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Abstract
We study cooperative games where players join se-1

quentially, and the value generated by those who2

have joined at any point must be irrevocably di-3

vided among these players. We introduce two4

desiderata for the value division mechanism: that5

the players should have incentives to join as early as6

possible, and that the division should be considered7

fair. For the latter, we require that each player’s8

expected share in the mechanism should equal her9

Shapley value if the players’ arrival order is uni-10

formly at random.11

When the value generation function is submodu-12

lar, allocating the marginal value to the player sat-13

isfies these properties. This is no longer true for14

more general functions. Our main technical contri-15

bution is a complete characterization of 0-1 value16

games for which desired mechanisms exist. We17

show that a natural mechanism, Rewarding First18

Critical Player (RFC), is complete, in that a 0-119

value function admits a mechanism with the prop-20

erties above if and only if RFC satisfies them; we21

analytically characterize all such value functions.22

Moreover, we give an algorithm that decomposes,23

in an online fashion, any value function into 0-124

value functions, on each of which RFC can be run.25

In this way, we design an extension of RFC for gen-26

eral monotone games, and the properties are proved27

to be maintained.28

1 Introduction29

Consider a frequent scenario, where a group of people form30

a partnership for a startup [Spender et al., 2017]. They have31

different abilities or funds to contribute and can cooperate to32

create values. Sharing the value created is a classic prob-33

lem studied in the literature on cooperative games [Driessen,34

2013; Bilbao, 2012; Shapley, 1953; Von Neumann and Mor-35

genstern, 2007]. Traditional cooperative games distribute the36

value after the whole coalition is formed. However, in reality,37

∗The full version was first published at AAMAS 2024 Ge et al.
[2024], while Yao Zhang was a Ph.D. student at ShanghaiTech Uni-
versity.

people typically do not all arrive at one point of time; rather, 38

they join sequentially. This creates two issues: first, it is often 39

not realistic to wait until everyone arrives before distributing 40

the value — sometimes, it is not even clear if “everyone” has 41

joined. This requires that values be distributed in an online 42

manner. Second, the time to join can be strategic for a player; 43

for example, a fund may choose the best time to invest in a 44

startup. 45

In this work, we propose a theory for online cooperative 46

games that explicitly addresses these issues. Firstly, we re- 47

quire that, after each player joins, an irrevocable distribution 48

of the value created so far should be immediately determined. 49

We formalize a property called online individually rational 50

to guarantee that players’ shares be non-negative and non- 51

decreasing as new players join, so that all are willing to par- 52

ticipate till the end. Secondly, to gather resources quickly, and 53

to prevent players from waiting indefinitely for each other to 54

join first, we require a share-dividing mechanism to incen- 55

tivize players to join the game as early as possible. Namely, 56

we require the mechanism to distribute a higher reward to a 57

player when she joins earlier (when the order of the others’ 58

arrivals remains fixed). We believe this is a critical property 59

of an online value-sharing mechanism, which has not been 60

discussed in the literature so far. 61

Incentivizing early arrival is the key property we proposed 62

here, which also has promising applications. For example, 63

considering a group of students working on a hard project 64

which requires different combinations of skills to finish it, 65

the supervisor may want to incentivize the students to join 66

the project as early as possible so that the project can be fin- 67

ished earlier. Again for a startup to quickly get enough funds, 68

they should design a proper reward sharing mechanism to in- 69

centivize investors to invest the startup as early as possible. 70

One may notice that there exist trivial online methods to 71

incentivize early arrivals of players. For example, one may 72

simply always give all the value to the first player in the game. 73

However, such a solution is not fair (e.g., the first player may 74

make no contribution to the value at all). Hence, we use 75

the Shapley value [Shapley, 1953], a well-known and widely 76

accepted classic solution to traditional cooperative game, as 77

a benchmark for fairness [Clippel and Rozen, 2019]. More 78

precisely, we require every player’s expected reward over all 79

possible joining orders to be exactly her Shapley value in the 80

game, which is referred to as Shapley-fair in our setting. 81
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Taking everything together, our contributions are summa-82

