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Abstract

Neuro-Symbolic (NeSy) Al could be regarded as
an analogy to human dual-process cognition, mod-
eling the intuitive System 1 with neural networks
and the algorithmic System 2 with symbolic rea-
soning. However, for complex learning targets,
NeSy systems often generate outputs inconsistent
with domain knowledge. Inspired by the human
Cognitive Reflection, which promptly detects er-
rors in our intuitive response and revises them by
invoking the System 2 reasoning, we propose to im-
prove NeSy systems by introducing Abductive Re-
flection (ABL-Refl) based on the Abductive Learn-
ing (ABL) framework. ABL-Refl leverages do-
main knowledge to abduce a reflection vector dur-
ing training, which can then flag potential errors in
the neural network outputs and invoke abduction to
rectify them and generate consistent outputs during
inference. Experiments show that ABL-Refl out-
performs state-of-the-art NeSy methods, achieving
excellent accuracy with fewer training resources
and enhanced efficiency.

1 Introduction

Human decision-making is generally recognized as an inter-
action between two systems: System 1 quickly generates an
intuitive response, and System 2 engages in further algorith-
mic and slow reasoning [Frederick, 2005; Kahneman, 2011].
In Neuro-Symbolic (NeSy) Al neural networks often resem-
ble System 1 for rapid pattern recognition, and symbolic rea-
soning mirrors System 2 to leverage domain knowledge and
handle complex problems thoughtfully, [Bengio, 2019]. Like
human System 1 reasoning, when facing complicated tasks,
neural networks often produce unreliable outputs which cause
inconsistencies with domain knowledge. These inconsisten-
cies can then be reconciled with the help of the symbolic rea-
soning counterpart [Hitzler, 2022].

Abductive Learning (ABL) [Zhou, 2019; Zhou and Huang,
2022] is a framework for bridging machine learning and log-
ical reasoning while preserving full expressive power in each

*This is an abridged version of the paper [Hu ef al., 2025] that
won the Outstanding Paper Award at AAAI 2025.

side. In ABL, the two components operate in a mutually ben-
eficial loop, continuously improving each other. It features an
easy-to-use open-source toolkit [Huang er al., 2024] and has
been applied in various practical tasks [Huang er al., 2020;
Cai et al., 2021; Wang et al., 2021; Gao et al., 2024]. How-
ever, previous implementations of ABL require a highly dis-
crete optimization process to maximize the consistency be-
tween the two components, and this optimization has high
complexity which encumbers, thereby limiting the efficiency
and applicability to large-scale scenarios.

Human reasoning exploits both sides efficiently, a hypo-
thetical model for this process is called Cognitive Reflection,
where System 1 quickly generates an approximate over-all
solution, and then seamlessly hands complex parts to System
2 [Frederick, 2005]. The key to this process is the reflec-
tion mechanism, which promptly detects which part in the
intuitive response may contain inconsistencies with domain
knowledge and invokes System 2 to rectify them [Sinayev
and Peters, 2015]. Following the reflection, the process of the
step-by-step formal reasoning becomes less complex: With a
largely reduced search space, deriving the correct solution for
System 2 becomes straightforward.

Inspired by this phenomenon, we propose a general en-
hancement, Abductive Reflection (ABL-Refl). Based on ABL
framework, ABL-Refl preserves full expressive power of neu-
ral networks and symbolic reasoning, while replacing the
time-consuming consistency optimization with the reflection
mechanism, thereby significantly improves efficiency and ap-
plicability. Specifically, in ABL-Refl, a reflection vector is
concurrently generated with the neural network intuitive out-
put, which flags potential errors in the output and invokes
symbolic reasoning to perform abduction, thereby rectifying
these errors and generating a new output that is more con-
sistent with domain knowledge. During model training, the
training information for the reflection derives from domain
knowledge. In essence, the reflection vector is abduced from
domain knowledge and serves as an attention mechanism for
narrowing the problem space of symbolic reasoning.

2 Abductive Learning

This section presents problem setting and the Abductive
Learning (ABL) framework.

The main task of this paper is as follows: The input is
raw data &, which can be in either symbolic or sub-symbolic
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Figure 1: Abductive Learning (ABL) framework.

form, and the target output is y = [y1,¥2, - - -, Yn], With each
y; being a symbol from a set ) that contains all possible
output symbols. We assume two key components at our dis-
posal: neural network f and domain knowledge base KB. f
can directly map « to y, and KB holds constraints between
the symbols in y. /CB can assume various forms, including
propositional logic, first-order logic, mathematical or physi-
cal equations, etc., and can perform symbolic reasoning oper-
ations by exploiting the corresponding symbolic solver. The
output y should adhere to the constraints in KB, otherwise it
will inevitably contain errors that lead to inconsistencies with
the domain knowledge and incorrect reasoning results.

