-
mance in terms of life-saving abilities under different lev-
els of ventilator shortage. Similarly, the Area Under the
Allocation-Capacity Curve (AUACC) reflects the overall per-
formance of ventilator utilization rates under varying levels
of shortage.

5.5 Results
Our findings regarding the survival rates for different triage
protocols under various levels of ventilator shortage are illus-
trated in Figure 2. Across all triage protocols, higher venti-
lator capacities are associated with increased allocation rates,
thereby resulting in saving more lives. In the left Panel of Fig-
ure 2, our proposed TxDDQN models exhibit higher AUSCC
compared to all other baseline protocols, demonstrating the
superiority of our models in terms of life-saving efficacy.
Likewise, in the right Panel, TxDDQN models also demon-
strate higher AUACC compared to other baselines, indicating
their superiority in terms of ventilator utilization.

Figure 3 showcases the allocation-capacity curves for dif-
ferent ethnoracial groups and triage protocols in Panels A
through H. Only Lottery, TxDDQN-fair and TxDDQN-fair-
off model exhibit minimal disparities, but TxDDQN-fair and
TxDDQN-fair-off surpasses Lottery in terms of allocation
rates and life-saving efficacy. Conversely, all other triage
protocols display a preference for specific ethnoracial groups.
For example, Youngest and MP favor Hispanic, while SOFA
and TxDDQN favor White.

We conducted a detailed analysis in Table 1 under the sce-
nario where approximately 50% of ventilators are unavail-
able. Our results show that TxDDQN-fair achieves the high-
est survival rate and allocation rate among the triage proto-
cols. It ranks second in terms of DPR, following closely
behind the Lottery protocol. These findings confirm the ef-
fectiveness of our TxDDQN-fair approach in improving both
survival rates and fairness simultaneously. Importantly, the
inclusion of fairness rewards does not compromise its life-
saving capabilities compared to TxDDQN. We also did not
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Figure 2: Impact of triage protocols on survival rates and allocation rates under varying levels of ventilator shortages. The bar plot associated
with each panel indicates the area under the survival-capacity curve and allocation-capactiy curve, respectively, where a larger value indicates
that the protocol can save more lives across different levels of shortages. Notably, the MP and SOFA curves exhibit overlap, indicating similar
allocation patterns. Similarly, the lottery and youngest curves show close proximity, as do our three TxDDQN configurations.

Figure 3: Allocation rates across protocols and ethnoracial groups. Each panel illustrates how allocation rates vary by ethnoracial group under
different protocols. The numbers in the legend indicate the area under the allocation-capacity curve (AUACC).

observe differences between TxDDQN-fair and TxDDQN-
fair-off in their life-saving abilities and fairness. This con-
firms that our proposed methods are adaptable to both offline
and off-policy training, and provide the foundation for safe
deployment in the early stages of health crises. Our proposed
model also demonstrates enhanced fairness and life-saving
outcomes in two additional settings: i) where withdrawal con-
straint is removed (Appendix A.5), and ii) the shortage of
ventilators does not lead to immediate deaths (Appendix A.6).
We provide ablation studies in Appendix A.3.

6 Summary
In this study, we formulated fair health care resource alloca-
tion as a multi-objective deep reinforcement learning prob-
lem. We developed a transformer-based deep Q network to
integrate individual patient disease progression and interac-
tion effects among patients to optimize for an efficient and
fair allocation policy. Our proposed model outperformed ex-
isting protocols used by different states in the U.S., by saving
more lives and achieving a more equitable allocation of health
resources. We refer the reader to Appendix A.7 for the limi-
tations and future directions of this study.
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