rized as follows.83

• We formalize the requirements mentioned above. We84

check two trivial ideas, including allocating the Shapley85

Value to the players and allocating the marginal contri-86

bution to the players, and show the limitations of them.87

• For 0-1 monotone games, we propose a mechanism88

called Reward First Critical Player (RFC), and show it89

to be complete. Namely, we analytically characterize the90

set of games where RFC satisfies all the requirements,91

and show that any other game does not admit a mecha-92

nism with all the properties.93

• We extend the method for 0-1 monotone cooperative94

games to deal with general games. The key idea is to95

decompose such a game into 0-1 monotone games in an96

online fashion. Properties of RFC are then extended to97

general games.98

The remainder of the paper is organized as follows. Sec-99

tion 2 gives the concrete model of the problem we study. We100

then characterize the solution in 0-1 monotone games and a101

corollary of impossibility results in Section 3. Furthermore,102

we extend the solution to general games in Section 4. Finally,103

we discuss future investigations.104

2 The Model105

An online cooperative game is given by a triple (N, v, π),106

where N is a set of players, v : 2N → R+ is a set function,107

and π ∈ Π(N) is a permutation of N (Π(N) denotes the set108

of all permutations of N ). Players arrive sequentially, in the109

order given by π. A coalition is a set S ⊆ N of players, who110

create a value v(S). v(·) is normalized if v(∅) = 0, and is111

monotone if ∀T ⊆ S ⊆ N , v(S) ≥ v(T ). Throughout this112

work, we consider normalized and monotone games.113

If a player i arrives earlier than j according to π, we say114

i ≺π j. Let pπ(i) denote the set of players that arrive115

(weakly) before i, including i: pπ(i) := {j | j ≺π i} ∪ {i}.116

For a subset S ⊆ N , v restricted to S, written as v|S , is a set117

function v|S : 2S → R+ defined as v|S(T ) = v(T ), ∀T ⊆ S;118

π restricted to S, written as π|S , is the permutation of S de-119

fined as i ≺π|S j iff i ≺π j, for all i, j ∈ S.120

We look to divide the values in an online fashion as players121

join; that is, at any point of time, when the set of players that122

have arrived is S, we should allocate irrevocably to players123

in S all the value created by S, without the knowledge of v124

or π beyond the scope of S. We formalize this below.125

Definition 1 (Prefix). A coalition S ⊆ N is a prefix of π if S126

is the set of first |S| players to arrive according to π. This is127

denoted as S ⊑ π.128

Definition 2 (Local Games). For a game (N, v, π) and a pre-129

fix S ⊑ π, the local game on S is the game (S, v|S , π|S).130

Definition 3. A value-sharing policy ϕ maps a game131

(N, v, π) to an n-tuple of allocations, so that ϕi(N, v, π) ≥ 0132

is player i’s share of the value, and
∑

i ϕi(N, v, π) = v(N).133

An online value-sharing mechanism is given by a value-134

sharing policy ϕ, so that after the arrival of each prefix135

S ⊑ π, each player i ∈ S gets a (cumulated) share of136

ϕi(S, v|S , π|S).137

When the context is clear, we often omit the first argument 138

of a policy ϕ, and simply write ϕi(v, π). 139

To keep the players from quitting early, we require each 140

player’s share to weakly increase as more players arrive: 141

Definition 4. An online mechanism is online individually ra- 142

tional (OIR) for value function v if for any arrival order π 143

and any T, S ⊑ π with T ⊆ S, we have ϕi(T, v|T , π|T ) ≤ 144

ϕi(S, v|S , π|S) for every player i ∈ T . 145

To prevent players from strategically delaying their ar- 146

rivals, we require each player’s share of value to be no larger 147

if she chooses to join later than her actual arrival, assuming 148

the other players’ order of arrivals is fixed. Formally, 149

Definition 5. An online mechanism is incentivizing for early 150

arrival (I4EA) if for any player i, ϕi(N, v, π) ≥ ϕi(N, v, π′) 151

for all π and π′ such that π|N\{i} = π′
|N\{i} and pπ(i) ⊊ 152

pπ
′
(i). 153

There are trivial mechanisms satisfying OIR and I4EA; 154

consider, e.g., allocating, at any stage, all the current value 155

