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Abstract

Removing unwanted consequences from a knowl-
edge base has been investigated in belief change
under the name contraction and is called repair
in ontology engineering. Simple repair and con-
traction approaches based on removing statements
from the knowledge base (respectively called be-
lief base contractions and classical repairs) have
the disadvantage that they are syntax-dependent
and may remove more consequences than neces-
sary. Belief set contractions do not have these prob-
lems, but may result in belief sets that have no finite
representation. Similarly, optimal repairs, which
are syntax-independent and maximize the retained
consequences, may not exist. Our KR 2024 paper
leverage advances in characterizing and computing
optimal repairs of ontologies based on the descrip-
tion logics £L to obtain contraction operations that
combine the advantages of belief set and belief base
contractions. It introduces this new approach in
a very general setting, and proves a characteriza-
tion theorem that relates the obtained contractions
with well-known rationality postulates. Then, it de-
scribes a variety of interesting instances, not only
in the standard repair/contraction setting where one
wants to get rid of a consequence, but also in other
settings such as variants of forgetting in proposi-
tional and description logic.

1 Introduction

Representing knowledge in a logic-based knowledge rep-
resentation language allows one to derive implicit conse-
quences from a given knowledge base (KB). Modifying a
given KB such that a certain unwanted consequence no longer
follows is a nontrivial task, which has been investigated in the
area of belief change under the name of contraction [Alchour-
ron et al., 1985] and in ontology engineering under the name
of repair [Kalyanpur et al., 2006; Schlobach ef al., 2007;
Baader et al., 2018; Troquard et al., 2018].

*This extended abstract reports on the approaches developed
and results obtained in a paper published at KR 2024 [Baader and
Wassermann, 2024al.

The purpose of the KR paper [Baader and Wassermann,
2024a] was to leverage recent advances in characterizing and
computing optimal repairs [Baader et al., 2021; Baader er al.,
2022; Baader and Kriegel, 2022; Baader et al., 2023] of on-
tologies based on Description Logics (DLs) [Baader et al.,
2017] to obtain contraction operations that combine the ad-
vantages of belief set [Alchourrén er al., 1985] and belief
base [Hansson, 1992; Nebel, 1989] contractions. To be more
precise, it introduces a general framework for constructing
contraction operations satisfying certain well-known rational-
ity postulates, which generalizes the partial meet contraction
approach in that it employs optimal repairs instead of opti-
mal classical repairs as remainders. Like base contraction ap-
proaches, the contraction operations obtained this way have
the advantage that (under certain conditions) they can work
with finite KBs. However, in contrast to base contractions,
they are syntax independent and lose less consequences.

Instead of introducing and applying this new approach for
a specific instance, we consider in [Baader and Wassermann,
2024a] a very general setup, which clarifies the basic proper-
ties needed to apply it. Basically, we consider an entailment
relation between KBs, without making explicit assumptions
on the structure of the KBs and their semantics. For a start,
we only require that entailment is reflexive and transitive. In
addition, we abstract from non-entailment of a certain conse-
quence as repair goal and only require that the set of repairs
is closed under entailment. To apply a variant of the partial
meet contraction approach in this setting, we need to make
some additional assumptions. First, we assume that opera-
tions akin to (but not necessarily equal to) conjunction and
disjunction are available, which we will respectively call sum
and product. These operations correspond to union and in-
tersection of belief sets, but are performed on (possibly fi-
nite) KBs representing them. From a technical point of view,
sum is needed to formulate some of the relevant postulates
whereas product plays the role of meet in the construction of
the contraction operation. In addition, we require the exis-
tence of remainders, which are optimal repairs in our setting.
An important property needed in the proof of the character-
ization theorem (i.e., the theorem that states the connections
between the constructed contraction operations and the pos-
tulates) is that finitely many of these optimal repairs cover all
repairs in the sense that every repair is entailed by an opti-
mal one. In this extended abstract, we first recall the general
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setup and then describe the new contraction approach (called
partial product contractions since the product is used as the
meet operation), and state the characterization theorem. Due
to space constraints, we can mention the different instances
of the general approach only very briefly.

