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Abstract

Large Language Models (LLMs) excel at gener-
ating content at impeccable speeds. However,
they are imperfect and still make various mis-
takes. In Computer Science education, as LLMs
are widely recognized as “Al pair programmers,”’
it becomes increasingly important to train stu-
dents on evaluating and debugging LLM-generated
codes. In this work, we introduce HYPOCOM-
PASS, a novel system to facilitate deliberate prac-
tice on debugging, where human novices play the
role of Teaching Assistants and help LLM-powered
teachable agents debug code. We enable effec-
tive task delegation between students and LLMs
in this learning-by-teaching environment: students
focus on hypothesizing the cause of code errors,
while adjacent skills like code completion are of-
floaded to LLM-agents. Our evaluations demon-
strate that HYPOCOMPASS generates high-quality
training materials (e.g., bugs and fixes), outper-
forming human counterparts fourfold in efficiency,
and significantly improves student performance on
debugging by 12% in the pre-to-post test.

1 Introduction

LLMs are becoming integral to software development —
commercialized tools like GitHub Copilot are advertised as
“your Al pair programmer” and generate up to 46% of users’
code [Dohmke, 2023]. Despite their prevalence, LLMs of-
ten produce unpredictable mistakes [Ganguli et al., 2022],
e.g., GPT-4 can still make mistakes 17% of the time in
coding tasks for introductory and intermediate programming
courses [Savelka er al., 2023]. The impressive yet imperfect
generative capabilities of LLMs, coupled with the associated
risks of excessive reliance on these models, underscore the
importance of teaching students evaluation, or debugging and
testing skills [Becker et al., 2023] for programming.
However, debugging tends to be overlooked in curricula,
especially in introductory Computer Science classes (i.e.,
CS1) [News, 2014], as instructors have limited time budget
for developing specialized debugging materials and assess-
ments [McCauley et al., 2008]. Consequently, students invest
substantial time and effort in hypothesizing the cause of bugs

while grappling with other cognitively demanding tasks, such
as understanding and writing code. These challenges prompt
us to ask:

Research Question: Can we train students to improve de-
bugging skills by providing explicit and scaffolded practice
with minimal cost to instructor time?

In this work!, we focus on training students’ abilities in
hypothesis construction, a critical step in debugging as estab-
lished by prior work [Xu and Rajlich, 2004; Zeller, 2009].
We introduce HYPOCOMPASS (Figure 1), a LLM-augmented
intelligent tutoring system for debugging. We have LLMs im-
itate CS1 students who have written buggy codes, and human
novice students assume the role of Teaching Assistants (TAs).
This enables students to deliberately practice the skill of &y-
pothesizing about the defects of LLM-generated code, dele-
gating other tasks not core to hypothesis construction (e.g.,
code completion) to the LLM. As a result, HYPOCOMPASS
fosters engaging learning using the feachable agent frame-
work [Blair et al., 2007] and provides students with guided
exposure to LLM-generated bugs. We also employ strategies
such as task formation and over-generate-then-select to im-
prove LLM generation quality (Section 2.1).

We conducted two evaluation studies and found that
HYPOCOMPASS saves instructors’ time in material genera-
tion and is beneficial to student learning. In our LLM eval-
uation (Section 3), HYPOCOMPASS achieved a 90% success
rate in generating and validating a complete set of materials,
four times faster than human generation. Our learning eval-
uation with 19 novices (Section 4) showed that HyPOCOM-
PASS significantly improved students’ pre-to-post test perfor-
mance by 12% and decreased their completion time by 14%.

In summary, we contribute:

e A pragmatic solution that balances the benefits and risks
of LLMs in learning. We prepare students to engage with
imperfect LLMs, and we highlight the importance of role-
playing for practical LLM application and fask delegation
to help students focus on essential skills.

* A theoretically grounded instructional design for debug-
ging. To the best of our knowledge, we are the first to
provide aligned instruction and assessment on hypothesis
construction — forming hypotheses about the source of er-
ror, a core bottleneck in debugging [Whalley et al., 2021].

'Original Paper: [Ma et al., 2024]


https://doi.org/10.1007/978-3-031-64302-6_19

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Problem: first_num_greater_than Q

Write a Python function first_num_greater_than(numbers_list, key) that takes a Add Test Case:

Test Suite Development @

Office Hour Queue
There are several students waiting for your help, please
click to start chatting with them.

list of integers (numbers_list) and an integer key (key), and returns the first
number in the list that is greater than the key. If there is no number greater
than the key, then you should return None.

nput

+

Now you are chatting with a student. Please explain to them why their Add Test Group:

code is wrong by selecting the right explanation from the list. If you are
right, the student will fix their code accordingly!

