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Abstract

CAM-based methods are widely-used post-hoc in-
terpretability methods that produce a saliency map
to explain the decision of an image classification
model. The saliency map highlights the important
areas of the image relevant to the prediction. In this
paper, we show that most of these methods can in-
correctly attribute an important score to parts of the
image that the model cannot see. We show that this
phenomenon occurs both theoretically and experi-
mentally. On the theory side, we analyze the behav-
ior of GradCAM on a simple masked CNN model
at initialization. Experimentally, we train a VGG-
like model constrained to not use the lower part of
the image and nevertheless observe positive scores
in the unseen part of the image. This behavior is
evaluated quantitatively on two new datasets. We
believe that this is problematic, potentially leading
to mis-interpretation of the model’s behavior.

1 Introduction
The recent advances of machine learning pervade all appli-
cations, including the most critical. However, deep learn-
ing models intrinsically possess many parameters, have com-
plicated architectures, and rely on many non-linear opera-
tions, preventing the users to get a good grasp of the ra-
tionale behind particular decisions. These models are often
called “black boxes” for these reasons [Benı́tez et al., 1997].
In this respect, there is a growing need for interpretability
of the models that are used, which gave birth to the field
of eXplainable AI (XAI). When the model to explain is al-
ready trained, our main topic of interest, this is often called
post-hoc interpretability [Lipton, 2018; Zhang et al., 2021;
Linardatos et al., 2021].

In the specific case of image classification, the explanations
provided to the user often take the form of a saliency map su-
perimposed to the original image, for instance simply look-
ing at the gradient with respect to the input of the network
[Simonyan et al., 2013]. The message is simple: the areas
highlighted by the saliency maps are used by the network for

˚This is an extended abstract of [Taimeskhanov et al., 2024]

Figure 1: Example of GradCAM failure on a VGG-like model
trained on the ImageNet dataset (masked rVGGs, see Figure 4).
Left: original image; Middle: GradCAM explanation before up-
sampling; Right: original image with GradCAM explanation over-
layed as a heatmap. The network does not have access to the red
part of the image, but GradCAM does highlight some pixels in
this area.

the prediction. When the first layers of the network are con-
volutional layers [Fukushima, 1980], one can take advantage
of this and look at the activations of the filters corresponding
to the class prediction that we are trying to explain. Indeed,
these first layers act like a bank of filters on the input image,
and the degree to which they are activated gives us informa-
tion on the behavior of the network. Thus the first layers pos-
sess a certain degree of interpretability, even though it can
be challenging to aggregate the information coming from dif-
ferent filters. In any case, the next layers generally consist
in a fully-connected neural network, thus suffering from the
same caveats as other models. In addition, this second part
of the network is equally important for the prediction, but is
not taken into account in the explanations we provide if we
simply look at activation values.

To solve this problem, a natural idea is to weight each acti-
vation map depending on how the second part of the network
uses it. In the case of a single additional layer, this is called
class activation maps (CAM) [Zhou et al., 2016], in which
each activation map is weighted by its corresponding param-
eter in the output layer. The methodology was quickly gener-
alized by [Selvaraju et al., 2017], using the average gradient
values of the subsequent layers instead, giving rise to Grad-
CAM, arguably one of the most popular posthoc interpretabil-
ity method for CNNs. Many extensions were proposed in the
following years, we refer to [Zhang et al., 2023] for a recent
survey. Without being too technical, for all these methods,
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Conv C

A P

RV ˆhˆw

ReLU

B P

RV ˆhˆw

max pool M

C P

RV ˆh1
ˆw1

flatten

C1 P

RV h1w1

F yc P R

ξ P

r0, 1sHˆW

Input

g : RHˆW Ñ RV ˆhˆw

f : RV ˆhˆw Ñ R

Figure 2: The model used for the derivation of feature importance
scores, rCNNs. The number of filters in the convolutional layer C
is V P N‹. The size of the max pooling filters k1

P N‹ is implicitly
defined such that ph1, w1

q “ 1
k1 ph,wq in N‹. The fully-connected

neural network F takes C1 as input and processes it through L layers
with ReLU activation functions to produce a raw score yc, without
converting this score into a “probability.”

the explanations provided consist in a weighted average of
the activation maps.

A close inspection of each of these methods reveals that the
coefficient associated to each individual map is global, in the
sense that the same coefficient is applied to the whole map.
The main message of this paper is that this can be problem-
atic, since different parts of the activation map may be used
differently by the subsequent layers. Worse, some parts may
even be unused by the subsequent network and still high-
lighted in the final explanation (see Figure 1). Thus we
believe that, while giving apparently more-than-satisfying re-
sults in practice, CAM-based methods should be used with
caution, keeping in mind that some parts of the image may be
highlighted whereas they are not even seen by the network.