to the first player. Such a mechanism, however, is easily seen 156

to be unfair. One of the most celebrated notions for fairness 157

in (offline) cooperative games is Shapley value (SV). Intu- 158

itively, the Shapley value for a player in an offline games is 159

defined by a mental experiment involving an online game, 160

where players arrive in an order that is uniformly at random; 161

each player’s expected marginal contribution in this mental 162

experiment is then her Shapley value. Now for the truly on- 163

line games that we study, it is natural to require that, in a 164

mechanism considered fair, a player’s expected share should 165

equal her Shapley value if the arrival order is uniformly at 166

random. We now formalize this discussion. 167

Definition 6 (Marginal Contribution). Given a value function
v, a player i’s marginal contribution (MC) to a coalition S ∋
i is

MC(i, v, S) := v(S)− v(S \ {i}).
Definition 7 (Shapley Value, [Shapley, 1953]). Given a value
function v, player i’s Shapley Value (SV) is

SVi(v) :=
1

|N |!
∑

S⊆N\{i}

|S|!(|N |−|S|−1)!MC(i, v, S∪{i});

equivalently,

SVi(v) =
1

|N |!
∑

π∈Π(N)

MC(i, v, pπ(i)) .

In a monotone game, the MC of any player in any coalition 168

is non-negative; therefore, the SV is also non-negative. 169

Definition 8 (Shapley-Fair). An online mechanism is 170

Shapley-fair (SF) for a value function v if for each player 171

i ∈ N , 172

1

|N |!
∑

π∈Π(N)

ϕi(N, v, π) = SVi(v).

In this work, we aim to design online mechanisms that are 173

OIR, I4EA and SF in games as broad as possible. As a warm- 174

up, we discuss two simple mechanisms. 175
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The first one computes the Shapley values for the local176

game on each prefix S ⊑ π, and allocates these to the players177

in S. This mechanism is I4EA, because each player’s even-178

tual share is her Shapley value, regardless of the arrival order.179

However, this mechanism is not OIR, as the Shapley value180

may decrease when new player joins.181

The second simple mechanism awards each player, at her182

arrival, her MC to the existing coalition, and gives out no183

more share to this player in the future. This mechanism is ob-184

viously OIR and SF, but it is I4EA only when the game is sub-185

modular. We call this mechanism the Distributing Marginal186

Contribution (DMC) and propose the following theorem.187

Theorem 1. DMC is I4EA if and only if the value function v188

is submodular. 1189

3 0-1 valued Monotone Games190

In this section, we focus on valuation functions that take value191

only 0 or 1. Even for such simple functions, it is not a priori192

clear whether every function admits a mechanism that is OIR,193

I4EA and SF. A corollary of this section answers this ques-194

tion in the negative. The main technical contribution in this195

section is a mechanism, Rewarding The First Critical Player196

(RFC, Definition 10), which we show to be complete for 0-1197

valuation functions, in the sense that for any 0-1 valued v that198

admits an OIR, I4EA and SF mechanism, RFC also satisfies199

these properties (Theorem 3). We also analytically character-200

ize all such valuation functions (Theorem 4). In Section 4,201

we discuss extensions to general valuation functions.202

3.1 The RFC Mechanism203

When v takes values only 0 or 1 and is monotone, for any ar-204

rival order π, there is at most one player whose arrival makes205

the current coalition’s value jump from 0 to 1. We call this206

player the marginal player of (N, v, π). Note that the DMC207

mechanism allocates all the value to the marginal player. The208

RFC mechanism, in contrast, considers players that are indis-209

pensable in creating the positive value, and allocates the value210

to the first such player. Such indispensable players are called211

critical. Formally,212

Definition 9. Given a 0-1 valued v, for any S with v(S) = 1,213

define S∗ := {j ∈ S | MC(j, v, S) = 1}. For a 0-1 valued v214

and arrival order π, let i be the marginal player; the set of215

critical players is216

CR(π, v) := (pπ(i))∗.