Student's Current Code ®

def first num_greater_than(numbers_list, key):

Enter test group name

Your Test Cases

Default Group

for i in range(len(numbers_list)):
if numbers_list[i] > key: (11,2, 31, 2) 3)

4 return numbers_list[i]

return None

View Code Differences G

for i in range(len(numbers_lis

031, 1) 2)

for i in range(len(numbers_lis

if numbers_list(i) > key:
return numbers_list[i]
else: return

if numbers_list(i] > key: (13, 2, 11, 3) None)
return numbers_list(i]

return

2. Key in middle of list

(3, 2, 11, 2) 3)

Expected output

assert(first_num_greater_than

(f£irst_num_greater_than

1. No number in list greater than key

assert(first_num_greater_than

ert(first_num_greater_than

@ Bob: Start helping G

ap @

Office Hour!
Passed? Actual Output

Consider this test case: given input [1, 2, 3], 2, itis

supposed to outputs 3, however, the actual behavior is
unexpected as the program outputs None

v 3 PN, Ok, I see my code got this test case wrong. Could you
delete 5" explain what's wrong with my code?

Your code returns None if the first number in the list is not
greater than the key. It doesn't check the rest of the w
delete numbers in the list

-~ | see! I've moved the 'return None' statement outside
5 ofthe for loop. Is it good now?
Delete Group

Is the student correct?
v None

delete O e

Your code returns None if the first number in the list is not...

Delete Group All of your test cases passed.

delete

Figure 1: In HYPOCOMPASS, given a problem description (A), a student user (in the role of a Teaching Assistant) needs to compile a test
suite (B) and assist multiple LLM-simulated agents (e.g., Bob, Chelsea, Dave) in an Office Hour Queue (C) through a chat interface (E). Each
LLM-agent acts as a novice seeking help with a buggy solution (D) and provides feedback to the user (F).

2 The Design of HYPOCOMPASS

Grounded in the cognitive process [Xu and Rajlich, 2004] and
the novice-expert difference in hypothesis-driven debugging
[Edwards and Shams, 2014], we specify two crucial learning
components for HYPOCOMPASS: comprehensive and accu-
rate hypothesis construction. Prior work shows that hypoth-
esis construction is closely connected with testing [Zeller,
2009]: each additional test case should, ideally, be a hypoth-
esis about what can go wrong in the program. In turn, a com-
prehensive test suite (i.e., a set of test cases) should allow an
effective debugger to construct a accurate hypothesis about
why the program is wrong. We thus design toward two learn-
ing objectives (Figure 2A,D):
LO1 Comprehensive Hypothesis Construction: Construct
a comprehensive test suite that well covers the possible
errors for the given problem.

LO2 Accurate Hypothesis Construction: Given the failed
test cases, construct an accurate explanation of how the
program is wrong.

Interface and Key Components. Inthe HYPOCOMPASS in-
terface (Figure 1), a human student would be asked to play
the role of a TA where they help an LLM-simulated student
(LLM-agent) in debugging. They begin by constructing test
suites that represent different hypotheses about possible bugs,
and then use these to help each agent debug code via a dialog
interface. Each agent presents a buggy code snippet; students
provide tests and select from candidate explanations. If cor-
rect, the LLM-agent revises the code and provides feedback;
if incorrect, the agent highlights the mismatch to prompt re-

flection. Once all bugs are fixed, students move on to the next

agent. A typical session includes two programming prob-

lems, each with three buggy agents.
We emphasize two core interaction components:

* Role-play with imperfect LLMs. LLMs act as novice
students submitting buggy code, while human learners as-
sist them. This teachable agent setup encourages reflec-
tion, builds confidence, and more importantly provides
guided exposure to realistic LLM errors [Shahriar and
Matsuda, 2023; Blair et al., 2007].

* Focused task delegation. Students concentrate on hy-
pothesis construction —completing test suites (LO1) and
mapping explanations to bugs (LO2) — while LLMs han-
dle code generation, scaffolding, and feedback. This sepa-
ration supports deliberate, guided practice on the learning
objectives, and align student interaction flow with the cog-
nitive model [Xu and Rajlich, 2004] (Figure 2B, Cy).

2.1 LLM Integration

We use LLM to generate five types of materials: (1) test case
category hints, (2) test case hints, (3) buggy programs, (4)
explanations of bugs, and (5) programs with bugs fixed. We
reduce instructor workload by generating practices using just
a problem description, a reference solution, and a test suite
with about 10 inputs, and we further minimize human veri-
fication overhead with optimized prompts and automated al-
gorithms (example prompts in Section 2.1)>. Below are key
factors to the success of generation:

2Full prompts and parameters are in Supplements.
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Figure 2: To enable deliberate practice, we establish a close mapping between the (A) learning objectives, (B) the cognitive debugging process
model, (C) the HYPOCOMPASS interaction flow, and (D) the primary tasks students perform in HYPOCOMPASS. We offload various material

generation tasks to LLMs (Ca2).