This paper is inspired by a line of recent works concerned
with the reliability of saliency maps claiming that solely re-
lying on the visual explanation provided by a saliency map
can be misleading [Kindermans et al., 2019; Ghorbani et al.,
2019]. It is important to note that neither of these studies
specifically challenges the reliability of CAM-based methods.
This perspective on saliency maps is supported by the work
of [Adebayo et al., 2018], which introduces a randomization-
based sanity check indicating that some existing saliency
methods are independent of both the model and the data. We
note that GradCAM passes the sanity checks proposed by
[Adebayo et al., 2018].

Draelos and Carin [2021], proposing HiResCAM, are less
positive regarding GradCAM pointing out, as we do, that
the use of a global coefficient can produce positive explana-
tions where there should not be. Compared to our work, they
provide few theoretical explanations. Posthoc interpretability
methods in the image realm (not specific to CNN architec-
tures) have been investigated by other works such as [Gar-
reau and Mardaoui, 2021] which looked into LIME for im-
ages [Ribeiro et al., 2016].

Taking another angle, [Heo et al., 2019] directly attacks the

Figure 3: Illustration of Theorem 1 on an MNIST [LeCun et al.,
1998] digit (left panel). We set to zero the lower part of W for
rCNNs, initialize the filter values and remaining weights to i.i.d.
N p0, 1q, and run GradCAM to get a saliency map (right panel).
Even though our network does not see the red part of the image,
GradCAM does highlight some pixels in this area, as predicted
by Theorem 1.

reliability of GradCAM saliency maps by adversarial model
manipulation, i.e., fine-tuning a model with the purpose of
making GradCAM saliency maps unreliable. This is achieved
by using a specific loss function tailored to this effect. Our
approach is different, as we simply force a strong form of
sparsity in the model’s parameters, not targeting a specific
interpretability method.

In this paper, we start by looking at GradCAM theoretical
behavior in Section 2. For a given simple CNN architec-
ture described in Figure 2, we derive closed-form expressions
for its explanations. Leveraging these expressions, we prove
that GradCAM explanations are positive at initialization, even
though a large part of the weights are set to zero. In Sec-
tion 3, we demonstrate experimentally that this phenomenon
remains true after training. To this extent, we proceed in two
steps. First, we train to a reasonable accuracy a VGG-like
model on ImageNet [Deng et al., 2009] which does not see
the lower part of input images. Then, we create two datasets
consisting in superposition of images of the same class. We
show experimentally that CAM-based methods applied to
this model wrongly highlights a large portion of the lower
part of the images, misleading the user by showing that the
lower part is used for the prediction whereas, by construction
it is not. Additionally, the code for all experiments is avail-
able online.1 We conclude in Section 4.

2 Theoretical Results
Given the notations and rCNNs model introduced in Fig-
ure 2, in our notation:
Definition 2.1 (GradCAM). For an input ξ and model
rCNNs, the GradCAM feature scores are given by

rGCs :“ σ

˜

V
ÿ

v“1

αvB
pvq

¸

P Rhˆw
` ,

where each αv :“ GAP p∇BpvqfpBqq P R. Here, GAP de-
notes the global average pooling, that is, the average of all
values, and σ the ReLU as before.

Looking at Definition 2.1, whenever the underlying model is
not too complicated, one can actually hope to derive a closed-

1https://github.com/MagamedT/cam-can-see-through-walls
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r0, 1s
3ˆ224ˆ224

ξ
ˆ2 Ñ ˆ3

ˆ2 Ñ ˆ3

W1W1

conv ` ReLU
3 ˆ 3

max-pool
2 ˆ 2

R4096ˆp256ˆ14ˆ14q

W

R4096

R1000

y

Figure 4: Our masked VGG16-based model trained on ImageNet
with 87.0% top-5 accuracy. The down weights W:, :, ´9:, : are set
to 0 and not updated during training. Only the up weights W:, :, :5, :

and the other parameters undergo training. This setting implies that
every red part in the channels does not impact the prediction scores,
meaning that they are not used. Symbol ˆ2 Ñ ˆ3 means the model
first uses the green block twice, with each time having 2 consecutive
convolutions. Then, it uses the green block three times, with each
time having 3 consecutive convolutions. There is no max pooling
after the last convolution.

form expression for the feature importance scores of rGCs as
a function of the model’s parameters. This is achieved by:
Proposition 2.1 (α coefficients for GradCAM, V “ 1). Re-
call that the a vectors denote the non-rectified activation and
W the weights of the linear part of rCNNs. Then, for in-
put ξ, the rGCs coefficient α is given by

α “
1

hw

h1,w1

ÿ

i,j“1

d1,...,dL´1
ÿ

i1,...,iL´1“1

1
a

p1q

i1
,...,a

pL´1q

iL´1
ą0

L
ź

p“1

pW
ppq

ip,ip´1
qJ ,

where we set i0 :“ pi, jq, iL “ 1, Wpℓq P Rdℓˆdℓ´1 are
the weights of the ℓ-th hidden layer in F and apℓq P Rdℓ the
pre-activation of the ℓ-th hidden layer.

