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Abstract
We design a lightweight structural feature extrac-
tion technique for graph classification. It leverages
node subsets and connection strength reflected by
random-walk-based heuristics, presenting a scal-
able, unsupervised, and easily interpretable alterna-
tive. We provide theoretical insights into our tech-
nical design and establish a relation between the ex-
tracted structural features and the graph spectrum.
We show our method achieves high levels of com-
putational efficiency while maintaining robust clas-
sification accuracy.

1 Introduction
We address the problem of graph classification. Similar to
classifying text or image data, comparing graphs is funda-
mental to building a classifier. This task, known as graph
similarity learning, is challenging due to the inherent vari-
ability in both the size and structure of the graphs.

Targeting graph similarity, the past decade has witnessed
the success of graph kernels [Shervashidze et al., 2011;
Borgwardt and Kriegel, 2005] and graph representation learn-
ing [Kipf and Welling, 2017; Tsitsulin et al., 2018]. The for-
mer compares substructures, while the latter utilizes super-
vised graph neural networks, or uses unsupervised embed-
ding approaches paired with classifiers. Despite their suc-
cess, scalability remains a critical issue. This is due to the
increasing size of real-world graphs and the large volume of
graph datasets, as both the scale of each graph and the num-
ber of graphs can be substantial. To address the scalability
challenge, we introduce Random Walk Fingerprints (RWF),
an unsupervised structural feature extraction technique that
can incorporate node attributes. The computational complex-
ity of RWF is bounded by O(Nτc(mn + pn2)), where N is
the number of graphs; n and m are the number of nodes and
edges per graph; τc is the maximum walk steps; and p is the
dimension of node features. In the worst-case scenario where
m = n2, RWF exhibits a cubic time complexity regarding n.
However, the typical sparsity of real-world graphs (m ≪ n2)
generally ensures more manageable computational demands.

1This is an extended abstract of a paper first published in the
IEEE ICDM conference [Li et al., 2024].

2 Method
At its core, RWF quantifies intra- and inter-subset connec-
tion strengths among node subsets with distinct structural
roles. By focusing on these role-based subsets, RWF enables
soft alignment between structurally heterogeneous graphs,
enabling meaningful comparisons. Based on these node sub-
sets, heuristics like loop and walk, reflecting the connection
strength, are used to construct the feature vector. Addition-
ally, RWF can easily incorporate node features. After feature
extraction, we use a basic classifier like SVM to get the clas-
sification results.

Structural-Role-based Vertex Partitioning
We divide the nodes of each graph into distinct subsets,
thereby facilitating alignment among the node subsets across
disparate graphs. This essential step enables us to identify lo-
cal graph patterns, thus enhancing the representation power
of our method. Given a graph G, we partition its nodes into k
subsets, i.e., V = V1 ∪ · · · ∪ Vk, where each subset contains
nodes that share the same structural role, and k is the number
of predefined roles. In order to obtain size-invariant represen-
tations of graphs, the parameter k should be consistent for all
graphs.

• Degree Heuristic. Degree is an essential statistic of
nodes. High-degree nodes tend to be cores in the lo-
cal central regions, while low-degree nodes often oc-
cupy peripheral positions. Hence, node degree serves
as a naive indicator of the structural roles of nodes. Ini-
tially, we count the node degrees. We then sort the nodes
by their degrees and divide the node set into k subsets,
each containing |V |/k nodes.

