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SEE: Spherical Embedding Expansion for Improving Deep Metric Learning
(Extended Abstract)∗
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{bmle, swoo}@g.skku.edu

Abstract
The primary goal of deep metric learning is to con-
struct a comprehensive embedding space that can
effectively represent samples originating from both
intra- and inter-classes. Although extensive prior
work has explored diverse metric functions and in-
novative training strategies, much of this work re-
lies on default training data. Consequently, the po-
tential variations inherent within this data remain
largely unexplored, constraining the model’s ro-
bustness to unseen images. In this context, we in-
troduce the Spherical Embedding Expansion (SEE)
method. SEE aims to uncover the latent semantic
variations in training data. Especially, our method
augments the embedding space with synthetic rep-
resentations based on Max-Mahalanobis distribu-
tion (MMD) centers, which maximize the disper-
sion of these synthetic features without increasing
computational costs. We evaluated the efficacy of
SEE on four renowned standard benchmarks for the
image retrieval task. The results demonstrate that
SEE consistently enhances the performance of con-
ventional methods when integrated with them, set-
ting a new benchmark for deep metric learning per-
formance across all settings.

1 Introduction
Learning to create a semantic embedding space that possesses
both discriminative and generalized properties has been ex-
tensively studied across a variety of machine learning tasks.
Such tasks encompass image retrieval [Kim et al., 2019],
face verification [Deng et al., 2019], person re-identification
[Chen et al., 2017], few-shot learning [Qiao et al., 2019],
and representation learning [Grill et al., 2020]. Consequently,
deep metric learning, facilitated by neural networks, has gar-
nered significant attention. Its objective is to learn an effi-
cient embedding space in which semantically similar sample
are pulled close together, while dissimilar ones are pushed far
apart. To this end, various training loss functions, which are
broadly categorized into pair-based and proxy-based meth-
ods, have been proposed.

∗This is an extended abstract of the paper [Le and Woo, 2024]

Figure 1: Motivation of SEE. SEE aims to discover the latent space
of training data by synthesis new embedding vectors (naug = 3)
derived from the nullspace Sd−2

||r|| of a proxy. The synthesize samples
follows the MMD properties that enrich for the representation space,
benefiting for optimization procedure.

In addition to refining the loss function, the development
of sampling strategies is also pivotal in enhancing perfor-
mance. Prevailing methods [Wu et al., 2017] emphasize the
mining of hard samples. However, this often results in a bi-
ased model, as it overlooks the majority of easy samples [Wu
et al., 2017; Zheng et al., 2019]. To address this critical is-
sue, recent research [Duan et al., 2018; Zhao et al., 2018;
Zheng et al., 2019] has suggested the use of generative ad-
versarial networks or autoencoders to synthesize challeng-
ing samples using easy ones. Although promising, these ap-
proaches have drawbacks, such as model size and optimiza-
tion issues. Other studies [Gu and Ko, 2020; Ko and Gu,
2020] have attempted to synthesize these challenging samples
directly from the original embedding, yet they are predomi-
nantly constrained to paired-based techniques.

In this paper, we introduce a novel proxy-based synthe-
sis technique in the embedding space of deep metric learn-
ing, termed as Spherical Embedding Expansion (SEE). As
depicted in Figure 1, given an embedding and its correspond-
ing proxy anchor, our approach initially explores the proxy’s
null space, which is represented as a sphere with a radius of
r. This ensures consistent distances of the synthetic sam-
ples to the anchor. Subsequently, the synthetic embeddings
are generated according to the Max-Mahalanobis distribution
(MMD) mean vectors [Pang et al., 2018] (hereinafter referred

that won the Best Paper Running-Up Award at PAKDD 2024.
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to as MMD centers), allowing for enabling a comprehensive
exploration of the embedding space. Our method is straight-
forward and seamlessly integrates with existing proxy-based
metric learning losses. Notably, implementing our approach
neither alters the embedding network architecture nor impacts
its training speed. Nonetheless, it enhances overall perfor-
mance, especially in scenarios with low-dimensional spaces,
having a large number of classes. Our contributions in this
paper are summarized as follows:

• We propose a novel method that augments the embed-
ding space during training by constructing synthetic fea-
ture points aligned with MMD centers.

• Through seamless integration, SEE improves proxy-
based metric learning losses across numerous backbones
and benchmarks without adding parameters.

• SEE excels at densely navigating embedding space,
significantly boosting performance, particularly in low-
dimensional spaces with datasets that have a large num-
ber of training classes.