Recall that pπ(i) is the coalition formed after i’s arrival.217

In plain language, a player is critical if she is in pπ(i) and if218

her removal makes the coalition’s value drop to 0. By def-219

inition, the marginal player must be critical, but the set of220

critical players may include others. In the DMC mechanism,221

a critical player arriving earlier than the marginal player does222

not get allocated anything but may choose to delay her arrival223

1A value function v is submodular if for every S, T ⊆ N with
T ⊆ S and every i ∈ N \ S, we have v(T ∪ {i}) − v(T ) ≥
v(S ∪ {i}) − v(S). v is supermodular if this inequality goes the
other way for all such S, T and i.

Table 1: The marginal player, critical players and the value re-
ceiver determined by RFC of game where N = {A,B,C} and
v = [0, 0, 0, 0, 1, 1, 1] in every order.

Joining
Order

Marginal
Player

Critical
Players

Value
Receiver

[A,B,C] C C C
[A,C,B] C A,C A
[B,A,C] C C C
[B,C,A] C B,C B
[C,A,B] A C,A C
[C,B,A] B C,B C

to become the marginal player herself; this destroys incen- 224

tive for early arrival. The RFC mechanism redresses this by 225

awarding to the earliest among the critical players. Crucially, 226

the set of critical players is fully determined by v|pπ(i) and 227

π|pπ(i). 228

Definition 10 (RFC). The Rewarding The First Critical
Player (RFC) mechanism is defined by the following value-
sharing policy: for any prefix S ⊑ π with v(S) = 1, and
player i ∈ S,

ϕi(v|S , π|S) =

 1, if i ∈ CR(π|S , v|S) and
∀j ∈ CR(π|S , v|S) \ {i}, i ⪯ j,

0, otherwise.

For prefix S with v(S) = 0, no player gets allocated any- 229

thing. 230

Theorem 2. For all 0-1 valued, monotone v, RFC is OIR and 231

SF. 232

Example 1. Consider N = {A,B,C} and v = 233

[v(A), v(B), v(C), v(AB), v(AC), v(BC), v(ABC)] = 234

[0, 0, 0, 0, 1, 1, 1], the marginal player and the critical 235

players are listed in the 2nd column and 3rd column of 236

Table 1. In the 4th column, we list the receivers of the values 237

determined by RFC. In this game, RFC is not I4EA as we 238

have v(C) = 0 and {A,B,C}∗ = {C}. More specifically, 239

in order [A,C,B], C is the marginal player but not the 240

unique critical player when she joins, so the value would 241

be allocated to A. However, in order [A,B,C], C is both 242

the marginal player and the unique critical player when she 243

joins, so she would get the value. 244

3.2 Completeness of RFC 245

The RFC mechanism was motivated to redress an incentive 246

issue in the DMC mechanism. Perhaps surprisingly, we show 247

that RFC not only outperforms DMC in the sense that it is 248

I4EA for broader 0-1 valued games, but it is the best among 249

all mechanisms for such valuation functions: whenever a 0-1 250

valued v admits an OIR, SF and I4EA mechanism, RFC is 251

such a mechanism as well (Theorem 3). We then precisely 252

characterize all such valuation functions(Theorem 4). Fig- 253

ure 1 illustrates the corresponding categorization of 0-1 valu- 254

ation functions. 255

Theorem 3. For any 0-1 valued monotone v, if there exists a 256

mechanism satisfying OIR, SF and I4EA, then RFC is such a 257

mechanism. 258
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Figure 1: Summary of the theorems mentioned in Section 3.2