• Core-Periphery Heuristic. This heuristic is based on
the assumption that the arrangement of a graph includes
densely connected core nodes and sparsely connected
peripheral nodes. We utilize KM-config [Kojaku and
Masuda, 2018] to identify core and peripheral nodes. It
leverages the configuration model [Fosdick et al., 2018]
as the null model to generate a target graph with ideal-
ized core-periphery pairs. Then, it maximizes the simi-
larity between the target and source graphs through ap-
propriate node labeling. Notably, KM-config can detect
multiple core-periphery pairs, and it has a linear time
complexity with respect to the number of edges.
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Structural Feature Extraction
With the node partitions of each graph determined, subse-
quently, we show how to extract features based on the graph
G and its node partitions (V1, V2, · · · , Vk). In the simplest
form, we quantify the connection strength within and between
the subsets of nodes based on the relational matrix T and its
powers. The relational matrix T can be defined by the transi-
tion matrix Tp = D−1A, or the symmetric normalized adja-
cency matrix T = D− 1

2AD− 1
2 , where D denotes the diago-

nal degree matrix and A denotes the adjacency matrix. Each
entry of Tp and T quantifies a kind of connection strength
between two nodes. In this paper, we select T since sym-
metric normalization enables computational efficiency. We
introduce the following features.

loopτVi
=

1

|Vi|
∑
v∈Vi

Tτ
vv (1)

walkτVi
=

1

|Vi|2
∑

u,v∈Vi

Tτ
uv (2)

walkτVi→Vj
=

1

|Vi| × |Vj |
∑

u∈Vi,v∈Vj

Tτ
uv (3)

Here, loopτVi
represents the average strength of all τ−loops

of nodes in Vi. walkτVi
represents the average strength of all

τ−walks that start and end at nodes within Vi. walkτVi→Vj

denotes the average strength of all τ−walks traversing from
Vi to Vj . In a nutshell, the three features measure the connec-
tion strength within and between node subsets.

Incorporation of Node Attributes
In addition to the structural features, our method is designed
to incorporate node features. Accordingly, we define the fol-
lowing two matrices:

P =
1

|Vi|
XVi

· diag(Tτ
Vi
) ·XT

Vi
(4)

Q =
1

|Vi|2
XVi

·Tτ
Vi

·XT
Vi

(5)

where P ∈ Rp×p and Q ∈ Rp×p are symmetric matrices en-
capsulating the interactions of node features within the node
set Vi. Here, diag(Tτ

Vi
) and Tτ

Vi
serve as kernels to mod-

ulate the influence of node features, while 1
|Vi| and 1

|Vi|2 are
used to balance the numerical values. We further compute the
row average of P and Q, producing two vectors xlτVi

∈ Rp

and xwτVi
∈ Rp, which represent the aggregated features of

the subset Vi at scale τ . This procedure yields a rich feature
vector for the node subset that combines sub-structural and
node-feature-based information.

3 Feature Interpretation
We demonstrate the connections between the extracted fea-
tures and the graph spectrum, providing insight into the use
of local feature extraction and a limited walking length.

Connections to Graph Spectrum
We factorize T as follows:

T = UΛUT (6)

where the columns of U ∈ Rn×n are eigenvectors of T, and
Λ is the diagonal matrix whose diagonal elements are the
corresponding eigenvalues, denoted by {Λ1, · · · ,Λn}. Let
UVi

∈ R|Vi|×n be the rows of U that corresponds to Vi,
specifically, we use the node indices of Vi to extract a sub-
set of rows of U to form UVi .

Let B = UT
Vi
UVi , which is a symmetric n×n matrix, and

{α1, α2, · · · , αn} are the corresponding diagonal entries. Let
β = {β1, · · · , βn} ∈ R1×n and γ = {γ1, · · · , γn} ∈ R1×n

be the row vector with the sum over each column of UVi
and

UVj
, respectively. We have:

loopτVi
=

1

|Vi|

n∑
t=1

αtΛ
τ
t (7)

walkτVi
=

1

|Vi|2
n∑

t=1

β2
tΛ

τ
t (8)

walkτVi→Vj
=

1

|Vi| × |Vj |

n∑
t=1

βtγtΛ
τ
t (9)

The above calculations establish the relationship between
the three feature sets and the spectrum of Tτ , i.e., the three
features represent the weighted aggregation of the eigenval-
ues of Tτ . Thus, the extracted features could be concep-
tualized as ensembles that capture the essence of the full
eigenvalue spectrum of the graph. This connection may
elucidate the efficacy of the extracted features, as several
studies (e.g., [Tsitsulin et al., 2018; Dong et al., 2019;
Sawlani et al., 2021]) have demonstrated the effectiveness of
graph spectrum in graph classification tasks.