2 Methodology
2.1 Preliminary
Consider a deep neural network, denoted as f : D → Z ,
which maps an input data space D to an embedding space Z
belonging to a unit d-dimensional hypersphere Sd−1. Let y ∈
Y = {1, ..., C} be the label of an embedding feature z. We
define a set of normalized proxies as w = {w1, w2, ...wC}
and formulate a general proxies-based loss function for met-
ric learning as follows:

LML = E
(z,y)∼(Z,Y)

ℓ(z|y,w). (1)

In Eq. 1, the normalized softmax loss [Wang et al., 2017]
and its variations [Teh et al., 2020; Deng et al., 2019; Wang et
al., 2018] are widely used as classification loss ℓ due to their
interpretability and performance.

2.2 Spherical Embedding Expansion
Motivation. Our primary purpose of metric learning is to
construct a robust and efficient embedding space for unseen
samples. A common approach is to apply data augmenta-
tion techniques such as Mixup [Zhang et al., 2017]. How-
ever, these techniques require forwarding augmented inputs
to obtain augmented representations. In contrast, we intro-
duce a plug-and-play module, Spherical Embedding Expan-
sion (SEE), which operates in the embedding space Z . This
method facilitates a more efficient augmentation process by
allowing for the forwarding of un-augmented inputs and per-
forming augmentations directly on the output representations.
The conceptual illustration of SEE is provided in Fig. 2. In
fact, the main motivation of our work is to address the follow-
ing requirements:
Given an embedding vector z and its corresponding proxy
wy , how can we efficiently synthesize naug additional embed-
ding vectors z∗i that satisfy the following conditions: (1) The
distances between the synthetic vectors and wy , denoted as
d(y,i), remain unchanged. (2) The distances between any two

Figure 2: A schematic representation of our learning objec-
tive. Left: Training with a constrained dataset can result in under-
represented regions that fuse the representations of two distinct
classes. Middle: SEE enhances intra-class samples, leading to
denser clustering within each class while ensuring distinct separa-
tions between different classes.

synthetic vectors, denoted as d(i,j), are maximized, resulting
in optimal dispersion of synthetic vectors in the space.

The first requirement ensures that the synthetic vectors
maintain similar quality to the original input and do not be-
come outliers, or too close to their proxies. The second con-
dition aims to diversify the distribution of the synthetic vec-
tors in the embedding space, enabling the proxies of other
classes more challenging and pushing those classes further
away from their proxies.

Method. To ensure the first requirement, we define a
||r||-radius (d − 1)-dimensional hypersphere as: Sd−2

||r|| =

{µ|µ ⊥ wy ∧ ||µ|| = ||r||}, where r = z−⟨wy, z⟩ ·wy . This
space Sd−2

||r|| represents the null space of wy , and r is the pro-
jection of z onto this defined null space. As a result, for any
µ ∈ Sd−2

||r|| , a synthetic vector formed by z∗ = ⟨wy, z⟩·wy+µ

will satisfy d(y, i) = dy . In practice, basis of this space
can be constructed using Gram–Schmidt process. To gen-
erate a set of synthetic vectors z∗, one approach is to ran-
domly sample naug vectors µ from the hyper-spherical space
Sd−2

||r|| and translate them to z∗. However, randomly sampling
naug vectors when naug ≪ d may not efficiently utilize the
space. Conversely, if we choose a large value of naug, it will
scale up the mini-batch size and affect computational effi-
ciency. Hence, to fully utilize the space Sd−2

||r|| while main-
taining efficiency, we need to satisfy the second requirement.
This requirement aims to maximize the distance between any
two synthetic vectors and achieve optimal dispersion in the
embedding space. Inspired by the above analysis, we pro-
pose the Max-Mahalanobis center sampling method to in-
duce high-density regions in the hyper-spherical space Sd−2

||r|| ,
where the MMD [Pang et al., 2018] is a mixture of Gaussian
distributions with an identity covariance matrix and K preset
centers denoted as µ∗ = {µ∗

j}[K]. The MMD centers are cre-
ated based on the criterion µ∗ = argminµ maxi̸=j⟨µi, µj⟩.
This criterion aims to maximize the smallest angle between
any two centers, resulting in the most dispersion of the centers
across the entire hyper-spherical space [Pang et al., 2018].
Previous work [Pang et al., 2018] introduced a fixed set of
µ∗. However, in our case, the centers vary depending on
r = µ∗

1, which is the image of z in the defined null space as
illustrated in Figure 1. Additionally, the set of centers must
satisfy the constraint µ∗

i ⊥ wy . To overcome this challenge,
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Figure 3: Illustration of feature point generation. For illustration,
we depict hypersphere Sd−2

||r|| as a orange circle.