2 The General Setup

We assume that we are given a set of knowledge bases (KBs)
and an entailment relation between knowledge bases. We
usually write KBs as &, possibly primed (K') or with an index
(K;), and entailment as =, i.e., K = K’ means that K entails
K', or equivalently that K’ is entailed by K. We assume that
entailment satisfies the following properties:

* K EK (reflexivity),

e K EK and X' = K" implies K = K" (transitivity).
We call two knowledge bases K and K’ equivalent (and write
K = K') if they entail each other, i.e., if £ = K’ and K' E
IC. We say that IC strictly entails K" if K |= K, but K" |~ K.
In this case we write X =, K’. The relation = on KBs is
indeed an equivalence relation, and we write the equivalence
class of a KB K as [K], i.e., [K] := {K' | K =K'}

To illustrate the notions introduced in this section, we use
a very simple example.

Example 1. Given a countably infinite set of propositional
variables V', a knowledge base is a finite conjunction of such
variables, where the empty conjunction is the always true
constant T. Entailment |= between KBs is then classical en-
tailment in propositional logic, which obviously satisfies re-
flexivity and transitivity. For such a KB IC, we denote the set
of variables occurring in it with Var(K). It is easy to see that
K = K" iff Var(K') C Var(K). Consequently, K = K’ iff
Var(K) = Var(K').

In the general case, we make no assumptions on the inner
structure of knowledge bases, but we assume that we have
operations sum and product available that are akin to con-
junction and disjunction.

Definition 1. We call the operations ® and ® on finite, non-
empty sets of KBs sum and product operations, respectively, if
they satisfy the following properties for each finite, non-empty
set of KBs R:

* ®R | Kforall K € Rand ®R is the least KB satisfying
this property, i.e., if K' is a KB satisfying K' = K for all
K e g thenK' = @R

* K &= ®R for all K € & and ®R is the greatest KB
satisfying this property, i.e., if K' is a KB satisfying K =
K’ forall K € &, then 8 = K.

Note that “least” and “greatest” in the above definition
must be read modulo equivalence of KBs. In fact, it is easy
to see that the above conditions imply that sum and prod-
uct of a finite set of KBs are unique up to equivalence. If
R = {K} is a singleton set, then PR = K = QK. If
R ={K4,...,K,} forn > 2, then we will sometimes write
itssumas Ky @ ... ® K, and its product as 1 ® ... ® I,

Example 1 (continued). It is easy to see that sum corre-
sponds to conjunction of KBs, and thus to the union of the

corresponding variable sets. Dually, product corresponds to
the intersection of the variable sets. Thus, we define

@R = KB ( U Var(/C)> , @R :=KB ( N Var(lC)> ,

Ker Ker

where, for a finite set P C V', we denote the conjunction of
its elements as KB(P). E.g.: pAGAT®gAS =pAgAT NS
andp NqAr®qAs=q. Itis easy to see that the product
and sum operations defined this way satisfy the properties re-
quired by Definition 1 (see [Baader and Wassermann, 2024b]
for details).

When defining repairs, we assume that we have additional
syntactic entities called repair requests.

Definition 2. Given a KB IC, a repair request o determines a
set of KBs Rep(K, «) such that

* K | K’ holds for every element K' € Rep(K, ), and
* K’ € Rep(K,a) and K' |= K" imply K" € Rep(K, ).

We call the elements of Rep(K, «) repairs of K for a. Two
repair requests « and o are equivalent w.r.t. K (a0 =¢ o)
if they induce the same repairs of K, ie., Rep(K,a) =
Rep(K, o).

Example 1 (continued). In this example, we consider a
standard repair setting, where each KB can also be used
as a repair request. Given a KB K and a repair request
«, the goal then is to find a KB entailed by K that does
not entail o, i.e., the induced set of repairs is defined as
Rep(K,a) := {K' | K = K',K’ £ «a}, where K' ranges
over KBs. The first condition on repair sets of Definition 2 is
satisfied by definition and the second by transitivity of |=.