Why Use Local Feature Extraction?
Consider A as the adjacency matrix of an undirected graph.
We alter an arbitrary edge euv by adjusting its weight, and the
updated adjacency matrix becomes Â. After applying sym-
metric normalization to A and Â, we get T and T̂, which
denote the initial and modified transition matrices, respec-
tively. We use d(x, y) to represent the shortest path distance
between two nodes x and y. For the perturbed edge uv, we in-
troduce a distance function d(w) = min{d(w, u), d(w, v)},
which measures the minimum distance from any node w to
either node in the pair u or v. We give the following theorem
derived from [Pan et al., 2022]. We have a different setting
regarding T but the proof is the same.

Theorem 1. Let V τ = {x ∈ V, d(x) > τ}, then Tτ
xy = T̂τ

xy
for all x, y ∈ V τ . [Proof omitted]

Based on the above theorem, it is easy to understand that
under structural perturbation, the change in T propagates
outward from the perturbed nodes to their increasingly dis-
tant neighbors as the number of walk steps increases. If we
omit the vertex partitioning process and only use loopτV and
walkτV as features, we can still distinguish A and Â. But
with vertex partitioning and the three features defined, it is
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2D t-SNE

Connection strength within the high-degree node set

Connection strength within the low-degree node set
Label

0
1

Connection strength between the two node sets

(a) MUTAG

2D t-SNE

Connection strength within the high-degree node set

Connection strength within the low-degree node set
Label

0
1

Connection strength between the two node sets

(b) REDDIT-BINARY

Figure 1: Visualization of Graph Structural Features Extracted by RWF. MUTAG and REDDIT-BINARY are two graph datasets, each
containing multiple graphs. We derive a d-dimensional feature vector for each graph, which can be partitioned into three domains reflecting
three kinds of connectivity patterns: intra-connectivity within high-degree nodes (d1), intra-connectivity within low-degree nodes (d2), and
inter-connectivity between high-degree and low-degree nodes (d3). The d-dimensional feature vectors from all the graphs are projected to
2-dimensional space for visualization using t-SNE, as (a) left and (b) left show. Additionally, the features of each graph from each domain
(i.e., d1, d2, or d3) are separately projected into 1-dimensional space using t-SNE. The density of these 1D projections is then estimated and
illustrated in (a) right and (b) right.

possible to detect where the perturbation occurs, as node sub-
sets act as local sensors. Therefore, vertex partitioning may
enhance the distinguishing power of the defined features.

Fig. 1 shows the results of RWF on two graph datasets.
Recall that the underlying assumption behind RWF is that
graphs from different classes exhibit distinct local connec-
tivity patterns. These patterns are reflected by node sub-
sets that assume different structural roles. In the simplest
form, we categorize the nodes of each graph into two sub-
sets: high-degree and low-degree. Then we fix the maximum
walk step τc to 6 and calculate {loopτVhigh

, walkτVhigh
}τcτ=1,

{loopτVlow
, walkτVlow

}τcτ=1 and {walkVhigh→Vlow
}τcτ=1. This

division gives rise to three distinct feature domains: the
connectivity strength within high-degree nodes, within low-
degree nodes, and between high-degree and low-degree
nodes. As illustrated in Fig. 1, RWF features demonstrate
strong discriminatory capabilities. Moreover, we can observe
distinctions between the distributions of different classes,
even when considering a single domain of RWF features in-
dependently.