we propose a novel algorithm outlined in Alg. 1 to gener-
ate optimal expanded vectors following the centers of MMD
within the constrained space Sd−2

||r|| . The main difference be-
tween Alg. 1 and the GenerateOptMeans algorithm in [Pang
et al., 2018] are the initialization of µ∗

1 = r/||r|| vs. µ∗
1 = e1

(one-hot vector), and subsequent MMD centers formalized in
lines 2nd − 5th. By using Alg. 1, one can easily prove that
the set {µ∗

i }naug+1 are MMD centers, i.e.,

µ∗T
i µ∗

j =

{
1, i = j
−1/naug, i ̸= j

, (2)

but they are more flexible than [Pang et al., 2018] in terms
of initialization of µ∗

1. Hence, the GenerateOptMeans algo-
rithm in [Pang et al., 2018] is solely used as a regulariza-
tion and inapplicable to synthesize new embedding vectors
in our case. Consequently, the optimal sampled vectors, as
shown in Figure 3, are produced as (line 6th of Alg. 1):
z∗i = ⟨wy, z⟩ · wy + ||r|| · µ∗

i .
Although the synthetic embedding vectors can diversity

its metric space, early applying the expansion can hin-
der model’s optimization. Inspired by curriculum training
scheme [Bengio et al., 2009; Huang et al., 2020], we se-
lectively apply our method on top-k embedding vector z’s
such that its dy in top-k smallest in one mini-batch, denoted
as Mk, where k is monotonously increasing after epochs.
Therefore, at epoch tth, we have the loss function for syn-
thetic vectors as follows:

LSEE = E
(z,y)∼(Z,Y),dy∈Mk

[∑
naug

ℓ(z∗i |y,w)
]
. (3)

Overall Objective. Although our approach can help learn-
ing model to be more robust by diversely and optimally ex-
ploring the embedding space, it is important to note that a
metric learning loss still play crucial roles as it utilizes the
ground-truth labels for supervised training. The overall train-
ing loss for our proposed approach is formulated as follows:

L = LML + λLSEE, (4)

where λ is a hyper-parameter that balances the contribution of
the original embedding and the synthetic vectors. It is impor-
tant to note that our proposed approach does not require any

Algorithm 1 Generate optimal synthetic samples following
MMD centers.
Require: Embedding vector z and its corresponding proxy

vector wy in Sd−1; number of expansion samples naug.
1: Initialization: Let r = z − ⟨wy, z⟩ · wy , V =

{v0, v1, ..., vnaug+1}, in which v0 = wy , v1 = r/||r||, and
vi>1 are normalized vectors generated by Gram–Schmidt
process sequentially. Let µ∗

1 = v1.
2: for k = 2 to naug + 1 do
3: µ∗

k =
∑k

i=1 αkivi, where

4:


αk1 = −1/naug

αkj = −
(
1 + naug ·

∑j−1
i=1 αkiαji

)
/ (naug · αjj)

αkk =
√

1−
∑k−1

i=1 α2
ki

5: end for
6: Return {z∗k = ⟨wy, z⟩ · wy + ||r|| · µ∗

k}k∈2,...,naug+1.

modification to the loss function. It can be used as a plug-
and-play module in the training process, introducing negligi-
ble computational cost.

Discussion Incorporating SEE into a deep metric model
yields two pronounced effects. Fostering a more generalized
model by comprehensively exploring of under-represented
regions; and pushing negative anchors by creating hard nega-
tive samples. Specifically, taking the normalized softmax loss
in Eq. 1 as a simple example, we rewrite it as:

ℓ(z|y,w) = τSoftplus [LSEj ̸=y(dy − dj)/τ ] , (5)

where ϵ ≥ 0, and dj represents the distance between z and
the proxy wj , such as dj = −⟨wj , z⟩ = − cos θj , and
Softplus(x) = log(ϵ + ex). As illustrated in Figure 3, the
synthetic feature points z∗i maintain consistent distances to
their respective proxy anchors; that is, all dys are identical.
Furthermore, the Log-Sum-Exp (LSE) function serves as a
smooth approximation to the maximum function [Nielsen and
Sun, 2016]. Thus, our SEE is adept at effectively pushing the
most challenging negative anchors (represented by the small-
est dj) with every synthetic feature point.

