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Abstract

Algorithmic fairness is a critical challenge in build-
ing trustworthy Machine Learning (ML) mod-
els. ML classifiers strive to make predictions
that closely match real-world observations (ground
truth). However, if the ground truth data itself
reflects biases against certain sub-populations, a
dilemma arises: prioritize fairness and potentially
reduce accuracy, or emphasize accuracy at the ex-
pense of fairness. This work proposes a novel train-
ing framework that goes beyond achieving high ac-
curacy. Our framework trains a classifier to not
only deliver optimal predictions but also to identify
potential fairness risks associated with each predic-
tion. To do so, we specify a dual-labeling strategy
where the second label contains a per-prediction
fairness evaluation, referred to as an unfairness
risk evaluation. In addition, we identify a sub-
set of samples as highly vulnerable to group-unfair
classifiers. Our experiments demonstrate that our
classifiers attain optimal accuracy levels on both
the Adult-Census-Income and Compas-Recidivism
datasets. Moreover, they identify unfair predictions
with nearly 75% accuracy at the cost of expanding
the size of the classifier by 45%.

1 Introduction
Machine learning (ML) systems are increasingly pervasive,
playing a crucial role in diverse applications like predictive
maintenance, autonomous driving, and extending into sen-
sitive domains such as judicial and medical fields [Dressel
and Farid2018, Chen et al.2019, Cohen et al.2020, Ghassemi
et al.2014]. This broad impact underscores the importance
of fair predictions, especially given the biases in historical
data [Falletti2023, Mittelstadt et al.2016, Fabris et al.2022].

Examples like biased skin condition diagnostic tools lead-
ing to misdiagnoses for minorities [Seyyed-Kalantari et
al.2021, Wen et al.2022] and unfair recidivism risk predic-
tion algorithms [Dressel and Farid2018] highlight the deep

∗Published at the European Conference on Artificial Intelligence
ECAI-2024 [Bendoukha et al.2024]

implications of this issue. Regulatory efforts like the EU AI
Act aim to address these concerns.

Several works [Chouldechova2016, Kamiran and
Calders2011, Feldman et al.2015, Fish et al.2016, Zafar
et al.2017,Bendoukha et al.2025] show that ensuring fairness
in supervised learning is often framed as a trade-off between
considering a fair representation or an accurate one, in terms
of proximity to ground-truth observations. An accurate clas-
sifier learns from historical records, generalizing observed
statistical patterns to unseen data. However, if these patterns
involve many discriminatory records, the classifier will adopt
this biased behaviour. Achieving fair training often requires
learning an alternative representation of data, generated
via pre-processing techniques to remove biases [Kamiran
and Calders2011, Chouldechova2016, He et al.2019, Xu et
al.2018]. This alternative representation does not perfectly
mirror reality. Consequently, this distributional drift will
inevitably degrade the utility of a classifier trained on this
alternative fair representation.

This work introduces FairCognizer [Bendoukha et
al.2024], a dual-objective classifier learning both accurate
and fair representations, providing an unfairness risk assess-
ment for each prediction. Our contributions are threefold:
(1) the FairCognizer framework for learning dual labels,
(2) a novel sample-level unfairness risk measure to identify
”vulnerable” records, and (3) experimental validation on
Adult and Compas demonstrating maintained accuracy
(86% and 68%) with fairness insights, at a 45% model
size increase. This extended abstract of the original paper
essentially presents the first contribution.

2 Background

We briefly review the essential concepts for our approach.

Multi-output learning Unlike traditional single-label clas-
sification, multi-output classification predicts multiple out-
puts simultaneously from the same input features. The learn-
ing process requires data samples to be labeled accordingly.
That is, D = {(x1, y

(1)
1 , . . . , y

(k)
1 ), . . . , (xn, y

(1)
n , . . . , y

(k)
n )}

and the optimization is performed on the loss of every output
and the corresponding label, as such, at each learning itera-
tion t :
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Lj(θ) =
1

|B|
∑
xi∈B

L(xi, y
(j)
i , θt) ∀j ∈ {1, · · · , k}

and θt+1 = argminθ L(θ) =
1

k

k∑
j=1

Lj(θ
t)

For convex loss functions, a common approach for opti-
mization is to use Stochastic Gradient Descent (SGD). This
iterative algorithm processes the data in batches (B ⊂ D)
and updates the model parameters (θ) through gradient de-
scent. The learning rate (η) controls the step size of these
updates, guiding the parameters towards a minimum of the
loss function, such that:

gt = ∇L(θt) (Gradients computation)
θt+1 = θt − ηgt (Parameters update)

Fairness in Machine Learning Group fairness assesses
whether a model’s predictions Ŷ are independent of a sen-
sitive attribute S (e.g., gender or race).