Task Formation and Decomposition. To align LLM be-
havior with intended tasks [Xie et al., 2023], we reformulate
prompts to improve reliability. For instance, instead of ask-
ing for local bug fixes — which often leads to over-correcting
multiple bugs in one go — we reframe it as a code translation
task (o1ld — new snippet), reducing over-fix errors by
70%. For complex tasks like local bug fixing, we use LLM-
chains [Wu er al., 2022] to break tasks into smaller, stable
steps. We also use hierarchical prompt design, prioritizing
core requirements (e.g., bug identification) over secondary
ones (e.g., word limits), improving success rates by 40%.

Over-Generate-then-Select. LLMs can generate diverse
outputs, but ensuring pedagogical value requires careful se-
lection. For example, it is hard to enforce LLMs to generate
behaviorally distinct bugs through prompting, as it requires
LLMs to “know” bug behaviors. Nonetheless, we can over-
generate multiple solutions with mixed qualities [MacNeil et
al., 2022], and then select a subset of desired ones as follows:
1. We over-generate codes, discard correct ones, and select a
diverse subset based on maximum Euclidean distance on
error vectors.

2. We select distractor explanations and feedback by finding
buggy codes with behaviors closest to the target (smallest
Euclidean distance) and using their explanations.

3. We cluster over-generated test cases using hierarchical ag-
glomerative clustering [Lukasova, 1979] to select mean-
ingful test category hints.

Human-in-the-Loop Verification. To avoid error propaga-
tion in sequential generation, we include human verification
at each step from buggy code to explanations. Editing times
and verification details are in [Ma et al., 2024].

3 LLM Evaluation: Efficiency and Quality

We evaluated the generations on six different problems from
prior work [Dakhel er al., 2023] and our own problems (de-
tailed in Table 4 in Supplements). On average, for each prob-
lem, we generated 3 test category hints, 10 test case hints, 24

buggy programs, explanation and fix instructions, and 33 bug
fixes. The total number, success rates, and success criteria are
summarized in [Ma et al., 2024].

Method. Two authors annotated 10% of the generations at
each step individually, and discussed to resolve the disagree-
ment and update the codebook. An external instructor anno-
tated the same 10% of LLM-generated materials, using the
updated codebook. We calculated the inter-rater reliability
(IRR) between the external instructor and the resolved an-
notation among the two authors using percent IRR and Co-
hen’s Kappa. The agreements are satisfactory across differ-
ent model generations (IRR% > 90% and x > 0.75). One
author annotated the rest of the materials to calculate the suc-
cess rates. We log the verification and editing fime, as proxies
to the instructor overhead.

To compare LLM and human generations, we recruited two
experienced CS TAs to each create practice materials. Each
TA received the same input as LLMs, was asked to produce
one set of materials matching the amount of content LLMs
produced, and was compensated for their time.

Result: Efficient and High-Quality Generation. We
achieve high-quality generation: a complete set of practice
materials with 9 buggy programs (3 for practice and 6 more
as distractors), 9 bug explanations, 9 bug fixes, 10 test case
hints, and 3 test category hints can be generated with a 90%
success rate and only takes 15 minutes to label and edit. As
we over-generate and automatically select buggy code, a suc-
cess rate over 50% is reasonable for practical use.
Employing LLMs can also be significantly more efficient.
In total, a TA spent around 60 minutes to generate one set
of practice materials for HYPOCOMPASS. One TA noted the
difficulty in consistently creating unique and high-quality ma-
terials after 30 minutes: “the importance of the bug I cre-
ate would start to decline.” The same author evaluated the
TAs’ generations using the annotation codebook, which had
a 100% success rate and took 11 minutes. The time spent to
generate and edit instructional materials for HYPOCOMPASS
using LLMs was 4.67 times less than that of the human TAs.
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Material | Generation goal | Temp.
Bug expl. & fixinstruct. | To describe each unique bug and write a fix. If there are multiple bugs in the code, generate explanations and fixes separately. | 0.3
[User] Hi, I'm a student in your class. I’'m having trouble with this problem in the programming assignment:
{problem.description} Here’s my buggy code: {buggy.code} What’s wrong with my code? List all the unique
bugs included, but do not make up bugs. For each point, put in the format of: {explanation: accurate
and concise explanation of what the code does and what the bug is, for a novice, fix: how to fix the bug,
within 30 words}
Only return the bullet list. Do not write any other text or code.
Bug fix | To edit the buggy code according to the fix instruction, w/o over- or under- fix. | 0.3
[User] Original code: {buggy.code}; Code modification: {explanation}; Translate the statement into actual,
minimal code change in this format:
{original code snippet: ""copy the lines of code that need editing""
—> edited code snippet: ""write the edited code snippet""}
[LLM ] {old to new snippet in JSON, e.g., numbers_list[i] <= key - numbers_list[i] > key }
[User] 0ld Code:{buggy-code}; Instruction:{Old snippet to new snippet}; New Code:

Table 1: Prompts and temperatures (Temp.) for generating bug explanations, and fixes.

