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Abstract
Decision trees are a popular tool in machine learn-
ing and yield easy-to-understand models. Several
techniques have been proposed in the literature for
learning a decision tree classifier, with different
techniques working well for data from different do-
mains. In this work, we develop a data-driven ap-
proach to design decision tree learning algorithms
given repeated access to data from the same do-
main. We study multiple formulations covering dif-
ferent aspects and popular techniques for learning
decision trees. We propose novel parameterized
classes of node splitting criteria in top-down algo-
rithms, which interpolate between popularly used
entropy and Gini impurity based criteria, and pro-
vide theoretical bounds on the number of samples
needed to learn the splitting function appropriate
for the data at hand. We also study the sample com-
plexity of tuning prior parameters in Bayesian de-
cision tree learning, and extend our results to deci-
sion tree regression. We further consider the prob-
lem of tuning hyperparameters in pruning the deci-
sion tree for classical pruning algorithms including
min-cost complexity pruning. We also study the
interpretability of the learned decision trees and in-
troduce a data-driven approach for optimizing the
explainability versus accuracy trade-off using deci-
sion trees. Finally, we demonstrate the significance
of our approach on real world datasets by learn-
ing data-specific decision trees which are simulta-
neously more accurate and interpretable.

1 Introduction
Decision trees are ubiquitous, with applications in operations
research, management science, data mining, and machine
learning. They are easy to use and understand models that ex-
plicitly include the decision rules used in making predictions.
Each decision rule is a simple comparsion of a real-valued at-
tribute to a threshold or a categorical attribute against a candi-
date set of values. Given their remarkable simplicity, decision

∗Full version appears in the proceedings of UAI 2024 [Balcan
and Sharma, 2024], winner of Outstanding Student Paper Award.

trees are widely preferred in applications where it is important
to justify algorithmic decisions with intuitive explanations
[Rudin, 2018]. However, decades of research on decision
trees has resulted in a large suite of candidate approaches for
building decision trees [Breiman et al., 1984; Mingers, 1987;
Quinlan, 1993; Quinlan, 1996; Kearns and Mansour, 1996;
Mansour, 1997; Maimon and Rokach, 2014]. This raises an
important question: how should one select the best approach
to build a decision tree for the relevant problem domain?

Several empirical studies have been performed comparing
various ways to build decision trees [Mingers, 1989b;
Esposito et al., 1997]. Current wisdom from the literature
dictates that for any problem at hand, one needs a domain
expert to try out, compare and tune various methods to build
the best decision trees for any given problem domain. For
instance, the popular Python library Scikit-learn [Pedregosa
et al., 2011] implements both Gini impurity and entropy as
candidate ‘splitting criteria’ (a crucial component in building
the decision trees top-down by deciding which node to split
into child nodes), and yet theory suggests another promising
candidate [Kearns and Mansour, 1996] that achieves smaller
error bounds under the Weak Hypothesis Assumption1. It is
therefore desirable to determine which approach works better
for the data coming from a given domain. With sufficient
data, can we automate this tedious manual process?

In this work we approach this crucial question, and propose
ways to build more effective decision trees automatically. Our
results show provable learning theoretic guarantees and select
methods over larger search spaces than what human experts
would typically explore. For example, instead of comparing
a small finite number of splitting criteria, we examine
learnability over continuously infinite parameterized families
that yield more effective decision tree learning algorithms.

We consider the problem where the learner has access to
multiple related datasets D1, . . . , DN coming from the same
problem domain (given by a fixed but unknown distribution
D), and the goal is to design a decision tree learning algo-
rithm that works well over the distribution D using as few
datasets (N , the sample complexity) as possible. This algo-
rithm design problem is typically formulated as the selection

1an a priori assumption on the target function. Roughly speak-
ing, it means that the decision tree node functions are already
slightly correlated with the target function.
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of a hyperparameter from an infinite family. Typically finding
the best hyperparameters even on a single problem sample is
tedious and computationally intensive, so we would like to
bound the number of samples over which we should optimize
them, while learning parameters that generalize well over the
distribution generating the problem samples. We take steps
towards systematically unifying, automating and formalizing
the process of designing decision tree learning algorithms, in
a way that is adaptive to the data domain.

