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Abstract

Community discovery is a prominent issue in com-
plex network analysis. Symmetric non-negative ma-
trix factorization (SNMF) is frequently adopted to
tackle this issue. The use of a single feature matrix
can depict network symmetry, but it limits its ability
to learn node representations. To break this limita-
tion, we present a novel Relaxed Symmetric NMF
(RSN) approach to boost an SNMF-based commu-
nity detector. It works by 1) expanding the represen-
tational space and its degrees of freedom with mul-
tiple feature factors; 2) integrating the well-designed
equality-constraints to make the model well-aware
of the network’s intrinsic symmetry; 3) employing
graph regularization to preserve the local geometric
invariance of the network structure; and 4) separat-
ing constraints from decision variables for efficient
optimization via the principle of alternating-direc-
tion-method of multipliers. RSN’s effectiveness is
verified through empirical studies on six real social
networks, showcasing superior precision in commu-
nity discovery over existing models and baselines.

1 Introduction

Complex networks are pervasive across a multitude of real
scenarios, e.g., social relationships in social platforms [Liu et
al., 2020] and protein interactions in bioinformatics [Manipur
et al., 2023]. Community stands as a fundamental attribute of
a network, serving as a window into its underlying organiza-
tional architecture, making community discovery shed lights
on some practical applications such as predicting epidemic
transmission trends and identifying biological modules [Gis-
don et al., 2024]. Traditional methods such as graph segmen-
tation [Wang et al., 2021], spectrum analysis [Huang et al.,
2020], and intelligent optimization [Yang et al., 2024] oper-
ate on straightforward principles but often yield suboptimal
accuracy. Learning-based methods treat community discov-
ery as a representation learning task. They offer the merits of
flexible modeling and high accuracy, becoming a favored

*This paper is an extended abstract of a paper [Liu ez al., 2024b]
that won the Best Paper Award at PRICAI 2024.

choice in current research. Among them, non-negative matrix
factorization (NMF) exhibits notable suitability for graph
clustering owing to two distinct merits [He et al., 2022]: 1) it
possesses inherent clustering capabilities—previous work
[Ding et al., 2005] has demonstrated that NMF is equivalent
to advanced clustering techniques such as k-means; and 2) it
offers excellent interpretability for cluster structures, owing
to their linear expression abilities.

Existing NMF-based community discovery methods aim
to enhance their representation learning capabilities. [Sun e?
al., 2017] introduces an approach based on non-negative en-
coder-decoder architecture for community discovery; [Leng
et al., 2019] proposes a graph-regularized NMF model with
Lp-smoothness constraints; and [Berahmand et al., 2023] pre-
sents a new augment graph regularization NMF model for at-
tributed networks. However, these methods do not fully ex-
ploit the inherent symmetry property of undirected networks.
In contrast, a symmetric non-negative matrix factorization
(SNMF) model learns a single feature matrix X for an undi-
rected network and approximates its adjacency matrix 4, i.e.,
A=XX". Notably, [Ding et al., 2005] establishes the equiva-
lence between SNMF and spectral clustering, ensuring well-
interpretable clustering properties. Building upon the flexible
SNMF, an array of SNMF-based community discovery meth-
ods has emerged [Yang et al., 2015; Ye et al., 2020; Luo et
al.,2022; Lv et al., 2023; Guan et al., 2024].

Enhancing the representation learning capacity of SNMF
presents a significant challenge. [Kuang ef al., 2015] intro-
duces a symmetric NMF model that adopts a constraint term
to reduce the discrepancy between two feature matrices. [Li
etal.,2023; Liu et al., 2024a] extend this work by transform-
ing a standard SNMF model into a penalized non-symmetric
NMF model. Such an approach enforces the equality of fea-
ture matrices to capture the inherent structural symmetry by
introducing an equality-regularization term into the learning
objective. However, a critical challenge remains: balancing
representation learning capacity and symmetry. With a small
coefficient, the model may inadequately represent symmetry,
while with a large coefficient it overly emphasizes the regu-
larization term, compromising the fitting of overall loss and
representation learning.
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To strike a balance between symmetry representation and
learning capacity, this paper proposes RSN—a novel relaxed
symmetric non-negative matrix factorization model for com-
munity discovery, with four-fold ideas: 1) Leveraging multi-
ple feature matrices to represent a network, thus preserving
its representation learning capacity; 2) Introducing symmetry
constraints to enable the model to fully recognize the inherent
symmetry; 3) Incorporating graph regularization that cap-
tures the local topological characteristics to maintain the net-
work’s intrinsic geometry; and 4) Adopting the ADMM prin-
ciple to solve RSN efficiently, thus facilitating the independ-
ent learning of decision parameters.