4 Learning Evaluation: Pre- / Post-Test Study

Can novices better formulate hypotheses after engaging with
HyPoCoMPASS? We conducted a learning evaluation with
19 students and compared the difference in speed and perfor-
mance from the pre-test to the post-test.

Method: Study Procedure and Participants. We con-
ducted a one-hour study with 19 students from four U.S. in-
stitutions (12 females; 8 non-native English speakers; aver-
age age 20.7). After a screening exercise to ensure a suitable
skill range, participants completed a pre-survey, a 20-minute
pre-test, interacted with HYPOCOMPASS on two debugging
problems, then took a 20-minute post-test and a final survey.
One problem was reused from the pre-test to control for com-
prehension. Participants received a $15 gift card.

Quantitative Result: Learning Gains. A two-tailed
paired t-test showed that students’ pre-test to post-test scores
significantly improved by 11.7% (p = 0.033 < 0.05), and
the time of completion significantly reduced by 13.6% (p =
0.003), indicating success in learning through HYPOCOM-
PASS. Note that the bugs used in pre-post tests are gener-
ated by humans and are not the same as in HYPOCOMPASS.
As such, the significant learning gains indicate that students
could learn debugging skills transferable to real-world bugs.

Where does the learning gain come from? We break down
the analyses by learning objectives. We found a small 6.1%
improvement in the score and a large 23.6% time reduction
for comprehensive hypothesis construction (LO1), and a large
15.8% improvement in the score and a small 9.0% time reduc-
tion for accurate hypothesis construction (LO2). Therefore,
students showed more efficiency enhancement in LO1, and
more learning gains in LO2. Note that these improvements
may confound with problem difficulty, as the items corre-
sponding to LO1 (pre-test u = 54%) seem easier than the
ones for LO2 (pre-test y = 38%).

Qualitative Result: Student Perceptions. We further un-
pack how HYPOCOMPASS contributed to learning by analyz-
ing the survey responses. Students valued being able to of-
fload some debugging subtasks to HYPOCOMPASS, such as
writing code and explanations. For example, S1 said “/ook-
ing at the test behavior and the explanation options really
helps relieve that burden.” Students also generally felt that
the LLM-generated bugs and fixes were authentic. Most par-

ticipants could not tell if their practiced programs were writ-
ten by students or Al because of their experiences making or
seeing similar mistakes from peers.

Moreover, students reported that HYPOCOMPASS was
engaging and helped build confidence in debugging. A
Wilcoxon signed-rank test shows a significant increase in
self-rated confidence in debugging by 15% (p = 0.007).
Students rated HYPOCOMPASS as significantly more engag-
ing (6.0 out of 7), fun (6.0), and less frustrating (2.5) than
their conventional way of learning debugging and testing
(p < 0.005 for each). S8 especially liked the teachable agent
setup: “the role play just feels more natural because it feels
like explaining to a rubber duck instead of talking to myself”.

5 Discussion

Teachable Agent for Appropriate Reliance with Imper-
fect Als. Our work illustrates a scenario in which LLM-
generated bugs are not seen as problems but rather as fea-
tures. HYPOCOMPASS’s teachable agent setup provides stu-
dents with moderated exposure to imperfect LLMs, and may
help them learn that LLMs are fallible and calibrate trust ac-
cordingly. Future iterations could remove material validation
and allow direct exposure to unfiltered LLM mistakes in real-
time interactions, taking full advantage of the teachable agent
framework. Students will naturally expect that the LLM-
agent seeking help may make mistakes (e.g., fail to follow
bug-fixing explanations). This approach, however, requires a
more sophisticated design for scaffolding students in recog-
nizing LLM errors.

Task Delegation for Shifting Learning Focus. Our explo-
ration lays the foundation for a paradigm shift toward cul-
tivating higher-order evaluation skills in the generative Al
era. Essentially, we asked: what skills should we offload, and
what should we learn? Most students in our study appreciated
offloading subtasks to LLM (Section 4); however, some need
more scaffolds, while others prefer less. Future research can
investigate more personalized task delegation. For example,
students who need more help can use LLMs to facilitate code
tracing, and students can also write their own explanations
for bugs based on their proficiency. Deciding the bare mini-
mum programming skills and human-AI collaboration skills
to teach also warrants further exploration [Ma et al., 2023].
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