1.1 Our Contributions

We formulate the problem of designing a decision tree
learning algorithm as a hyperparameter selection problem
over multiple problem instances coming from the same
domain. Under this formulation, we study the sample
complexity, i.e. the number of problem instances needed to
learn a provably good algorithm (hyperparameter) under the
statistical learning setting (meaning problem instances are
drawn from a fixed but unknown distribution) from several
different design perspectives important in the construction of
decision trees. A key technical challenge is the non-linearity
of boundaries of the piecewise structured dual loss function.

• We introduce a novel family of node splitting criterion
called (α, β)-Tsallis entropy criterion, which contains two
tunable parameters, and includes several popular node
splitting criteria from the literature including the entropy-
based ID3/C4.5 [Quinlan, 1986; Quinlan, 1993] and Gini
impurity based CART [Breiman et al., 1984]. We bound the
sample complexity of provably tuning these hyperparame-
ters in top-down learning algorithms. We perform experi-
ments to show the practical significance and effectiveness
of tuning these hyperparameters on real world datasets.

• We further study tuning of parameters in Bayesian decision
tree learning algorithms used in generating the prior dis-
tribution. We also study a parameterized family for node
splitting for regression trees and bound the sample com-
plexity of tuning the parameter.

• We next consider the problem of learning the pruning
algorithm used in constructing the decision tree. We
show how to tune parameters in popular algorithms
including the complexity parameter α̃ in the Minimal
Cost-Complexity Pruning algorithm, and again obtain
sample complexity bounds. We also study the sample
complexity of tuning pessimistic error pruning methods,
which are computationally faster.

• We consider the problem of optimizing the explainability-
accuracy trade-off in the design of decision tree learning
algorithms. Here we consider tuning splitting and pruning
parameters simultaneously when growing a decision tree to
size t and pruning it down to size t′ ≤ t, while minimizing
an objective that incorporates explainability as well as
accuracy. Our work is the first to study explainability from
a data-driven design perspective.

We highlight the first couple of contributions above in this ex-
tended abstract. For further details on the other contributions,
see the full version [Balcan and Sharma, 2024].

1.2 Related Work
Building and pruning decision trees. Typically, decision trees
are built in two stages. First the tree is grown in a top-down
fashion by successively ‘splitting’ existing nodes according
to some splitting criterion. Numerous different methods to
select which node to split and how to split have been pro-
posed in the literature [Breiman et al., 1984; Quinlan, 1993;
Kearns and Mansour, 1996]. The second stage involves prun-
ing the tree to avoid overfitting the training set, and again
a variety of approaches are known [Breiman et al., 1984;
Mingers, 1987; Quinlan, 1987; Mansour, 1997]. Further-
more, empirical works suggest that the appropriate method
to use depends on the data domain at hand [Mingers, 1989a;
Mingers, 1989b]. The task of selecting the best method or
tuning the hyperparameters for a method is left to domain
expert. Recent work has developed techniques for comput-
ing the optimal decision trees by using branch-and-bound
and dynamic programming based techniques [Hu et al., 2019;
Lin et al., 2020; Demirović et al., 2022]. The key idea is to
reduce the search space by tracking bounds on the objective
value. However, these approaches are computationally more
expensive than the classical greedy methods.

Data-driven algorithm designis a recently introduced
framework [Gupta and Roughgarden, 2016] for designing al-
gorithms using machine learning in order to optimize perfor-
mance over problems coming from a common problem do-
main (see [Balcan, 2020] for a survey). The basic premise is
to design algorithms for typical inputs instead of worst-case
inputs by examining repeated problem instances. In machine
learning, this can be used to provably tune hyperparameters
(Balcan et al. [2018a; 2018b; 2023b; 2023a; 2024b], Blum et
al. [2021], Bartlett et al. [2022], Sharma et al. [2023; 2024;
2025]) as opposed to employing heuristics like grid search or
random search [Bergstra and Bengio, 2012] for which formal
global-optimality guarantees are typically not known. Gen-
eral techniques have been developed in previous works [Bal-
can et al., 2024a] for providing the sample complexity of
tuning a linear combination of variable selection policies in
branch-and-bound, and special cases of “path-wise” node se-
lection policies have been studied [Balcan et al., 2021]. In
contrast, our work provides new technical insights for node
selection policies relevant for decision tree learning which do
not satisfy the previously studied path-wise properties and in-
volve a more challenging non-linear interpolation. Prior work
obtains a general result for tree search without any path-wise
assumptions, but still require a linear interpolation of selec-
tion policies.