We review key fairness metrics at the data and classifier
levels, assuming S is binary with values {s0, s1}.

Classifier unfairness
These metrics assess how data biases affect a model’s outputs.

• Statistical Parity Difference (SPD) [Choulde-
chova2016] measures the gap in positive prediction
rates:

SPD = |P (Ŷ = 1|S = s0)− P (Ŷ = 1|S = s1)|.
A dummy classifier predicting all positives yields zero
SPD but poor utility.

• Equal Opportunity Difference (EOD) [Hardt et
al.2016] compares true positive rates across groups:

EOD =
∣∣∣P (Ŷ = 1 | S = s0,Y = 1)

−P (Ŷ = 1 | S = s1,Y = 1)
∣∣∣. (1)

Other metrics (e.g., FPD and FND) examine disparities in
false-positive and false-negative rates across groups.

3 Related Work
Accuracy vs fairness trade-off Fairness-aware training of-
ten leads to reduced predictive performance, with many stud-
ies [Kamiran and Calders2011, Liu and Vicente2022, Fish et
al.2016, Xu et al.2018, Wang et al.2021] highlighting an in-
herent trade-off between accuracy and fairness. However,
Wick et al. [Wick et al.2019] suggest this trade-off may be
avoidable under certain conditions. Kamiran and Calders
[Kamiran and Calders2011] show a linear drop in accu-
racy from fairness constraints, while Liu et al. [Liu and Vi-
cente2022] use Pareto fronts to illustrate the trade-off. Fish
et al. [Fish et al.2016] improve fairness by shifting deci-
sion boundaries based on prediction confidence. Wang et
al. [Wang et al.2021] explore fairness in multi-task learning.
Overall, there is a growing consensus that improving fairness
often compromises accuracy.

Delivering fairness insights along with prediction Re-
cent works on individual fairness [Yadav et al.2024, Gajane
and Pechenizkiy2018] and explainable AI (XAI) [Jain et
al.2020, Alikhademi et al.2021] explore combining fairness
with optimal accuracy. In individual fairness, this is framed
as finding the largest neighborhood around an input x∗ where
predictions remain consistent:

max
ϵ

∀x : d(x∗, x) ≤ ϵ and f(x) = f(x∗)

Yadav et al. [Yadav et al.2024] define fairness certificates per
input based on distances in key features. In XAI, fairness is
assessed via feature attribution—for example, Jain et al. [Jain
et al.2020] use Shapley values to quantify the effect of sen-
sitive features. Maughan et al. [Maughan and Near2020] in-
troduce prediction-sensitivity, which computes the gradient
of the model output with respect to sensitive inputs, with its
norm indicating local unfairness.

In this work, the main challenge is developing classifiers
aware of their inherent fairness risk for each input. This risk
requires a clear definition and incorporation into the training
data while ensuring that classifiers will still learn properly.

4 Towards a Dual Label Fair Learning
We assume a single binary sensitive attribute S ∈ {s0, s1}
and a set of non-sensitive attributes denoted X (as presented
in Figure 1). Subsequently, we consider a first binary clas-
sification task with Y = Ybin ∈ {0, 1}. Ybin corresponds to
the default classification task of the trained model. Then, we
propose to extract a second fairness class label Yfair, that rep-
resents a fair-aware assignation of outcomes with respect to
groups S = s0 or S = s1.

4.1 Generating Yfair
We formulate the problem of finding fair-aware class labels,
as finding an optimal vector Yfair that maximizes the corre-
lation with the default labels Ybin, and minimizes the corre-
lation with the sensitive attribute vector S (as presented in
Figure 1).

maximal
correlation

minimal
correlation

Figure 1: Correlation properties of the generated fairness
class labels.

We use the Pearson correlation coefficient to generate Yfair
as it captures linear dependence and is zero for independent
variables, enabling influence modeling without inherent bias.
Its linearity also supports optimization tasks [He et al.2020].
We recall that Pearson’s correlation satisfies:

Corr(X,Y ) =
Cov(X,Y )

σXσY
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Where Cov(X,Y ) is the covariance of X and Y , and σX , σY

are respectively standard deviations of X and Y . Correlation
values range from -1 to 1. A correlation of both 1 and -1 indi-
cates a deterministic functional relationship between the two
variables Y = f(X). A positive correlation indicates that
X and Y follow the same variation (increasing f , when the
correlation is equal to 1). Conversely, a negative correlation
indicates opposite variations of X and Y (decreasing f when
the correlation is equal to -1).