Main contributions of this work are summarized as follows:

1) An accurate community discovery model, i.e., RSN. It lev-
erages the well-designed symmetry constraints to enlarge the
latent feature space for ensuring its representational capacity,
and adopts graph regularization to preserve a target network’s
intrinsic geometry, thereby guaranteeing RSN’s high repre-
sentation learning ability. 2) An efficient learning scheme.
An ADMM-based learning scheme efficiently solves RSN,
addressing the symmetry and non-negativity constraints. Em-
pirical evaluations conducted on six authentic and openly ac-
cessible networks demonstrate that the RSN-based commu-
nity discovery model substantially outperforms existing base-
line and SOTA methods in terms of detection accuracy.

The paper is organized as follows: Section 2 gives the
foundational concepts and problem formulation. Section 3
presents the RSN-based model for community discovery.
Section 4 elucidates the experimental results. Finally, Section
5 concludes this study.

2 Preliminaries

2.1 Problem Statement

Given a network G=(V, E), where V={vi, v5, ..., v,} is a set
of n nodes and E={e; | i, jJE{1, 2, ..., n}} is a set of m edges,
its topology is described by an adjacency matrix A=[a;]ER™™"
which is a symmetric and binary matrix for an undirected and
unweighted network concerned in this work. Its entry a;; is
assigned to one if e;€F and zero otherwise. Given G with K
communities, a community discovery model aims to identify
the community set C={C; | Ci=D, Uy' =V, Ci=C, 1<k<K,
1<t<K}, where Cy is the k-th community in C, and U denotes
the union set [Liu ef al., 2023].

2.2 NMF-based Community Discovery

An NMF-based community discovery model assumes that the
approximation of each entry ay, i.e., dj;, is affected by K com-
munities in a network. Hence, we suppose a non-negative la-
tent factor for community assignment XER"X and the one for
the basis UER”X. NMF learns an approximation 4 to 4 with
U and X, yielding A=UX". Thus, a non-convex loss function
based on the Euclidean distance between 4 and 4 is given as

O (U X) =|a-Ux"|., st. U,.X>0, (1)

where ||+|| calculates the Frobenius norm.
It is worth mentioning that an NMF model does not con-
sider the description of the network’s symmetry. To preserve

A’s symmetry, an SNMF model leverages a single latent fac-
tor to learn its approximation [Luo et al., 2022]. Hence, the
loss function is given as

Ogoue (X) =]l 4—xx"|, st X =0. ©)

An NMF-based method implements community discovery
by taking X as a membership soft indicator: Vi€ {1, 2, ..., n}
and k€{l1, 2, ..., K}, xit can be considered as the probability
that node v; belongs to community Cy, i.e., [Liu et al., 2023],

v, eCp,ifp:argmflxxiq,q:{1,2,...,K}. 3)

3 Methods

3.2 Optimization Objective

To capture the inherent symmetry, we introduce an equality-
constraint term, i.e., X=Y, into RSN’s objective function:

Opoy (X.Y)=min /24~ X7 52, X =Y. XY 20,(4)

where 4 is an adjacency matrix, decision parameters X and Y
are desired feature matrices for forming the low-rank approx-
imation 4 to 4, i.e., XYT.

In (4), by setting a trade-off coefficient to balance the gen-
eralized loss and the constraint term, the equality-like sym-
metry constraint term “X=Y"" enforces two feature matrices to
be identical during the training process, thus capturing sym-
metry of the target network [Liu ef al., 2024a]. However, in
practical applications, achieving a balance between represen-
tational capacity and symmetry is challenging, because the
solutions of the two feature matrices either become too simi-
lar thus making the model reduce to an SNMF model, or fail
to capture the symmetry effectively.

To overcome this issue, we introduce two auxiliary param-
eters P and Q to separate the involved constraints, i.e., sym-
metry and non-negativity, from the decision parameters

Oy (X,7,P,0) = min1/2||A—XYT||2F, )
st. X=P,Y=0,P=0;P,0>0.