Continuing with presenting our general setup, we addition-
ally assume the optimal repair property, which says that, for
every pair /C, « consisting of a KB and a repair request (called
a repair problem), there exists a finite set of KBs Orep(KC, «)
satisfying

* Orep(K, ) C Rep(K, ) (repair property),

* every element K’ of Orep(K, o) is optimal, i.e., there is
no K" € Rep(K, @) such that K" =5 K’ (optimality),

* Orep(K,a) covers all repairs, i.e., for every K" €
Rep(K, @) there is K’ € Orep(K, a) such that £’ |=
K" (coverage).

Example 1 (continued). In this example, the optimal repair
property is satisfied. Let K and « be KBs. If K W~ «, then
we set Orep(KC, ) := {K}, which in this case clearly is a
set of optimal repairs that covers all repairs. If o« = T, then
there is no repair, and we can set Orep(K, o) := 0. Finally,
assume that K = « and o # T, which means that () #
Var(a) C Var(K). For every p € Var(«) we define K7 :=
KB(Var(K)\{p}). It is easy to see that each such KB K P is
a repair of K for a, i.e., is entailed by KC and does not entail
a. It is not hard to show that Orep(KC,a) == {K™P | p €
Var(«)} is a set of optimal repairs of K for « that covers all
repairs (see [ Baader and Wassermann, 2024b] for details).
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We conclude this section with a simple example that con-
siders repair requests that do not require non-entailment. It is
inspired by variable forgetting in propositional logic [Lang et
al., 2003].

Example 2. Given a countably infinite set of propositional
variables V', a knowledge base is a formula of propositional
logic (built using the connectives N\, V, -, and the truth con-
stants T and L ). Entailment |= between KBs is the following
restriction of classical entailment |=p_ in propositional logic:
K = K'if K EpL K and additionally Var(K) 2 Var(K')
is satisfied. This entailment relation is clearly reflexive and
transitive. As repair requests, we consider finite subsets of
the set of propositional variables V. Given a KB K and
a repair request «, the induced set of repairs is defined as
Rep(K,a) :={K' | K E K, Var(K') N« = 0}. Due to the
additional requirement on entailment, the second condition of
Definition 2 is satisfied.

Given a repair problem IC,«, we construct the associ-
ated set of optimal repairs as follows. For every mapping
T :a — {T,L}, let KT be the propositional formula ob-
tained from K by replacing every variable p € « with T(p).
We set Orep(K, o) := {K ™%}, where K~ is the disjunction
of the formulas K™ with T ranging over all mappings from
ato {T,L}. Clearly, the formulas K™ do not contain any
of the variables of o, and thus the same is true for K=<. A
proof of optimality and coverage can be found in [Baader and
Wassermann, 2024b].

It is easy to see that the sum operation again corresponds
to conjunction, i.e., K1 ®... K, =K1 A...AK,. For the
product, one could be tempted to use the disjunction opera-
tion of propositional logic. While disjunction behaves cor-
rectly w.rt. |=pi, there is a problem with the containment
condition for the variables. The set of variables occurring
in a disjunction is again the union of the set of variables oc-
curring in its disjuncts, but we would need it to be the in-
tersection. We overcome this problem by repairing the dis-
Jjunction. To be more precise, consider KBs K1, . .., KC,,, and
set 8= Uj<icp Var(Ki) \ Ny, Var(K;). We define
Ki®...K, = (KiV...VK,) P Itis easy to see
that, with this definition, the properties required for the prod-
uct are satisfied (see [Baader and Wassermann, 2024b]).

3 Partial Product Contractions

In this section, we assume that we are given a set of KBs,
a set of repair requests inducing repair sets that satisfy the
conditions in Definition 2, and an entailment relation |= such
that all the properties introduced in the previous section are
satisfied. In the following, we adapt the partial meet contrac-
tion approach to this setting, but call the resulting approach
the partial product contraction (PPC) approach since intersec-
tion (meet) is replaced with the product. Since the properties
of entailment relations introduced in the previous section are
needed for this contraction approach to work, we call such
entailment relations PPC enabling.