2 Data-driven Top-down Learning
Let [k] denote the set of integers {1, 2, . . . , k}. A (super-
vised) classification problem is given by a labeled dataset
D = (X, y) over some input domain X ∈ Xn and y ∈ Yn =
[c]n where c denotes the number of distinct classes or cate-
gories. LetD be a distribution over classification problems of
size n. We will consider parameterized families of decision
tree learning algorithms, parameterized by some parameter
ρ ∈ P ⊆ Rd and access to datasets D1, . . . , DN ∼ DN . We
do not assume that individual data points (Xi, yi) are i.i.d. in
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Algorithm 1 Top-down decision tree learner (F , gρ, t)
Input: Dataset D = (X, y)
Parameters: Node function class F , splitting criterion gρ ∈
GP , tree size t
Output: Decision tree T

1: Initialize T to a leaf node labeled by most frequent label
y in D.

2: while T has at most t internal nodes do
3: l∗, f∗ ← argminl∈leaves(T ),f∈FGρ(Tl→f )
4: T ← Tl∗→f∗

5: return T

any dataset Dj .
We consider a finite node function class F consisting of

boolean functions X → {0, 1} which are used to label inter-
nal nodes in the decision tree, i.e. govern given any data point
x ∈ X whether the left or right branch should be taken when
classifying x using the decision tree. Any given data point
x ∈ X corresponds to a unique leaf node determined by the
node function evaluations at x along some unique root-to-leaf
path. Each leaf node of the decision tree is labeled by a class
in [c]. Given a dataset (X, y) this leaf label is typically set
as the most common label for data points x ∈ X which are
mapped to the leaf node.

We denote by Tl→f the tree obtained by splitting the leaf
node l, which corresponds to replacing it by an internal node
labeled by f and creating two child leaf nodes. We consider
a parameterized class of splitting criterion GP over some pa-
rameter space P consisting of functions gρ : [0, 1]c → R≥0

for ρ ∈ P . The splitting criterion governs which leaf to be
split next and which node function f ∈ F to be used when
building the decision tree using a top-down learning algo-
rithm which builds a decision tree by successively splitting
nodes using gρ until the size equals input tree size t. More
precisely, suppose w(l) (the weight of leaf l) denotes the num-
ber of data points in X that map to leaf l, and suppose pi(l)
denotes the fraction of data points labeled by y = i ∈ [c]
among those points that map to leaf l. The splitting function
over tree T is given by

Gρ(T ) =
∑

l∈leaves(T )

w(l)gρ ({pi(l)}ci=1) ,

and we build the decision tree by successively splitting the
leaf nodes using node function f which cause the maximum
decrease in the splitting function. For example, the informa-
tion gain criterion may be expressed using gρ({pi(l)}ci=1) =
−
∑c

i=1 pi log pi.
Algorithm 1 summarizes this well-known general

paradigm. We denote the tree obtained by the top-down
decision tree learner on dataset D as TF,ρ,t(D). We study the
0-1 loss of the resulting decision tree classifier. If T (x) ∈ [c]
denotes the prediction of tree T on x ∈ X , we define the loss
on dataset D(X, y) as L(T,D) := 1

n

∑n
i=1 I[T (Xi) ̸= yi],

where I[·] denotes the 0-1 valued indicator function.

2.1 Learning to Split Nodes
In this section, we study the sample complexity of learning
the splitting criteria. Given a discrete probability distribution

P = {pi} with
∑c

i=1 pi = 1, we define (α, β)-Tsallis en-
tropy as

gTSALLIS
α,β (P ) :=

C

α− 1

1−

(
c∑

i=1

pαi

)β
 ,

where C is a normalizing constant (does not affect Algorithm
1), α ∈ R+, β ∈ Z+. β = 1 corresponds to standard Tsal-
lis entropy [Tsallis, 1988]. For example, α = 2, β = 1
corresponds to Gini impurity, α = 1

2 , β = 2 corresponds
to the Kearns and Mansour [1996] criterion (using which
error ϵ can be achieved with trees of size poly(1/ϵ)) and
limα→1 g

TSALLIS
α,1 (P ) yields the (Shannon) entropy criterion.