We leverage the transitive property of Pearson’s correla-
tion1. Since Ybin reflects the non-sensitive labels (X ), max-
imizing its correlation with the fair prediction (Yfair) helps
maintain the relationship between Yfair and X . This leads to
a high-performing classifier trained on data containing sensi-
tive attributes (S), non-sensitive attributes (X ), and fair pre-
dictions (Yfair). Importantly, minimizing the correlation be-
tween Yfair and the sensitive attribute (S ) reduces bias in the
fair predictions. This results in data with less disparate treat-
ment based on the sensitive attribute compared to the original
data. These requirements are expressed using the function Fλ

defined as:

Fλ(Yfair) = dim(Ybin) | Corr(Yfair,S) | +
λ

| Corr(Yfair,Ybin) |
(2)

Where λ is a trade-off parameter that reflects the relation be-
tween both terms of Equation 2. Figures 2a and 2b show Fλ

with λ = 150 and λ = 300, respectively. These two values of
lambda induce different variations of the function. For exam-
ple, a variation in the x-axis (i.e., in the correlation of S and
Yfair) has a larger impact on Fλ when λ = 300.

(a) λ = 150 (b) λ = 300

Figure 2: Impact of λ on Fλ as a function of |
Corr(Ybin,Yfair) |, and | Corr(S,Yfair) | with λ ∈ {150, 300}

We deduce from the previous observation that higher val-
ues of λ result in highly fair-aware class label Yfair. But, they
sacrifice the accuracy of the induced classifier (trained on the
(X ,S,Yfair) records) due to the loss of useful correlations.
Conversely, lower values of λ prioritize the first term and,
therefore, produce a highly accurate classifier with slightly
improved fairness.

4.2 Optimization strategy
The Fλ function can be categorized as a pseudo-Boolean
function according to the PBO definition. A pseudo-Boolean
function f is a function that maps a set of binary variables

1Ybin acts as a statistical proxy of the non-sensitive labels X .

(0 or 1) to real numbers such as f : {0, 1}n → R. Several
approaches to solving non-linear PBO problems are investi-
gated, including the use of constrained integer programming
methods. These methods aim to minimize an objective func-
tion subject to constraints on the function variables.

In our case, we introduce hard constraints2 to limit the
search space to the binary space of dimension |D|. We
use the Constraint Optimization BY Linear Approximation
(COBYLA) solver [Powell1994] which is particularly suited
for non-linear cost functions with hard constraints. Since this
solver does not handle equality constraints, we define the con-
straints of the boolean solution as two inequality constraints
satisfying:

minimize : Fλ(Yfair)

subject to : Yfair[i] ≥ 1− ϵ or Yfair[i] ≤ ϵ (∀i ∈ [dim(Yfair)])

where ϵ = 10−5 characterizes the constraints on solutions
within narrow intervals around the values of 0 or 1. Finally,
the solver is run with a maximum of 10k iterations with Ybin
given as the initial guess.

4.3 Learning the dual label
Once the fair class label Yfair are generated, the learning ob-
jective becomes the mapping: X ,S → (Ybin,Yfair). Indeed,
the classifier makes two predictions for each data point (x):

• ŷbin: this prediction focuses solely on accurately match-
ing the default label for the given input (x).

• ŷfair: this prediction represents a fairer and more ethical
statistical outcome with respect to the sensitive attribute
(S).

This essentially converts the original binary classification task
into a multi-output classification. Figure 3 depicts a neural
network architecture based on our proposed framework for
dual labeling. Applied to the Adult dataset, the figure illus-
trates how the network achieves this task with two separate
branches. Ideally, both predictions, ŷbin and ŷfair, would be
the same. However, in cases where these predictions differ,
the classifier identifies these discrepancies and acts as a per-
prediction unfairness alert system, prompting further human
evaluation of the specific data point.

Common
root

Ground-truth
prediction

Fairness
Insight

Optimal
accuracy
branch

Fairness
insight
branch

Figure 3: FairCognizer architecture for Adult.

2Hard constraints must be satisfied by all variables, while soft
constraints only impose penalties on variables that fail to meet them.
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4.4 FairCognizer implementation
To evaluate the performance of our framework, we conduct
various experiments on two datasets: Adult (25k samples)
and Compas (5k samples). For our analysis, we focus on the
binary groups male and female within these datasets.

Training analysis
First, we compute the Yfair vector using the COBYLA solver
implementation of the SciPy package [Virtanen et al.2020].
We generate Yfair for our training subsets, i.e., 3

4 of both
datasets, for the binary groups.

Second, for validation, we train a three-layer MLP classi-
fier on the records (X ,S,Yfair) for 10 values of λ, and com-
pare their predictive capabilities and fairness metrics (EOD
and SPD) with a baseline classifier trained on the original
data. Figure 4 depicts the obtained results.