To make the model well aware of the local topological ge-
ometry of the target data, we further introduce a graph regu-
larization term to (5) and extend it as

Opey (X.Y,P,Q) = min 1/2(||A Xy m(QTLQ))
st. X=P,Y=0,P=0;P,0>0,

where tr(-) denotes the trace of a matrix. >0 is a tunable hy-

perparameter that adjusts the effect of graph regularization.

L=D-A is the Laplacian matrix of 4, and D is the degree ma-

trix where each entry is calculated as d;=Y,a;. Note that the

learning objective of RSN in (6) exhibits several merits:

e [t employs asymmetric factorization to avoid the reduction
of feature space through two distinct feature matrices.

e By transforming the equality-like symmetry constraints on
decision parameters into auxiliary variables, it relaxes the
strong assumption of equality between X and Y, which en-
larges the feature space and degrees of freedom.

e The introduction of graph regularization ensures that the
model preserves the intrinsic local topology, enhancing its
awareness of the local community structure.

(6)
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e While imposing non-negative constraints on auxiliary var-
iables, a generalized loss is constructed based on decision
parameters. Such decoupling of non-negative constraints
from decision parameters facilitates the optimization of the
generalized loss.

e The representation of matrix 4’s symmetry is guaranteed
by the relation A=PQ".

3.2 ADMM-based Learning Rules

To resolve (6), we employ the ADMM principle to design an
efficient learning scheme for RSN. Thus, we begin by formu-
lating an augmented Lagrangian function
2
L(X.Y.P,Q.K.I,®)= 1/2(||A Xy /m(QTLQ))
+Ko(X =P)+To(Y-Q)+®o(P-0)+a/2|X - P|. (7)
+p/2|y -0 +0/2|P-0J.,
where o denotes the Hadamard product. KX, "X and @K
are three Lagrangian multipliers related to the equality con-
straints, i.e., X—P, Y-0 and P-Q. The effects of augmentatig)n
terms, i.e., @/2[x ~Pl; . B/2[Y-0]; and 6/2|P-0]; ,
are adjusted with three coefficients, i.e., a, § and 6. The non-
negative constraints can be implemented by projecting P and
O onto the non-negative field of real numbers.
With the ADMM framework [Luo et al., 2023], let t and

t+1 represent the current and updating iteration status of pa-
rameters, and we obtain the following learning sequences:

X' = argmin , E(X,Y’,P’,Q’,K’,F’,d)’),

Y™ = argmin, E(X’”,Y,P’,Q’,K’,F[,(D’),

P! =argmin, £( X", Y™, P,0 K" ,I",@'),

Q"' =argmin, £( X,y P OK @), (8
K™ =K, +7V, L(X", 7™ P 0" KT, @),

1—~t+l — Ft + nvrc(XtH ’Yt+l’Pt+l’Qt+1’Kt-#l’l—"q)t )’

(Dt+l — ‘D, +77V(D£<Xt+l,Yt+] ,PHI,QHI,KHI,FHI ,(I)),

where V denotes the gradient, and # is the learning rate of
gradient ascent. Next, we present the detailed derivation of
the solutions of X, Y, P, O, K, I" and ® one by one.

1) Solution of X

According to the principle of ADMM, X can be iteratively
optimized by fixing the other variables. Consequently, the
Lagrangian function is rendered convex for X, thus facilitat-
ing an analytical resolution, i.e.,

oL(Xx.Y',P,Q' KT, @) [ox

9
=X(Y') Y -4V +K' ~aP +aX' =0.
With (9), the solution of X can be achieved as
X, =(4Y,-K, +aP) (Y'Y +al) ,  (10)

2) Solution of Y
By fixing the other variables, the solution of Y is achieved
by optimizing it independently. Thus, we have

oL(x™.y,P' .0 K'.I", @) /oY
ZY(XHI )T X A T _’_ﬂy_ﬂQr =0.