Why Limit Walk Steps?
We explain why we use a limited number of steps as con-
trolled by τc. Due to the symmetric normalization, the eigen-
values of T are bounded within the interval [−1, 1]. Based
on the above calculations, it is evident that the three fea-
tures can be expressed as weighted aggregations of the eigen-
values of Tτ , like f(τ) =

∑n
t=1 δtΛ

τ
t , where the vector

δ = {δ1, · · · , δn} ∈ R1×n contains some constant val-
ues. Without loss of generality, we assume the eigenvalues
are sorted in descending order, with Λ1 and Λn representing
the maximum and minimum eigenvalues, respectively. The
maximum eigenvalue Λ1 = 1. The minimum eigenvalue
Λn = −1 if and only if the corresponding graph is bipar-
tite; otherwise, Λn lies in the range of (−1, 0]. For simplicity,
we assume Λn follows the latter case, as bipartite graphs are
special, and we consider general cases here. When τ becomes
large:

lim
τ→∞

f(τ) = δ1 (10)

The above calculation reveals that f(τ) ≈ δ1 when τ is large,
and δ1 is a constant. This suggests that larger τc does not con-
tribute additional structural information. In practice, we set
τc to a value typically not exceeding 10 to ensure efficiency
while capturing meaningful graph structure.

4 Experimental Evaluation
We evaluate our method against the following techniques:

• Unsupervised graph embedding algorithms: NetLSD
[Tsitsulin et al., 2018], NetSimile [Berlingerio et al.,
2013], FGSD [Verma and Zhang, 2017], A-DOGE
[Sawlani et al., 2021], LDP [Cai and Wang, 2018] and
FEATHER [Rozemberczki and Sarkar, 2020].

DEE RED-12K GIT TWI

NetLSD 56.1 38.5 64.6 68.6

A-DOGE 55.6 47.8 67.0 69.5

FGSD 56.2 33.2 60.7 64.2

NetSimile 55.6 47.3 68.8 70.5

FEATHER 55.7 47.2 69.0 70.0

LDP 55.6 46.8 67.2 68.5

NH 56.0 ‡ 60.2 ‡
WL 55.6 39.5 62.6 ‡
DOSGK 55.7 ‡ 66.3 ‡
GCN 56.8 45.9 61.3 69.0

GraphSAGE 56.8 42.2 53.7 61.4

GIN 56.9 47.3 61.4 68.7

RWF-CP 57.157.157.1 43.6 66.7 69.6

RWF-CP-feature 56.6 46.2 70.470.470.4 69.1

RWF-D 56.5 44.8 68.1 71.3

RWF-D-feature 55.9 48.148.148.1 70.470.470.4 71.471.471.4

Table 1: Mean graph classification accuracy (in %). Best results
are marked in bold, and second bests are underlined. The mark “‡”
refers to out of resources, indicating exhaustion of either time (> 24
hours) or memory.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

• Graph kernels: NH [Hido and Kashima, 2009], WL
[Shervashidze et al., 2011], and DOSGK [Huang et al.,
2021].

• Graph neural networks: GCN [Kipf and Welling, 2017],
GIN [Xu et al., 2019], and GraphSAGE [Hamilton et al.,
2017].

Due to brevity, we only show the results on four large
datasets. The reader can find all the experiments in [Li et
al., 2024].

The graph classification results on Deezer ego nets (DEE),
REDDIT-MULTI-12K (RED-12K), Github stargazers (GIT),
and Twitch egos (TWI), are reported in Table 1. RWFs
achieve the best results in general.

5 Conclusion
In this paper, we proposed RWF, a scalable, interpretable, un-
supervised feature extraction approach for graph classifica-
tion. RWF learns a subset-based representation of graphs,
central to which is the structural-role-based vertex partition-
ing scheme. This technique enables soft alignments across
diverse graphs and thus facilitates the learning of local struc-
tures. Specifically, RWF extracts three features, measuring
the connection strengths within and between node subsets.
Additionally, a highlight of RWF is its flexibility in incor-
porating node attributes, making it a comprehensive tool for
feature extraction. Our experimental analysis confirms the ef-
fectiveness and efficiency of RWF, illustrating its potential as
a powerful approach to graph classification.
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