We consider α ∈ R+ and β ∈ [B] for some positive inte-
ger B, and observe that several previously studied splitting
criteria can be readily obtained by setting appropriate val-
ues of parameters α, β. We consider the problem of tuning
the parameters α, β simultaneously, given access to multi-
ple problem instances (datasets) drawn from some distribu-
tion D. The goal is to find parameters α̂, β̂ based on the
training samples, so that on a random D ∼ D, the expected
loss ED∼DL(TF,(α̂,β̂),t, D) is minimized. We will bound
the sample complexity of the ERM Empirical Risk Mini-
mization (ERM) principle, which given N problem samples
D1, . . . , DN computes parameters α̂, β̂ such that

α̂, β̂ = argminα>0,β∈[B]

N∑
i=1

L(TF,(α,β),t, Di).

We obtain the following guarantee on the sample complex-
ity of learning a near-optimal splitting criterion. The over-
all argument involves an induction on the size t of the
tree (which has appeared in several prior works including
Megiddo [1978] and Balcan et el. [2018a; 2021]), coupled
with a counting argument for upper bounding the number of
parameter sub-intervals corresponding to different behaviors
of Algorithm 1 given a parameter interval corresponding to
a fixed partial tree corresponding to an intermediate stage of
the algorithm.
Theorem 1. Suppose α > 0 and β ∈ [B]. For any ϵ, δ > 0
and any distribution D over problem instances with n exam-
ples, O( 1

ϵ2 (t(log |F|+log t+c log(B+c))+log 1
δ )) samples

drawn from D are sufficient to ensure that with probability at
least 1− δ over the draw of the samples, the parameters α̂, β̂
learned by ERM over the sample have expected loss that is
at most ϵ larger than the expected loss of the best param-
eters α∗, β∗ = argminα>0,β≥1ED∼DL(TF,(α̂,β̂),t, D) over
D. Here t is the size of the decision tree, F is the node func-
tion class used to label the nodes of the decision tree and c is
the number of label classes.

2.2 Experiments
We examine the significance of the novel splitting techniques
and the importance of designing data-driven decision tree
learning algorithms via hyperparameter tuning for various
benchmark datasets from the UCI repository.

We first study the effect of choice of (α, β) parameters in
the Tsallis entropy based splitting criterion. For each dataset,

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 1: Average test accuracy (proportional to brightness, yellow
is highest) of (α, β)-Tsallis entropy based splitting criterion as the
parameters are varied, across datasets. We observe that different
parameter settings work best for each dataset, highlighting the need
to learn data-specific values.

we perform 5-fold cross validation for a large grid of param-
eters depicted in Figure 1 and measure the accuracy on held
out test set consisting of 20% of the datapoints (i.e. training
datasets are just random subsets of the 80% of the dataset
used for learning the parameters). We implement a slight
variant of Algorithm 1 which grows the tree to maximum
depth of 5 (as opposed to a fixed size t). We do not use
any pruning here. There is a remarkable difference in the
optimal parameter settings for different datasets. Moreover,
carefully chosen values of (α, β) significantly outperform
standard heuristics like Gini impurity or entropy based split-
ting, or even specialized heuristics like [Kearns and Mansour,
1996] for which worst-case error guarantees (assuming weak
learning) are known. This further underlines the significance
of data-driven algorithm design for decision tree learning.

2.3 Bayesian Decision Tree Models
Several Bayesian approaches for building a decision tree have
been proposed in the literature [Chipman et al., 1998; Chip-
man et al., 2002; Wu et al., 2007]. The key idea is to specify
a prior which induces a posterior distribution and a stochas-
tic search is performed using Metropolis-Hastings algorithms
to explore the posterior and find an effective tree. We will
summarize the overall approach below and consider the prob-
lem of tuning parameters in the prior, which control the ac-
curacy and size of the tree. Unlike most of prior research on
data-driven algorithm design which study deterministic algo-
rithms, we will analyze the learnability of parameters in a
randomized algorithm. One notable exception is the study
of random initialization of centers in k-center clustering via
parameterized Llyod’s families [Balcan et al., 2018b].