3 Experiments
3.1 Settings
We use the following four popular benchmark datasets for
evaluateing our method: 1) CUB-200-2011 (CUB)[Wah et
al., 2011], 2) Cars-196 (Cars) [Krause et al., 2013], 3) Stan-
ford Online Product (SOP) [Oh Song et al., 2016] , 4) In-
shop Clothes Retrieval (In-Shop) [Liu et al., 2016]. We uti-
lize the Recall@k as experimental evalution metric. Regard-
ing backbones, we adopt ResNet50 [He et al., 2016] (R) with
an embedding size of d = 512 and three versions of vision
transformer architecture: DeiT-S [Touvron et al., 2021a] (D),
DINO [Caron et al., 2021] (DN), and ViT-S [Dosovitskiy
et al., 2020] (V), each with embedding sizes d = 128 and
d = 384. These models are optimized with AdamW opti-
mizer [Loshchilov and Hutter, 2017] and a learning rate of
10−5 for ViT-S and DeiT-S, and 5× 10−6 for DINO models.
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Methods Arch.
CUB Cars SOP In-Shop

R@1 R@2 R@4 R@1 R@2 R@4 R@1 R@10 R@100 R@1 R@10 R@20
Backbone architecture: CNN
NSoftmax [Zhai and Wu, 2018] R128 56.5 69.6 79.9 81.6 88.7 93.4 75.2 88.7 95.2 86.6 96.8 97.8
MIC [Roth et al., 2019] R128 66.1 76.8 85.6 82.6 89.1 93.2 77.2 89.4 94.6 88.2 97.0 -
XBM [Wang et al., 2020] R128 - - - - - - 80.6 91.6 96.2 91.3 97.8 98.4
XBM [Wang et al., 2020] B512 65.8 75.9 84.0 82.0 88.7 93.1 79.5 90.8 96.1 89.9 97.6 98.4
HTL [Ge, 2018] B512 57.1 68.8 78.7 81.4 88.0 92.7 74.8 88.3 94.8 80.9 94.3 95.8
MS [Wang et al., 2019] B512 65.7 77.0 86.3 84.1 90.4 94.0 78.2 90.5 96.0 89.7 97.9 98.5
SoftTriple [Qian et al., 2019] B512 65.4 76.4 84.5 84.5 90.7 94.5 78.6 86.6 91.8 - - -
PA [Kim et al., 2020] B512 68.4 79.2 86.8 86.1 91.7 95.0 79.1 90.8 96.2 91.5 98.1 98.8
NSoftmax [Zhai and Wu, 2018] R512 61.3 73.9 83.5 84.2 90.4 94.4 78.2 90.6 96.2 86.6 97.5 98.4
†ProxyNCA++ [Teh et al., 2020] R512 69.0 79.8 87.3 86.5 92.5 95.7 80.7 92.0 96.7 90.4 98.1 98.8
Hyp [Ermolov et al., 2022] R512 65.5 76.2 84.9 81.9 88.8 93.1 79.9 91.5 96.5 90.1 98.0 98.7
SEE (ours) R512 69.3 79.0 87.3 88.5 93.4 95.9 80.3 91.5 96.5 92.8 98.3 98.8
Backbone architecture: ViT
IRTR [El-Nouby et al., 2021] De128 72.6 81.9 88.7 - - - 83.4 93.0 97.0 91.1 98.1 98.6
Hyp [Ermolov et al., 2022] De128 74.7 84.5 90.1 82.1 89.1 93.4 83.0 93.4 97.5 90.9 97.9 98.6
SEE (ours) De128 75.1 84.1 90.1 85.2 91.5 94.8 83.0 93.1 97.2 91.2 98.0 98.6
Hyp [Ermolov et al., 2022] DN128 78.3 86.0 91.2 86.0 91.9 95.2 84.6 94.1 97.7 92.6 98.4 99.0
SEE (ours) DN128 78.8 86.5 91.6 89.0 93.6 96.3 84.8 94.1 97.5 92.6 98.6 99.0
Hyp [Ermolov et al., 2022] V128 84.0 90.2 94.2 82.7 89.7 93.9 85.5 94.9 98.1 92.7 98.4 98.9
SEE (ours) V128 84.1 90.2 93.5 86.8 91.7 95.1 85.9 94.7 97.9 92.8 98.6 99.1
IRTR [El-Nouby et al., 2021] De384 76.6 85.0 91.1 - - - 84.2 93.7 97.3 91.9 98.1 98.9
DeiT-S [Touvron et al., 2021b] De384 70.6 81.3 88.7 52.8 65.1 76.2 58.3 73.9 85.9 37.9 64.7 72.1
Hyp [Ermolov et al., 2022] De384 77.8 86.6 91.9 86.4 92.2 95.5 83.3 93.5 97.4 90.5 97.8 98.5
SEE (ours) De384 78.3 86.5 91.9 88.8 93.7 96.3 83.6 93.4 97.4 91.7 98.1 98.7
DNO [Caron et al., 2021] DN384 70.8 81.1 88.8 42.9 53.9 64.2 63.4 78.1 88.3 46.1 71.1 77.5
Hyp [Ermolov et al., 2022] DN384 80.9 87.6 92.4 89.2 94.1 96.7 85.1 94.4 97.8 92.4 98.4 98.9
SEE (ours) DN384 81.9 88.8 92.9 91.5 95.2 97.3 85.5 94.6 97.9 93.0 98.5 99.1
ViT-S [Krause et al., 2013] V384 83.1 90.4 94.4 47.8 60.2 72.2 62.1 77.7 89.0 43.2 70.2 76.7
Hyp [Ermolov et al., 2022] V384 85.6 91.4 94.8 86.5 92.1 95.3 85.9 94.9 98.1 92.5 98.3 98.8
SEE (ours) V384 85.8 91.4 94.6 88.8 93.8 96.4 86.3 95.0 98.2 93.2 98.6 99.1

