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Abstract
We investigate auction mechanisms for AI-
generated content, focusing on applications like ad
creative generation. In our model, agents’ prefer-
ences over stochastically generated content are en-
coded as large language models (LLMs). We pro-
pose an auction format that operates on a token-
by-token basis, and allows LLM agents to influ-
ence content creation through single dimensional
bids. We formulate two desirable incentive prop-
erties and prove their equivalence to a monotonic-
ity condition on output aggregation. This equiva-
lence enables a second-price rule design, even ab-
sent explicit agent valuation functions. Our design
is supported by demonstrations on a publicly avail-
able LLM.

1 Introduction
In the current web ecosystem, auctions are the primary mech-
anism used to decide which ads (and commercial content
more broadly) are displayed to users [Edelman et al., 2007;
Varian, 2007]. In these auctions, advertisers bid for the oppor-
tunity to display their ad creatives alongside organic content.
Many of the web formats such as text, banners, video, apps,
... have their own subtleties which led to the development of
new auction tools to handle them. Our goal in this paper is to
investigate auction mechanisms to support the emerging for-
mat of AI-generated content. More specifically, we explore
the use of auctions as a tool for influencing the output of large
language models (LLMs) (e.g., [Brown et al., 2020]).

We consider a situation where a certain space in the web
(which could be a part of a webpage, an UI element of an
AI-chatbot, the dialog of a certain character in a video or a
game, etc.) is designated for commercial content and differ-
ent advertisers can bid to influence the content in that space.
Each advertiser has an LLM that can generate content for that
space, and is willing to pay a certain amount of money for

∗Original paper: Paul Dütting, Vahab Mirrokni, Renato Paes
Leme, Haifeng Xu, and Song Zuo. Mechanism design for large lan-
guage models. In Proceedings of the ACM Web Conference 2024,
pages 144–155, 2024. The work of Haifeng Xu was done as Visit-
ing Faculty at Google Research.

the right to have their content displayed. A simple design
is to collect bids from advertisers and let the highest bidder
choose whatever content they wish to publish in that space.
While simple, this design does not exploit the flexibility of
LLMs which is to combine different concepts in a creative
way.

Consider this example. First, we ask an LLM to produce
different ads for the fictitious Stingray Resort and the equally
fictitious Maui Airlines:

• “Experience the magic of Hawaii at Stingray Resort,
where stunning views, luxurious accommodations, and
endless activities await. Book your stay today and cre-
ate unforgettable memories in the heart of paradise.”

• “Fly to Hawaii with Maui Airlines and experience the
beauty of the Aloha State. We offer affordable flights to
all the major islands, so you can start your Hawaiian va-
cation sooner. Book your flight today and let the island
spirit take over!”

For that use case, however, the LLM is flexible enough to
produce a joint ad for both:

• “Fly to paradise with Maui Airlines and experience the
magic of Hawaii at Stingray Resort. Stunning views,
luxurious accommodations, and endless activities await.
Book your dream vacation today and create unforget-
table memories.”

One can envision an auction mechanism that allows both
Stingray Resort and Maui Airlines to submit their LLMs and
bids, with these inputs determining their prominence in the
final outcome.1

1.1 Unique Challenges
LLMs [Brown et al., 2020; Thoppilan et al., 2022; Google
et al., 2023] are an emerging technology with new and un-
conventional aspects, many of which have direct implica-
tions to auction design (e.g., how preferences are repre-
sented/expressed). Our goal is to identify some of the key
challenges and take a first step in designing mechanisms to
address them:

1While this work’s main focus is to create ad creatives that merge
content from different advertisers, our designed auction mechanism
for merging LLM outputs could also be used in other contexts.
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• Modelling and Expressing Preferences. Auction the-
ory typically models preferences via value functions that
assign a value to each outcome. LLMs, however, as
generative models, do not directly assign values. In-
stead, they succinctly encode preferences over outcomes
within a stateless neural network model that predicts
continuation probabilities.

• Necessity of Randomization. LLMs crucially rely on
randomization. When forced to output tokens determin-
istically, LLMs often have a worse performance com-
pared to situations that sample from a distribution (see,
e.g., [Holtzman et al., 2019], for a performance com-
parison of different decoding strategies). Therefore, an
auction that aggregates LLM outputs should preferably
also output distributions.

• Technical Compatibility. Auction solutions should
be compatible with current LLM technology, utilizing
readily available information and integrating seamlessly.
Ideally, the allocation and payments should be obtained
from simple manipulations of the LLM outputs.

• Computational Efficiency. LLM models are expensive
to query, so the auction computation should not add too
much overhead. In particular, auctions should not in-
crease the number of calls to inference the models be-
yond the minimum necessary.

1.2 Our Contributions
The Token Auction Model. Our first contribution is a for-
malism (“The Token Auction Model”) for studying this prob-
lem. Tokens are the units making up sentences and para-
graphs.2 Examples of tokens include (sub-)words, symbols,
numbers, and special tokens indicating the beginning and
ending of the text. In particular, any piece of text (potentially
incomplete) can be represented as an array of tokens, and any
array of tokens also encodes a piece of text.