σ, ϕ-Bayesian algorithm family. Let F = (f1, . . . , ft) de-
note the node functions at the nodes of the decision tree T .
The prior p(F, T ) is specified using the relationship

p(F, T ) = p(F |T )p(T ).
We start with a tree T consisting of a single root node. For
any node τ in T , it is split with probability pSPLIT(τ) = σ(1+
dτ )

−ϕ, and if split, the process is repeated for the left and
right children. Here dτ denotes the depth of node τ , and σ, ϕ
are hyperparameters. The size of generated tree is capped to

some upper bound t. Intuitively, σ controls the size of the
tree and ϕ controls its depth. At each node, the node function
is selected uniformly at random from F . This specifies the
prior p(T ). The conjugate prior for the node functions F =
(f1, . . . , ft) is given by the standard Dirichlet distribution of
dimension c− 1 (recall c is the number of label classes) with
parameter a = (a1, . . . , ac), ai > 0. Under this prior, the
label predictions are given by

p(y | X,T ) =

(
Γ(
∑

i ai)

ΠiΓ(ai)

)t t∏
j=1

ΠiΓ(nji + ai)

Γ(nj +
∑

i ai)
,

where nji =
∑

k I(yjk = i) counts the number of datapoints
with label i at node j, nj =

∑
i nji and i = 1, . . . , c. a

is usually set as the vector (1, . . . , 1) which corresponds to
the uniform Dirichlet prior. Finally the stochastic search of
the induced posterior is done using the Metropolis-Hastings
(MH) algorithm for simulating a Markov chain [Chipman et
al., 1998]. Starting from a single root node, the initial tree T 0

is grown according to the prior p(T ). Then to construct T i+1

from T i, a new tree T ∗ is constructed by splitting a random
node using a random node function, pruning a random node,
reassigning a node function or swapping the node functions
of a parent and a child node. Then we set T i+1 = T ∗ with
probability q(T i, T ∗) according to the posterior p(y | X,T ),
or keep T i+1 = T i otherwise. The algorithm outputs the tree
Tω where ω is typically a fixed large number of iterations
(say 10000) to ensure that the search space is explored
sufficiently well.

Hyperparameter tuning. We consider the problem of tun-
ing of prior hyperparameters σ, ϕ, to obtain the best ex-
pected performance of the algorithm. To this end, we define
z = (z1, . . . , zt−1) ∈ [0, 1]t−1 as the randomness used in
generating the tree T according to p(T ). Let Tz,σ,ϕ denote
the resulting initial tree. Let z′ denote the remaining random-
ness used in the selecting the random node function and the
stochastic search, resulting in the final tree T (Tz,σ,ϕ, z

′, ω).
Our goal is to learn the hyperparameters σ, ϕ which minimize
the expected loss

Ez,z′,DL(T (Tz,σ,ϕ, z
′, ω), D),

where D denotes the distribution according to which the
data D is sampled, and L denotes the expected fraction
of incorrect predictions by the learned Bayesian decision
tree. ERM over a sample D1, . . . , Dn ∼ Dn finds the
parameters σ̂, ϕ̂ which minimize the expected average loss
1
n

∑n
i=1 Ez,z′L(T (Tz,σ,ϕ, z

′, ω), Di) over the problem in-
stances in the sample. It is not clear how to efficiently im-
plement this procedure. However, we can bound its sample
complexity and prove the following guarantee for learning a
near-optimal prior for the Bayesian decision tree.

Theorem 2 (informal). Suppose σ, ϕ > 0. The sample
complexity of tuning the parameters (with at most ϵ error
and high probability at least 1 − δ) in the σ, ϕ-Bayesian
algorithm family is O( 1

ϵ2 (log t+ log 1
δ )) given samples from

an arbitrary distibution D (in the sense of Theorem 1).
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[Demirović et al., 2022] Emir Demirović, Anna Lukina,
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