Table 1: Performance of metric learning methods on the four datasets.

3.2 Results
Our experimental findings, as presented in Table 1, under-
score the effectiveness of our proposed methodology. When
compared with other CNN-based techniques, our approach,
utilizing ResNet50 as the backbone, consistently outperforms
competitors across multiple datasets, with the exception of
SOP. Comparing to methods like ProxyNCA++ [Teh et al.,
2020] which employs a more expansive input size, or XBM
[Wang et al., 2020] which leverages an extensive memory
bank to augment their training process, our method still sur-
passes them in most datasets. In the context of ViT-based ex-
periments, our proposed methodology exhibits a discernible
advantage over competing baselines, particularly with respect
to R@1 scores, spanning various embedding dimensions.
Furthermore, even on challenging datasets such as SOP or
In-shop, our technique continues to demonstrate marked im-
provements, even at small dimensions like 128 and 384.

For the flexibility of our proposed synthesis method, we
demonstrate the enhancements achieved when applying it to
various proxy-based metric learning losses, specifically when
integrated with CNN-based architectures. The detailed re-
sults are presented in Table 2. As evident from the table, our
synthesis approach consistently enhances performance across
different proxy-based losses, achieving up to a 1.8% improve-
ment in Recall@1 accuracy. Furthermore, this enhancement
persists even as we increase the number of neighbors k.

For more details on the empirical analyses, please see our
Supplementary Material and [Le and Woo, 2024].

Method Arch. R@1 R@2 R@4 R@8 R@16
NSoftmax [Zhai and Wu, 2018] R512 84.2 90.4 94.4 96.9 -
NSoftmax+SEE R512 86.5 92.0 95.4 97.4 98.7
CosFace [Wang et al., 2018] R512 86.9 92.3 95.3 97.4 98.6
CosFace+SEE R512 87.1 92.5 95.4 97.5 98.7
ArcFace [Deng et al., 2019] R512 86.8 92.1 95.3 97.3 98.7
ArcFace+SEE R512 87.6 92.8 95.9 97.6 98.7
†ProxyNCA++ [Teh et al., 2020] R512 86.5 92.5 95.7 97.7 -
†ProxyNCA++ +SEE R512 88.3 93.4 96.4 98.0 99.0
PA [Kim et al., 2020] B512 86.1 91.7 95.0 97.0 98.3
PA+SEE B512 86.2 91.9 95.2 97.2 98.4
PA [Kim et al., 2020] R512 87.7 92.7 95.5 97.3 98.4
PA+SEE R512 88.5 93.4 95.9 97.5 98.8

Table 2: Recall@k for proxy-based losses integrated with our
SEE.

4 Conclusions

In this work, we have introduced a spherical embedding ex-
pansion technique for augmentation within the embedding
space, designed to complement existing proxy-based met-
ric learning losses. Within this space, we augment a sam-
ple around its anchor by adhering to the MMD centers situ-
ated within the anchor’s nullspace, thereby ensuring a thor-
ough exploration. Our proposed method is streamlined and
straightforward, obviating the need to modify model archi-
tecture or incur computational overhead. Empirical results
reveal that our approach considerably enhances the efficacy
of established proxy-based losses across a range of model ar-
chitectures and benchmark datasets.
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