When ABL receives an input , it initially employs f to
map  into an intuitive output § = [J1, 92, . . ., Yn). When f
is under-trained, § might contain errors leading to inconsis-
tencies with 3. ABL then tries to rectify them, and obtains
arevised g. As shown in Figure 1, the final output, ¢, con-
sists of two parts: the green part retains the results from neu-
ral network, and the blue part is the modified result obtained
by abduction, a basic form of symbolic reasoning that seeks
plausible explanations for observations based on KB.

Specifically, the process of obtaining ¥ can be divided into
two sequential steps. The first step, consistency optimization,
determines which positions in g include elements that contain
errors causing inconsistencies, so that performing abduction
at these positions will yield a ¢ consistent with KB. Once
these positions are determined, the second step is rectifying
by abduction, which then becomes easy for XI5 and its corre-
sponding symbolic solver.

Challenge. In previous ABL, consistency optimization has
always been a computational bottleneck. It operates as an ex-
ternal module using zeroth-order optimization methods [Dai
et al., 2019; Zhou and Huang, 2022]. For each time of infer-
ence, it involves repetitively selecting various possible posi-
tions and querying the B to see if a consistent result can be
inferred, and the number of such queries required escalates
exponentially as data scale increases.

3 Abductive Reflection

To address the challenges above, we propose Abductive Re-
flection (ABL-Refl), a general enhancement method that in-
corporates a reflection mechanism into the ABL framework.
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Figure 2: Architecture of Abductive Reflection (ABL-Refl). It re-
places the external consistency optimization module with an effi-
cient reflection mechanism, which is abduced directly from ICB.

3.1 Architecture

Let’s first revisit the role of the neural network f when we
map the input to symbols from the set ). Typically, the raw
data is first passed through the body block of the network,
denoted by f7, resulting in a high-dimensional embedding
which encapsulates a wealth of feature information of the raw
data. The result of f; is subsequently passed into several lay-
ers, usually linear layers, denoted by f5, to obtain the intuitive
output: § = argmax(fo(f1(x))) € Y".

Besides the structure described above, as shown in Fig-
ure 2, our architecture further incorporates a reflection layer
R after the body block fi, generating a reflection vector:
r = argmax(R(fi(x))) € {0,1}". The reflection layer
R and reflection vector r together constitute the reflection
mechanism. This vector = has the same dimensionality n as
the intuitive output ¢, and each element, 7;, acts as a binary
classifier to indicate whether the corresponding element g; is
an error leading to inconsistencies with '3 (flagged as 1 for
an error, and O otherwise). The reflection vector r is gen-
erated concurrently with the intuitive response during infer-
ence, resonating with human cognition where cognitive re-
flection typically forms right upon generation of an intuitive
response [Frederick, 2005].

With the initial intuitive output ¢ and the corresponding
reflection vector r, we seamlessly obtain the error-removed
output 4": In ¢, elements flagged as error by r are removed
and left as blanks, while the rest are retained. Subsequently,
ICB applies abduction to fill in these blanks, thereby generat-
ing an output ¥ that is consistent with JCB. That is:

- @17 Ty = 0
vi {5(:&2)7

r, = 1
where ¢ denotes abduction. We treat § = [71, ¥, - - -
the final output.

During training, the reflection is abduced from B by di-
rectly leveraging information from it. It can be seen as an
attention mechanism generated from neural networks, which
quickly focus symbolic reasoning on specific areas, hence
largely narrowing the reasoning problem space.

Benefits. Compared to previous ABL implementations,
ABL-Refl replaces the zeroth-order consistency optimization

i=1,2,....,n

,Un] as
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Figure 3: Consistency measurements.

module with the reflection mechanism to address the com-
putational bottleneck. In this way, the need for a substantial
number of querying B is mitigated: After promptly pin-
pointing inconsistencies in System 1 output, regardless of the
data scale, only a single invocation of B is required to ob-
tain a rectified and more consistent output.

Another thing worth noticing is that, in the architecture,
the reflection layer directly connects to the body block, which
helps leveraging information from the embeddings and link-
ing more closely with the raw data. Therefore, the reflection
vector r establishes a more direct and tighter bridge between
raw data and domain knowledge.