One salient feature of the state-of-the-art LLMs is that they
are stateless, i.e., they maintain no internal memory or state.
Instead, they simply map a prefix string to a distribution over
the next token. The output is then created in an autoregres-
sive manner. Given an input prompt, the output is generated
by repeatedly feeding the current sequence of tokens into the
LLM, sampling a continuation token, and appending it to the
sequence of tokens.

The proposed token auction operates on a token-by-token
basis, and serves to aggregate several LLMs to generate a
joint output. We assume the designer has access to algorith-
mic LLM agents represented by their respective text genera-
tion functions (the functions that map a sequence of tokens
to a distribution over the next token). In addition, we allow
each LLM agent to submit a single dimensional bid. The auc-
tion output will be an aggregated distribution together with a
payment rule that defines payments for each agent.3

2More generally, one can consider tokens forming parts of im-
ages [Ramesh et al., 2021; Yu et al., 2022] and videos [Sun et al.,
2019]. For the purpose of this paper, we stick with text generation.

3See our discussion later this section on the rationale of the indi-
rect mechanism formulation.

This approach may seem counterintuitive initially, as ad-
vertisers typically focus on the final generated text rather than
individual word choices. This seems to suggest a dynamic
planning of the generated token sequence. However, existing
LLMs do not reason about full pieces of text, nor do they plan
ahead; instead, their preferences are expressed as desired dis-
tributions over merely the next token. In other terms, we can
think of an LLM as a succinct distillation of an agent’s com-
plex combinatorial preferences over sequences of tokens into
a generative token-by-token model.4

The problem of aggregating LLMs forces the designer
to understand the preferences of the agents away from the
distilled LLM. This appears to be a very difficult problem.
Specifically, we believe it is implausible or at least impracti-
cal to assume an individual agent can meaningfully manipu-
late the distribution over tokens at any given stage, to direct
the produced text to a more preferred one. Our auction for-
mulation seeks to strike a balance: By truthfully revealing the
LLM to the designer, the agent gives the auction mechanism
a hint as to what their preferred distribution is. The bids, in
turn, can be used to tradeoff between agents, and in particular
help the designer determine their relative weights.

Simple and Robust Token Auctions. Motivated by the
challenges in modeling agents’ preferences over generated
distributions, we take a robust design approach aiming for to-
ken auctions that provide desirable incentive properties, while
imposing minimal assumptions on the agents’ preferences
over distributions.

Specifically, we model agents’ preferences as entailing par-
tial orders over distributions. Based on this partial prefer-
ence order5, we formulate two desirable incentive properties,
which we consider minimal requirements:

• Payment monotonicity: Given two different bids by the
same agent, a final distribution is closer to the desired
distribution if and only if the payment is higher.

• Consistent aggregation: If for two different bids of the
same agent, the final distribution is closer to the pre-
ferred distribution for some bids of the other agents, then
it should be so for all bids of the other agents.

We show that any mechanism with these two properties is
strategically equivalent to a mechanism that satisfies a mono-
tonicity requirement on the distribution aggregation function.

We then investigate whether it is possible to equip such dis-
tribution aggregation functions with payment rules that sat-
isfy additional incentive properties. Specifically, we inves-
tigate whether such aggregation rules admit an analogue of
the second-price payment rule. In the single-item second-
price (or Vickrey) auction [Vickrey, 1961], the payment cor-
responds to the critical bid where an agent transitions from
losing to winning. To port this notion to our setting, we show
that under robust preferences, any monotone aggregation rule
can be written as a distribution over deterministic allocations
from bids to tokens such that there is a critical bid where the

4See our discussion in the original paper for additional support
for the stateless approach.

5Partial orders are more general than total orders, and hence our
key results apply to any complete preference order model.
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allocation transitions from a less preferred to a more preferred
token. Such a critical bid then serves as a natural candidate
for a payment rule. This hence leads to an analogue of the
second-price auction for our token auction model that only re-
quires ordinal preferences. The resulting class of auctions is
applicable whenever the agent valuations are compatible with
the partial order, yielding robust incentives for all of these.

Designing Aggregation Functions. We then move to de-
signing concrete aggregation functions. Our approach con-
siders aggregated loss functions inspired by state-of-the-art
LLM training, and derives optimal distribution aggregation
functions that minimizes such aggregated loss functions.

We focus on specific forms of aggregated loss functions
based on KL-divergence, a commonly used loss function in
LLMs. We consider two natural formulations inspired by cur-
rent LLM training, and show that the corresponding optimal
aggregation rules are the weighted (log-space) convex com-
bination of the target distributions from all participants.

The linear and log-linear aggregation rules we identify
have different pros and cons. Both share the advantage that
they are optimal for the respective aggregated loss functions.
The linear rule turns out to be monotone with respect to ro-
bust preferences, and is therefore compatible with the robust
incentives approach. However, the log-linear rule is not.

Demonstration. We conclude with demonstrations to sup-
port our token auction formulation, obtained by prompt-
tuning of a publicly available LLM. A two-advertiser demon-
strative example is considered, under both the linear and log-
linear aggregation rules. We show how the combined output
varies as a function of λ = b1/(b1+b2), where b1 and b2 are the
advertisers’ bids. Both approaches lead to meaningful and
interpretable texts that smoothly transition from favoring one
to favoring another advertiser, with a joint ad produced for
intermediate values of λ.