Definition 3. Given a set of knowledge bases (KBs), a set of
repair requests inducing repair sets, and a binary relation |=
between KBs, we call |= PPC enabling if it is reflexive and

transitive, has sum and product operations @ and ® satis-
fying the properties stated in Definition 1, and for every re-
pair problem K, « the induced set of repairs Rep(KC, o) sat-
isfies the conditions in Definition 2 and has a finite subset
Orep(KC, @) that consists of optimal repairs and covers all
repairs.

Let & be a KB and Orep(K, «) for each repair request «
the corresponding set of optimal repairs, which covers all re-
pairs of K for . A selection function ~y for K takes such sets
of optimal repairs as input and satisfies the following proper-
ties, for each repair request a:

o If Orep(K, o) # (), then the selected set v(Orep(K, o))
satisfies () # y(Orep(K, o)) C Orep(K, ).

o If Orep(K, @) = 0, then (Orep(K, a)) = {K}.

Note that coverage of Orep(KC, ) implies that this set is
empty iff Rep(K, o) = 0.

In addition, we require that selection functions are invari-
ant under equivalence of their input sets, where we say that
two sets £ and &' of knowledge bases are equivalent (written
R = R') if they induce the same sets of equivalence classes,
ie, {[K] | K € &} = {[K'] | K € &'}. More formally,
the third condition on selection functions requires that, for all
repair requests « and o/, the following property is satisfied:

* If Orep(K, ) = Orep(K, o), then v(Orep(K, o)) =

~v(Orep(K, o')).

Each selection function «y induces a PPC operation ctr.:
ctry (IC, ) := @7 (Orep(KC, ).

A PPC operation defined using a selection function ~y satis-
fying |y(Orep(K, )| = 1 for all repair requests « is called
a MaxiChoice PPC operation. In this setting, the selection
function returns a singleton set consisting of C (if there is no
repair) or an optimal repair (otherwise). In the latter case,
ctr, (IC, @) is then this optimal repair.

3.1 Postulates

We show that each PPC operation ctr satisfies the following
rationality postulates:

* K [=ctr(K,a) (logical inclusion),

 ctr(K,a) € Rep(K, @) if Rep(K, ) # @ (success),

o ctr(K,a) = K if Rep(K,a) = 0 (failure),

+ if £ € Rep(K, o), then ctr(KC, o) = K (vacuity),

o if @« =¢ o, then ctr(KC, ) = ctr(K, ') (preservation),

« if L E K’ and ctr(K, ) £ K, then there is K" such
that K E, K" | ctr(K,a), K" € Rep(K,«), and
K" &K' € Rep(K, ) (relevance).

MaxiChoice PPC operations also satisfy the postulate full-
ness, which is stronger than relevance:
o if K E K and ctr(K, a) & K/, then ctr(K, o) ® K’ ¢
Rep(K, ) (fullness).

It is easy to see that, in the presence of logical inclusion,
success, and failure, the postulate fullness implies relevance.
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Proposition 4. Let v be a selection function. Then the PPC
operation ctr. induced by v satisfies the postulates logical in-
clusion, success, failure, vacuity, preservation, and relevance.
If v is such that |y(Orep(K, a))| = 1 for all repair requests
«, then ctr additionally satisfies fullness.

The proof of this proposition is similar to standard proofs
of such results from the belief change community, and in par-
ticular to the proof of the corresponding result in [Rienstra et
al., 2020] for the special case of concept contraction in the
DL &L. It is nevertheless important to have a detailed proof
of this proposition since one needs to check that such a proof
also goes through under the sparse assumptions made by our
framework. Such a detailed proof can be found in [Baader
and Wassermann, 2024b].

The postulates logical inclusion, success, vacuity, and
preservation are variants of the original AGM postulates for
belief set contraction [Alchourrén et al., 1985], but adapted
to a setting where the belief set is represented by a KB K
and the goal of the contraction may be different from getting
rid of an unwanted consequence (see Example 2). The AGM
postulate recovery is replaced with relevance or fullness.

3.2 Characterization Theorem

We now show that, modulo equivalence, the converse of
Proposition 4 holds as well. We say that two contraction op-
erations ctr and ctr’ are equivalent if ctr(fC, ) = ctr’ (K, a)
holds for all KBs /C and repair requests «.. The following the-
orem states this result simultaneously for the general and the
MaxiChoice setting.