3.2 Training Paradigm

In ABL-Refl, when each input x is processed by the neu-
ral network, we obtain the intuitive output ¢ and the reflec-
tion vector r, and subsequently obtain the error-removed (by
r) output §j'. With §j and 9’, we can measure their consis-
tency with CB. We denote these consistency measurements
as Con(g, KB) and Con(g’, KB), as shown in Figure 3.

Consequently, the improvement in consistency measure-
ment after reflection, as denoted by

ACon,.(§) = Con(4’, KB) — Con(4j, KB)

naturally indicates the effectiveness of the reflection vector:
A higher value of it signifies that reflection r can more effec-
tively detect inconsistencies within . Our training goal is to
guide the neural network’s parameters towards generating re-
flections that can maximize this value. Given that ACon,.(9)
is usually a discrete value, we employ the REINFORCE algo-
rithm to achieve this goal [Williams, 1992], which optimizes
the policy (implicitly defined by neural network f) through
maximizing a specified reward — in this case, ACon,(g).
This process leads to the following consistency loss:

Lcon(x) = _Acon'l'(g) : VG IOg f9 (g7 r | :B) (1)

where 0 are parameters of neural network f.

Additionally, given that the time abduction required often
escalates with problem size, we want to invoke it judiciously
during inference, applying it only when it is truly necessary.
Therefore, we aim to avoid the reflection vector from flagging
too many elements in g as error. To achieve this, we then

introduce a reflection size loss:
n

Loie(@) = cp(o - %Z (1

i=1

- R(fl(w))i)> 2

where ®(a) = max(0, a)? and C is a hyperparameter.

In addition to the above-mentioned training methods, us-
ing labeled data, we employ data-driven supervised train-
ing methods similar to common neural network training
paradigm. The loss function in this process, e.g., cross-
entropy loss, is denoted by Ligpered (€, y).

Therefore, combining all the training loss, the total loss for
ABL-Refl is represented as follows:

|Dz > Liaberea(,y)
(z,y)eD;

1
DU Dy 2.

v xeD,UD,

(3)
(aLcon () + BLgize())

where « and 3 are hyperparameters, D; and D, are the la-
beled and unlabeled datasets, respectively. Note that neither
Lon nor Lg;.., which are loss functions specifically related
to the reflection, incorporate information from the data label.
Instead, we leverage training information directly from CB
to train the reflection. Also, despite sharing the prior feature
layers, the output layer f> and reflection layer R utilize dif-
ferent training information, thereby decoupling the objectives
of intuitive problem-solving and inconsistency reflection.

4 Experiments

In this section, we will test our method on the NeSy bench-
mark task of solving Sudoku to verify its effectiveness. Next,
we will change the Sudoku input from symbols to images,
which requires integrating and simultaneous reasoning with
both sub-symbolic and symbolic elements, representing one
of the most challenging tasks in this field.

4.1 Solving Sudoku

Dataset and Setting. This task aims to solve a 9x9 Su-
doku: Given 81 digits of 0-9 (where O represents a blank
space) in a 9x9 board, we aim to find a solution y €
{1,2,...,9}8! that adhere to the Sudoku rules:. We use
datasets from a publicly available site [Vopani, 2019].

For the neural network f, we use a simple graph neural net-
work (GNN) as the body block f;, and then connects to both
a linear output layer f> to obtain the intuitive output ¢ and a
linear reflection layer R to obtain the reflection vector . The
domain knowledge base B contains the Sudoku rules men-
tioned above. We express ICB in the form of propositional
logic and utilize the MiniSAT solver [Sérensson, 2010], an
open-source SAT solver, as the symbolic solver.

Compared Methods and Results. We compare ABL-Refl
with the following baseline methods: 1) Recurrent Rela-
tional Network (RRN) [Palm ef al., 2018], a pure neural net-
work method, 2) CL-STE [Yang et al., 2022], a represen-
tative method of logic-based regularized loss, and 3) SAT-
Net [Wang er al., 2019], a differentiable maximum satisfia-
bility integrated in neural networks.
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Training  Inference Inference

Method Time (min) Time (s) Accuracy
RRN 114.8+73 0.19+0.01 73.1+12
CL-STE 173.6+9.9 0.19+0.02 76.5+1.8
SATNet 140.3+6.8 0.11+o0.01 74.1+04
ABL-Refl  109.8+1038 0.22+0.02 97.4+03

Table 1: Training time (for a total of 100 epochs), inference time
and accuracy on solving Sudoku.