With (11), we achieve the solution of Y, i.e.,

(11)

No. Networks n m K Sources
D1 DBLP 3,572 10,961 3 DBLP collaboration
D2 Amazon 5,112 16,517 143 Amazon product

D3 Flickr 8,051 188,687 193 Flickr social network
D4 Karate 34 78 2 Karate social network
D5 Cornell 195 304 5 WebKB
D6 Wisconsin 265 530 5 WebKB

Table 1: Details of datasets adopted in experiments.

yr =(AXt+I -r +ﬁpt)((Xt+1 )T X +ﬁ[)_]-(12)

3) Solution of P
Similarly, the solution of P is obtained by fixing all the
other parameters to optimize itself alternatively. We have

aﬁ(XHl,YHI,P,Ql,Kr,FZ,CDr)/aP (13)
=K +d —aX" +aP+0P-60" =0,

yielding the solution of P, i.e.,
P =max{(K' - +a X" +60 )/(a+6).0}.(14)

which is projected onto the non-negative range to fulfill the
non-negative constraint.
4) Solution of Q
By fixing the other variables except for O, we have
aﬁ(XHl,YHI,PHI,Q,Kt,rt,(Dt )/OQ
=ALQ-T"—®' - pY"™"' + BO—-OP" + 00 =0,
yielding the solution of Q, i.e.,

o :max{(/lL+(,6'+9)1)7] (F’ +@' + Y™ +9PH1),0}5 (16)

(15)

where values are also projected onto the non-negative range.
5) Solution of Lagrangian multipliers
Based on the principle of ADMM, Lagrangian multipliers,
i.e., K, T, and @, can be optimized via the dual gradient ascent
algorithm. Thus, we achieve

K™ =K +77(Xt+1 _ p*l )’
1—~1+1 :l—w +7](YH1—QH1), (17)
¢)t+] - +77(Pr+1 _Qt+l )

Based on the above analysis, an RSN model is achieved. It
assigns community affiliation based on (1) by taking Q as a
node-community membership indicator.

4 Experiments

4.1 General Settings

We adopt six social networks from real applications as sum-
marized in Table 1. Three evaluation metrics are used for per-
formance evaluation [Chakraborty ef al., 2017], i.e., Modu-
larity for hyperparameter tuning, and NMI along with AC for
performance assessment of all tested methods. We compare
RSN with nine baseline and SOTA methods, i.e., NMF [Lee
and Seung, 2000], SNMF [Wang et al., 2008], NSED [Sun et
al.,2017], ANLS [Kuang et al., 2015], GNMF [Yang et al.,
2015], GSNMF [Yang et al., 2015], HPNMF [Ye et al., 2020],
LpNMF [Leng et al., 2019] and HALS [Li et al., 2023]. All
hyperparameters are set with their optimal values.
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NMI Dl D2 D3 D4 D5 D6 Ranks p-value

NMF 22.1+142 43.3126 0.5:01 100.0:00 2.0:03 2.5:06 7.8 0.0313
SNMF  29.3:155 45.2:23 0.4200 100.0:00 1.6:02 2.5:14 7.3 0.0313
NSED  16.0:72 40.3:21 0.3200 69.2:436 2.1:14 1.5z04 9.5 0.0156
ANLS 243122 48.7:05 0.5:01 100.0x00 l.1:01 3.5:03 7.1 0.0313
GNMF  26.4:117 63.2:9.1 33.6:220 100.0:00 3.1:03 3.9:03 4.8 0.0313
GSNMF 45.4:18 63.2:05 23.3208 100.0x00 17. 7249 43244 3.8 0.0313
HPNMF 39.4:57 74.8:1.1 40.0:05 100.0:00 13.1:09 9.7:48 3.1 0.0313
LpNMF 25.7z141 63.1:86 41.1107 100.0:00 4.9:45 3.2:07 5.1 0.0313
HALS  50.3:24 48.8:19 16.9214 89.1x77 8.6:31 4.5x0s5 5.0 0.0156
RSNMF 55.9:1.6 84.9:0.2 46.7:1.9 100.0:0.0 18.0:4.9 14.8:4.1 1.6 --

Table 2: Community discovery results (NMI%+STD%).

AC D1 D2 D3 D4 D5 D6 Ranks p-value
NMF  55.5:111 69.6:18 5.8:10 100.0:00 39.7:00 39.3:13 8.1 0.0313
SNMF  60.1x120 73.5211 7.1202 100.0x00 37.8205 39.0z11 7.6 0.0313
NSED  52.5:59 68.321.1 7.4z06 87.3z150 40.85:09 40.6:21 8.0 0.0156
ANLS  62.7:3.1 77.2:16 7.5:02 100.0:00 40.9:09 43.9:1.1 5.0 0.0313
GNMF  60.6:86 75.8:3.1 11.5:36 100.0z00 40.2:1.3 45.4x00 5.4 0.0313
GSNMF 74.5:07 77.9214 5.5:65 100.0=00 44.8202 46.3:02 4.2 0.0625
HPNMF 72.4:21 79.7:33 6.3:43 100.0:00 46.7:1.8 46.0:44 3.8 0.0938
LpNMF 59.3=100 79.5:35 10.9+3.9 100.0z00 41.9227 40.6:08 5.0 0.0313
HALS  75.726 76.1:27 4921 98.0:14 40.7:27 462:12 6.2 0.0156
RSNMF 87.4:0.6 83.3:1.3 14.6:0.3 100.0:00 44.8:05 47.0x05 1.8 --

Table 3: Community discovery results (AC%+STD%).