From Proposition 2.1, we immediately deduce a closed-form
expression for GradCAM explanations. We note that Propo-
sition 2.1 can be readily extended to an arbitrary number of
filters V ą 1, in which case the a and W should be inter-
preted as corresponding to the relevant v P rV s. Using the
closed-from coefficient of Proposition 2.1, we are able to de-
scribe precisely the behavior of GradCAM at initialization for
our rCNNs, specifically when the classifier part of our model
comprises a single layer (L “ 1). Our main result is:
Theorem 1 (Expected GradCAM scores, L “ 1, masked
rCNNs). Let ξ P r0, 1sHˆW be an input image. Let m :“
ξi:i`k´1,j:j`k´1 be the patch of ξ corresponding to index
pi, jq P JhKˆJwK. Assume that h1 is even, and W

:,´ h1

2 :,:
“ 0.

Assume that the filter values and the non-zero weights are ini-
tialized i.i.d. N

`

0, τ2
˘

. Then, if the number of filters V is
greater than 20, we have the following expected lower bound
on the GradCAM explanation for pixel pi, jq:

E rrGCsi,js “ E

«

σ

˜

V
ÿ

v“1

αvB
pvq

i,j

¸ff

ě
V ´ 20

?
V

c

h1w1

16π

τ2

hw
∥m∥2 ,

S
TA

C
K

-M
IX

S
TA

C
K

-G
E

N

Figure 5: Sampled images from both of our datasets, i.e., STACK-
MIX and STACK-GEN.

where the expectation in the previous inequality is taken
with respect to initialization of the filters and the remaining
weights of the linear layer.

Setting W
:,´ h1

2 :,:
to 0 disables the weights within W that

are connected to the lower half part of the activation map
C

:,´ h1

2 :,:
, effectively preventing rCNNs from accessing the

lower half of C. In turn, rCNNs does not see the lower half
of ξ, up to side effects. The main consequence of Theorem 1
is that, when the number of filters associated to the class to
explain is large enough, rGCsi,j is positive in expectation if
some pixels are activated in the receptive field associated to
pi, jq. Thus GradCAM highlights all parts of the image
where there is some “activity,” even though this informa-
tion is not used by the network in the end. We illustrate
Theorem 1 in Figure 3. The main limitation of this analysis
is its focus on the behavior at initialization.

3 Experiments
We know ask the following question: are the consequences of
Theorem 1 true after training, and for a more realistic model?
To this extent, we train a CNN-based model which by con-
struction cannot access some specified part of the input which
we call the dead zone (see Figure 4). Clearly, since the dead
zone does not influence the output, it should not contain pos-
itive model explanations. To test whether this is true, we cre-
ate two datasets. Each item of the first one is composed of
two images from ImageNet with the same label in both the
seen and the unseen part of the image. The second dataset is
built using generative models on the same categories with two
objects in each image located in the seen and unseen part as
well. We then check whether CAM-based methods wrongly
highlight areas in the dead zone in Section.
Model definition. The CNN used in our experiments is
a modification of a classical VGG16 architecture [Simonyan
and Zisserman, 2015] which we call rVGGs (see Figure 4).
The main modification is to forbid the network from see-
ing the dead zone in a very simple way: in the first dense
layer W, which has size 4096 ˆ p256 ˆ 14 ˆ 14q, we per-
manently set to 0 a band of height 9 corresponding to the
lower weights. Formally, this means setting W:, :, ´9:, : “ 0,
which is denoted in red above W in Figure 4. Effectively,
we are building a wall that stops all information flowing from
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GradCAM++ ScoreCAM Opti-CAM HiResCAM

Figure 6: Saliency maps given by the considered CAM-based meth-
ods for rVGGs. With the notable exception of HiresCAM, they
all highlight parts of images from STACK-GEN which are unseen
by the network (this is denoted by the red, rectangular shape in the
lower part of the image).

the last convolutional layer to the remainder of the network.
Since the weights W are directly connected to the final acti-
vation map B P R256ˆ14ˆ14

` , this masking effectively zeroes
out the lower sections in each channel denoted by B:, ´9:, :.
We can trace back the zeroed activations in B to the preced-
ing activation map C, pinpointing the exact patches in C that
correspond (after convolution) to the features observed in the
zeroed activation of B. Because of the side effects in the com-
putation of convolutions, this area of C is slightly smaller:
some pixel activation will still play a role in the model’s pre-
diction. Repeating this process until we reach the original
image yields a dead zone of height 54 pixels, highlighted in
red above ξ in Figure 4, which covers 24% of the image area.