Theorem 4. For any 0-1 valued monotone v, RFC is not I4EA259

if and only if there exists i such that v({i}) = 0 and ∃S,260

S∗ = {i}. (Recall the definition of S∗ from Definition 9.)261

Corollary 1. RFC is OIR, SF and I4EA on submodular and262

supermodular 0-1 valued monotone games.263

4 Extension to General Valuation Functions264

In this section, we propose an extension of RFC for general265

valuation functions. We give a procedure (Algorithm 1) that266

decomposes any monotone valuation function into a weighted267

sum of 0-1 monotone valuation functions. Importantly, this268

decomposition is done in an online fashion as players arrive.269

An RFC is then run, simultaneously, on each 0-1 valued com-270

ponent, and each player’s share is the weighted sum of her271

shares from the decomposed 0-1 games.272

4.1 GM-Decomposition273

We firstly introduce the decomposing process in the mech-274

anism, which is called the greedy monotone decomposition275

(GM) and formalized in Algorithm 1. GM gives a non-276

negative linear combination of a monotone game as v =277 ∑
k ckgk where {gk} are the 0-1 game components and {ck}278

are the coefficients. We denote D(v) = {(gk, ck)} as the set279

of component-coefficient pairs which determines a decompo-280

sition. In each iteration, we greedily split a scaled 0-1 valued281

monotone set function from the current set function until it282

becomes zero. An example for this decomposition is283

v =[1, 2, 3, 4, 5, 6, 7]

=[1, 1, 1, 1, 1, 1, 1] + [0, 1, 1, 1, 1, 1, 1] + [0, 0, 1, 1, 1, 1, 1]

+[0, 0, 0, 1, 1, 1, 1] + [0, 0, 0, 0, 1, 1, 1] + [0, 0, 0, 0, 0, 1, 1]

+[0, 0, 0, 0, 0, 0, 1].

It is proved that GM has the following properties, which284

is the reason why we choose it for extending the RFC: (1)285

the GM provides a positive linear combination of a set func-286

tion; (2) the component functions are monotone; (3) a game287

is decomposed consistently in both global and local games.288

4.2 The Extended RFC289

Now we propose the extended RFC mechanism based on GM.290

The mechanism firstly does GM-decomposition on input set291

function v. Then it calculates the value in each 0-1 valued292

Algorithm 1 Greedy Monotone Decomposition (GM)

Input: monotone v.
Output: a decomposition D(v).

1: Let D be an empty list.
2: Let v1 be a copy of v.
3: while max(vk) > 0 do
4: S ← argminT⊆N,v(T )>0vk(T )
5: ck ← vk(S)
6: Let gk be a set function.
7: for T ⊆ N do
8: if vk(T ) > 0 then
9: gk(T )← 1

10: else if vk(T ) = 0 then
11: gk(T )← 0
12: end if
13: end for
14: vk+1 ← vk − ckgk
15: Put (gk, ck) into D.
16: k ← k + 1
17: end while
18: return D.

monotone games by RFC and accumulates them with coeffi- 293

cients to be the value in v. The properties of RFC are main- 294

tained through this process. 295

Definition 11. The extended rewarding first critical player
mechanism (eRFC) is defined by

ϕ̄i(v|S , π|S) =
∑

(gk,ck)∈D(v|S)

ckϕ
RFC
i (gk, π|S)

where ϕRFC
i is the value-sharing policy of RFC and D(·) is 296

the GM-decomposition. 297

Theorem 5. eRFC is SF and OIR. Moreover, it is I4EA for 298

monotone v if for every gk in D(v), RFC is I4EA on gk. 299

5 Future Work 300

Several promising research directions emerge from this study. 301

For 0-1 valued monotone games, a fundamental challenge lies 302

in systematically characterizing the complete set of mecha- 303

nisms that satisfy all properties on all solvable games. The 304

more general valued monotone games presents two open 305

problems: first, establishing necessary and sufficient condi- 306

tions for game solvability remains unresolved; second, the 307

decomposition framework proposed cannot always be used to 308

solve the general valued games. Zhao [2025] further demon- 309

strated the I4EA property is worth investigating in many other 310

settings such as cost-sharing [Zhang et al., 2025], marketing, 311

data collection and venture capital finance. 312
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