4.2 Comparison Results

We compare RSN with baseline and SOTA methods to verify

its superiority in community discovery. The graph regulari-

zation coefficient A is tuned in {1072, 107!, 10%, 10!, 10%, 10°},
and augmentation coefficients, i.e., a, § and 6, are tuned in

{2710,278,276, 274 22 201 and the learning rate # is tuned in

{0.001, 0.005, 0.008, 0.01, 0.02, 0.05}. Average NMI and AC

values are recorded in Tables 2 and 3. We also calculate the

statistical test results in each table, e.g., average Friedman
ranks and p-values with a significance level of a=0.05.
Based on the comparison results, we conclude that:

1) Relaxed symmetry constraints are effective. With the help
of relaxed symmetry constraints, RSN can represent the
symmetry without the degradation of representational ca-
pacity. Results in Tables 2 and 3 show that RSN outper-
forms GNMF on five out of six networks, except that they
both get full marks on the Karate network. The phenomena
tell us that considering the inherent symmetry enables RSN
to achieve more accuracy results. That is to say, the pro-
posed relaxed symmetry constraints are effective.

2) RSN achieves superior accuracy in community discovery.
Higher representational capacity leads to RSN’s better per-
formance on community discovery. Results in Tables 2
and 3 demonstrate that RSN outperforms its peers in most
testing cases, and achieves the highest values across NMI
and AC. Moreover, RSN’s average Friedman rank is al-
ways the lowest among all tested methods, which indicates
its significant superiority in obtaining community discov-
ery accuracy gain. In addition, from the statistical results
of the Wilcoxon signed-rank tests, we conclude that RSN
obtains significantly higher community discovery accu-
racy than baseline and SOTA methods on most testing
cases with a confidence level of 95%.

4.3 Symmetry Study

In this part, we aim to evaluate RSN’s representation learning
ability regarding structural symmetry. To do this, we plot the

1.0 15
0.8 1.2
.06 0@ 09
0.4 ;0.6
0.2 0.3
0.0 00| G : |
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.3 0.6.0.9 1.2 1.5
a, a,
(a) D3 (b) D4

Figurel: Data distribution in low-rank approximations on D3
and D4, where x- and y-axes respectively denote the values of
each symmetric-entry-pair in 4, i.e., d; and dji.
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Figure 2: Convergence curves of RSN on D1-D3.

data distributions of low-rank approximations to Flickr and
Karate networks in Figurel. Naturally, if RSN can learn the
symmetry of a network, its approximation is symmetric and
the data will concentrate along the line y=x. As shown in Fig-
urel, RSN describes the symmetry of target networks approx-
imatively, which certainly indicates that the proposed relaxed
symmetry constraint strategy is effective.

4.4 Convergence Study

Figure 2 plots the convergence curves of RSN on DBLP, Am-
azon, and Flickr networks. From it, we see that the training
curve of RSN converges very fast and arrives at a stationary
state within ten iterations. Hence, the experimental results
support the theoretical conclusion that owing to the help of
the ADMM principle, the developed learning scheme can ef-
ficiently solve the proposed RSN model.

5 Conclusion

A novel RSN approach is proposed in this paper to boost an
NMF-based community discovery model’s representation
learning ability by incorporating the well-designed relaxed
symmetry constraints to capture the inherent network sym-
metry and enlarge the feature space. Moreover, RSN adopts
graph regularization to preserve the local geometric features.
An efficient learning scheme based on the ADMM principle
is developed to solve the model efficiently. Experimental re-
sults on six real networks demonstrate that the RSN-based
community discovery model outperforms the baseline and
SOTA methods. In our future work, we plan to investigate the
adaptation of hyperparameters using intelligent optimization
techniques [Pu et al., 2022; Moya and Ventura, 2025].
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