We train rVGGs on Imagenet-1k [Deng et al., 2009] us-
ing a classical training procedure. We compare the valida-
tion top-1 and top-5 accuracy of the VGG16 model found in
the PyTorch repository. Our rVGGs without max pooling
and no masking offers the same performance: 71.5% top-1
and 90.4% top-5 accuracy on the validation set. Indeed, our
model rVGGs with masking has lower performance, which
is expected as a fourth of the input image, ξ:, 171:224, :, is un-
seen by the model. We obtain 66.5%, resp. 71.5%, top-1 and
87.0%, resp. 90.4%, top-5 accuracy on the validation set for
our masked rVGGs, resp. unmasked rVGGs. Nevertheless,
we see that rVGGs is a realistic network able to predict
ImageNet classes with reasonable accuracy.

New datasets. To assess how much CAM-based saliency
maps emphasize irrelevant areas of an image, we introduce
two new datasets in which we control the positions of the
image elements using two techniques: cutmix [Yun et al.,
2019] and generative model. More precisely, we produce two
datasets, called STACK-MIX and STACK-GEN. Where
each image contains two objects, one in the bottom part of
the image which is the dead zone for rVGGs, and the sec-
ond subject at the top of the image. Therefore, the subject
at the center of the image will be mainly responsible for the
top-1 predicted score by our masked rVGGs.

Results. For our rVGGs, we generate saliency maps
from various CAM-based methods on our two datasets,
STACK-MIX and STACK-GEN, using the predicted cat-
egory for each example. We used publicly available imple-

methods STACK-MIX Ó STACK-GEN Ó

GradCAM 22.7 ˘ 13.4 21.6 ˘ 11.6

GradCAM++ 28.8 ˘ 8.1 28.5 ˘ 7.9

XGradCAM 23.8 ˘ 9.0 22.8 ˘ 9.0

ScoreCAM 19.9 ˘ 10.3 18.5 ˘ 10.6

Opti-CAM 32.7 ˘ 7.9 32.0 ˘ 7.8

AblationCAM 21.0 ˘ 9.9 20.8 ˘ 9.6

EigenCAM 51.7 ˘ 19.7 55.8 ˘ 21.6

HiResCAM 0.0 ˘ 0.0 0.0 ˘ 0.0

Table 1: Activity in the unseen part of the image, measured by
µ ˆ 100 for several CAM-based methods on both proposed datasets
(only images in the validation set are considered).

mentations whenever possible. For each method, we measure
how much of the CAM-based saliency maps emphasize the
unseen part, i.e., the dead zone. We use the metric µ defined
for a upscaled saliency map Λ P R224ˆ224

` as follows:

µpΛq :“
∥Λ171:224, :∥2

∥Λ∥2
, (1)

where ∥¨∥2 is the ℓ2-norm and the lower part of the image
ξ:, 171:224, : is unseen by our rVGGs. We note that for a
saliency map Λ, the lower µpΛq, the better. The results can
be found in Table 1, and Figure 6. We observe that every
CAM-based methods, except HiResCAM, highlights unseen
parts of an image to some extent. Moreover, the observation
are consistent over both datasets.

4 Conclusion
In this paper, we looked into several CAM-based methods,
with a particular focus on GradCAM. We showed that they
can highlight parts of the input image that are provably not
used by the network. This was also showed theoretically,
looking at the behavior of GradCAM for a simple, masked
CNN at initialization: the saliency map is positive in expecta-
tion, even in areas which are unseen by the network. Experi-
mentally, this phenomenon appears to remain true, even on a
realistic network trained to a good accuracy on ImageNet.
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at Centrale Méditerranée. We thank Jenny Benois-Pineau for
her valuable insights.

References
[Adebayo et al., 2018] Julius Adebayo, Justin Gilmer,

Michael Muelly, Ian Goodfellow, Moritz Hardt, and Been
Kim. Sanity Checks for Saliency Maps. In Advances in
Neural Information Processing Systems, 2018.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
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