Theorem 1. Assume that |= is PPC enabling, and let ctr be
an operation that receives as input a KB and a repair request,
and returns as output a KB. Then the following are equiva-
lent:

1. The operation ctr satisfies logical inclusion, success,
failure, vacuity, preservation, and relevance (fullness).

2. The operation ctr is equivalent to a (MaxiChoice) PPC
operation.

Proof. (sketch) The implication “2 = 1” is an immediate
consequence of Proposition 4.

To prove “1 = 2,” we first consider the MaxiChoice case.
Thus, assume that ctr satisfies the postulates logical inclu-
sion, success, failure, vacuity, preservation, and fullness. To
show that ctr is a MaxiChoice PPC operation, we define an
appropriate selection function. For a KB K and repair request
«, we set

(K}
~v(Orep(K, @) :=
{£}

It is shown in [Baader and Wassermann, 2024b] that this def-
inition yields a well-defined selection function v satisfying
|7(Orep(K, )| = 1 and ctr = ctr,,.

For the general case, we assume that ctr satisfies the postu-
lates logical inclusion, success, failure, vacuity, preservation,
and relevance. To show that ctr is a PPC operation, we again

if there is K’ € Orep(K, )
such that ' = ctr(KC, o),

otherwise.

define an appropriate selection function. For a KB X and re-
pair request o, we set

{K" € Orep(K, @) | K’ | ctr(K, )}
if Orep(KC, o) # 0,
{K} otherwise.

7(Orep(K, @) :=

The proof that this definition yields a well-defined selec-
tion function « satisfying ctr = ctr, can again be found
in [Baader and Wassermann, 2024b]. O

4 Instances of the General Setup

In [Baader and Wassermann, 2024a], a number of instances
of the general framework introduced in the previous two
sections are described in detail. Additional instances can
be found in the accompanying technical report [Baader and
Wassermann, 2024b]. Due to space restrictions, we can men-
tions these instances only very briefly here.

First, it is shown in [Baader and Wassermann, 2024a] that
under weak assumptions on the underlying logic (inclusion,
monotonicity, idempotency, and compactness of the closure
operator), partial meet contractions for belief sets are an in-
stance of the framework. Thus, the PPC approach introduced
in Section 3 can be used to obtain contraction operations for
belief sets that satisfy the postulates logical inclusion, suc-
cess, failure, vacuity, preservation, and relevance (and addi-
tionally fullness in the MaxiChoice case). These postulates
do not coincide with the ones given in [Alchourrén et al.,
1985]. In particular, recovery is replaced with relevance or
fullness. The reason is that Alchourrén et al. make additional
assumptions on the formulas and the closure operator.

Second, as practically relevant instances of the general
setup for which KBs are finite, various types of KBs and
entailment relations connected with the DL £L [Baader et
al., 2017] are considered. This encompasses (a) EL con-
cepts as KBs with subsumption as entailment relation, where
the repair goal is either to get rid of subsuming concepts or
to forget parts of the signature used to formulate the con-
cepts; (b) quantified ABoxes as knowledge bases describing
data and different kinds of entailment relations, depending
on the kinds of queries one wants to employ; (c) £L termi-
nologies (TBoxes) as KBs with a restricted form of entail-
ment relation between them that preserves the structure of
the TBox. In most of these cases, the optimal repair prop-
erty had already been shown by previous work [Baader, 2023;
Baader et al., 2021; Kriegel, 2022], and the main additional
task was to establish the existence of appropriate product and
sum operations.

Third, to illustrate the generality of the approach, a setting
is considered where KBs define formal languages and entail-
ment corresponds to the superset relation between languages.
The repair request is then a finite language «, and the repair
goal is to remove at least one element (choice approach) or
all elements (package approach) of o It is shown that the
superset relation is PPC enabling if KBs are finite automata,
linear bounded automata, or Turing machines. However, if
context-free grammars are used instead, then this entailment
relation is not PPC enabling since the product need not exist.
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