Inference Inference

Nthod Time (s) Accuracy
SATNet 0.12+0.01 63.5+22
CNN+Solver 0.23+0.02 67.8+42
ABL-Refl 0.22+0.02 77.8+5.8
ABL-Refl (with pretrained CNN)  0.22+0.02 93.5+3.2

Table 2: Inference time and accuracy on solving visual Sudoku.

We report the training time, inference time and accuracy in
Table 1. We may see that our method outperforms the base-
lines significantly, improving by over 20% while maintain-
ing a comparable inference time. Furthermore, our method
reaches high accuracy in only a few epochs, significantly re-
ducing training time. Even considering under identical train-
ing epochs, our total training time is less than baseline meth-
ods, despite involving a time-consuming symbolic solver.

4.2 Solving Visual Sudoku

Dataset and Setting. In this section, we modify the input
from symbolic digits to MNIST images (handwritten digits
of 0-9). We use the dataset provided in SATNet.

In order to process image data, we first pass each image
through a LeNet convolutional neural network (CNN) [Le-
Cun et al., 1998] to obtain the probability of each digit. The
rest of our setting follows from that described in Section 4.1.

Compared Methods and Results. We compare ABL-Refl
with SATNet. We report the results in Table 2. Compared to
SATNet, ABL-Refl shows notable improvement in reasoning
accuracy within only a few training epochs. We then consider
pretraining the CNN in advance using self-supervised learn-
ing methods [Chen ef al., 2020] and find that this can further
improve accuracy.

We also compare with CNN+Solver: each image is first
mapped to symbolic form by a fully trained CNN (with 99.6%
accuracy on the MNIST dataset) and then directly fed into the
symbolic solver to fill in the blanks and derive the final out-
put. In such scenarios, the problem space for the symbolic
solver includes all the Sudoku blanks, and additionally, since
the symbolic solver cannot revise errors from CNN, any in-
accuracies in CNN’s output could lead the symbolic solver
to crash (i.e., output no solution). Consequently, inference
accuracy and time are adversely affected.

Finally, an overview of Sections 4.1 and 4.2 also suggests
that ABL-Refl is capable of handling both symbolic and sub-
symbolic forms of input data.

Method Recall Inference Inference
Time (s) Accuracy
ABL Timeout Timeout Timeout
NN Confidence 82.64+278  0.24+0.03 64.3+62
NASR 95.86+096  0.26+0.02 82.7+44
ABL-Refl 99.04+0.85  0.22-+0.02 93.5+32

Table 3: Recall, inference time and accuracy. “Timeout” indicates
that inference takes more than 1 hour.

5 Effects of Reflection Mechanism

This section analyzes the reflection mechanism in ABL-Ref],
which is abduced from domain knowledge and acts as an at-
tention mechanism to guide symbolic reasoning. It plays a
central role in identifying neural output errors and invoking
symbolic rectification.

To corroborate the effectiveness of the reflection, we con-
duct direct comparison with other error-detection methods on
the solving visual Sudoku task in Section 4.2. We report the
recall (the percentage of errors from neural networks that can
be identified), inference time and accuracy in Table 3.

(1) ABL, minimizing the inconsistency of intuitive out-
put and knowledge base with an external zeroth-order con-
sistency optimization module, as detailed in Section 2. Due
to the large data scale (output dimension n = 81), the po-
tential rectifications can reach up to 28, resulting in an over-
whelmingly large search space for consistency optimization.
Therefore, it takes several hours to complete inference.

(2) NN Confidence, retaining intuitive output with the top
80% confidence from the neural network result and passing
the remaining into symbolic reasoning. Since the pure data-
driven neural network training does not explicitly incorporate
KB information, a low confidence from it does not necessar-
ily indicate an inconsistency with the domain knowledge.

(3) NASR [Cornelio et al., 2023], using a Transformer-
based external selection module to detect error, and the mod-
ule is trained on a large synthetic dataset in advance. Our
method outperforms it without the need of a synthetic dataset.
This may step from the fact that our method can leverage in-
formation directly from the body block of neural network,
establishing a deeper connection with the raw data.

6 Conclusion

In this paper, we present Abductive Reflection (ABL-Refl). It
leverages domain knowledge to abduce a reflection vector,
which flags potential errors in neural network outputs and
then invokes abduction, serving as an attention mechanism
for symbolic reasoning to focus on a much smaller prob-
lem space. ABL-Refl preserves the integrity of both machine
learning and logical reasoning with superior inference speed
and high versatility. Therefore, it has the potential for broad
application. In the future, it can be applied to large language
models [Mialon et al., 2023] to help identify errors within
their outputs, and subsequently exploit symbolic reasoning to
enhance their trustworthiness and reliability.
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