 0

 0.2

 0.4

 0.6

 0.8

 1

100 150 200 225 275 300 325 350 375 400

λ

Accuracy SPD EOD

(a) Compas

 0

 0.2

 0.4

 0.6

 0.8

 1

100 150 200 225 270 300 325 350 375 400

λ

Accuracy SPD EOD

(b) Adult

Figure 4: Accuracy and fairness measures of classifiers
trained on (X ,S) → Yfair, with Yfair generated using differ-
ent values of λ. Dashed lines represent the baseline measures
(color-wise) of a classifier trained on the original dataset.

It shows greater fairness improvement using Yfair on the
Adult dataset compared to Compas. Indeed, our method
mainly removes the disparate treatment (direct discrimina-
tion), but does not act on the disparate impact (indirect cor-
relation) contained in the dataset. The predominant source
of unfairness in the Adult dataset is disparate treatment,
whereas in Compas, the primary origin of unfairness is dis-
parate impact3. Finally, we train larger FairCognizer classi-
fiers (from 2500 to nearly 3800 trainable parameters) on data-
records (X ,S, (Ybin,Yfair)). We measure their predictive per-
formances and fairness with respect to the initial labels, the
fair ones, and the dual-label. Table 1 presents the obtained re-
sults on both outputs of the FairCognizer classifier. We note
from Table 1 that FairCognizer achieves optimal accuracy for
the default class label. This means it prioritizes fairness for
the second prediction, ŷfair, without compromising accuracy
on the original prediction.

Classification interpretation
The four possible predictions made by the dual-label clas-
sifier on test data are examined, especially data-records for
which the classifier’s prediction is (1, 0) or (0, 1) (ŷbin ̸=
ŷfair). We measure the prediction inconsistency rate (PIR).
That is, we compute the probability: P (⌈h(x)⌋ ̸= ⌈h(xS)⌋),
where h is a classifier trained on the samples (X ,S → Ybin)
and xS is the sample x where the binary value of S is flipped.

3For reference, the BER in Adult for gender as the sensitive at-
tribute S is 0.183, compared to 0.087 in Compas.

Measures Label
Ybin Yfair (Ybin,Yfair)

A
d
u
lt

Acc 0.8543 0.8258 0.9100
Precision 0.7308 0.7660 0.8211

Recall 0.6790 0.6331 0.8182
f1-score 0.7039 0.6932 0.8196

SPD 0.1624 0.1146 –
EOD 0.0599 0.0230 –

C
o
m
p
as Acc 0.6898 0.6749 0.8388

Precision 0.6768 0.6823 0.6795
Recall 0.6098 0.5896 0.6723

f1-score 0.6415 0.6326 0.6758
SPD 0.1830 0.1150 –
EOD 0.1510 0.0879 –

Table 1: Dual-output model predictive performances with re-
spect to Ybin, Yfair and the dual label (Ybin,Yfair), and fair-
ness. Yfair is obtained with λ = 250. Dual-label metrics
are average-weighted by the number of true instances in each
class.

We observe that for the subset of data-records with dual pre-
dictions ŷbin ̸= ŷfair, the prediction inconsistency rate is sig-
nificantly higher compared to data-records for which ŷbin =
ŷfair.

(ŷbin ̸= ŷfair) (ŷbin = ŷfair)
Adult PIR 58.3% 4.1%

Compas PIR 64.7% 19.0%

Table 2: Prediction inconsistency rates across 1000 sampled
data-records for which the fair prediction equals the accurate
one, and on records for which the fair prediction is different
from the accurate one.

Table 2 shows that the dual-label model can identify unfair
predictions, even if they are accurate. These predictions occur
for data points similar to the ones from the opposite sensitive
group (S), but with different labels. By similar, we refer to
close data-records with respect to non-sensitive attributes X .
Indeed, flipping the sensitive attribute value for such a point
is likely to flip the model prediction (as indicated by the high
PIR values on these points).

5 Conclusion
In this work, we explore a novel paradigm of fairness-aware
learning that can be succinctly described as follows: If a clas-
sifier cannot simultaneously achieve optimal accuracy and
group fairness, it can still provide valuable per-prediction in-
sights about fairness risks. We provide two different hybrid
pre-processing and in-processing approaches to implement
this paradigm. Our study introduces a nuanced analysis of
unfairness that encompasses both the classifier and the indi-
vidual data records. Specifically, individuals exhibit varying
degrees of vulnerability to the group-unfairness of a classi-
fier. This nuanced perspective enables a targeted approach
for enhancing fairness by directing efforts towards the most
susceptible subset of data records affected by classifier un-
fairness.
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