Discussion/Design Choices. An alternative to our approach
of designing an indirect mechanism would be to aim for a di-
rect mechanism. Such a mechanism, instead of asking agents
for a scalar bid along with query access to the agents’ LLMs,
would elicit the agents’ full preferences directly. However,
this appears unrealistic in our new domain due to multiple
reasons: (1) Allocation outcomes in our setting are a high-
dimensional distribution, whereas a classic mechanism’s allo-
cation is typically a subset of items, and often a single item in
tractable setups. (2) While it is reasonable in the classic setup
to elicit a valuation for an item or a subset of items, it does
not appear realistic to elicit a high-dimensional utility func-
tion over all possible token distributions. (3) Eliciting full
preferences over any token distribution would require solving
a problem that is strictly harder than what current LLMs are
trained to do (namely, merely output the most preferred dis-
tribution). This level of complexity might go beyond current
technological capabilities and would likely be computation-
ally inefficient.

1.3 Additional Related Work
To the best of our knowledge, the exact research question and
our approaches here have not been previously studied. How-
ever, our work is indeed connected to a few lines of research.

Related LLM Research. Our work shares some similari-
ties with the literature on fine-tuning LLMs, with reinforce-
ment learning from human feedback (RLHF) as a repre-
sentative approach [Wei et al., 2021; Bakker et al., 2022;
Ouyang et al., 2022; Bai et al., 2022]. At a high level, fine-
tuning and RLHF seek to align a generally pre-trained LLM
with certain desirable behaviors. This is in spirit analogous
to our goal of designing LLMs to better align with a group
of agents’ overall preferences. However, our research chal-
lenges and methods are both different from those in the fine-
tuning literature. Specifically, fine-tuning refines the under-
lying model’s parameters whereas our approach is one-layer
up and directly aggregates the token distributions from mul-
tiple models. The main challenge we address is the potential
incentive misalignment while eliciting LLM agents’ prefer-
ences, whereas human labelers or other models that generate
reward feedback for RLHF are assumed to be genuine and do
not misrepresent their own preferences.

The literature on in-context learning [Brown et al., 2020;
Wei et al., 2022; Wei et al., 2023] is similar to us in the
sense that this approach also does not change the model pa-
rameters. A main difference to our work is that this litera-
ture seeks to influence token distributions by conditioning on
better-generated prefix contexts, whereas we directly aggre-
gate distributions from multiple LLM agents.

Connections in Mechanism Design. Our work is related
to the literature on (combinatorial) public projects [Papadim-
itriou et al., 2008; Dughmi, 2011]. The connection is that
one can view the output of the aggregated LLM in our sit-
uation as a public project that benefits the agents to differ-
ent degrees. Similar to these earlier studies, a core chal-
lenge in our problem is to elicit preferences about the public
project from unknown agents. However, the design problem
in our case is fundamentally different — we choose a high-
dimensional distribution from an RT space with only partial
knowledge about agents’ preferences, whereas previous work
has focused on the problem of choosing from a discrete (often
exponentially large) set with clear agent valuation functions
[Papadimitriou et al., 2008; Dughmi, 2011].

Another related stream of work includes [Freeman et al.,
2019; Goel et al., 2019], which studies the problem of truth-
fully aggregating budget proposals. Their mechanisms out-
put a distribution over budgets that best serves the popula-
tion, just like our mechanisms output distributions over to-
kens. However, the objectives and techniques between our
work and theirs are both different. First, their problem is
mechanism design without money, whereas our problem has
monetary transfers involved. A direct consequence of this
first difference is that their mechanisms will treat every par-
ticipant with equal weight, whereas the weights of our partic-
ipants are determined by their bids. Second, the research on
truthful budget proposal aggregations typically assumes ex-
plicit valuation functions (e.g., l1 distance between preferred
and output distributions), under which the VCG mechanism is
truthful. Their main research question hence is to study addi-
tional properties of the mechanisms such as Pareto-efficiency
and certain fairness properties [Freeman et al., 2019]. As-
suming such an explicit valuation function does not appear
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λ Linear aggregation function qKL Log-linear aggregation function q̄KL
1 Alpha Airlines: Your ticket to paradise.

0.75 Alpha Airlines: Fly to Hawaii and experience the beauty of the islands with
aloha.
Beta Resorts: Stay at our resorts and enjoy the best of Hawaii.

Feel the magic of Hawaii with a flight on Alpha Airlines, now offering 20%
off all flights when you book with us today!

0.6 Alpha Airlines flies you to Hawaii, where you can enjoy a week-long stay
at the Beta resort for just $1000.

Experience the magic of Hawaii with a flight on Alpha Airlines, now offer-
ing 20% off all flights when you book with us today!

0.55 Alpha Airlines flies you to Hawaii, where you can enjoy a week-long stay
at the Beta resort.

Escape to the tropical paradise of Hawaii with [Alpha Airlines]!

0.5 Alpha Airlines flies you to Hawaii, where you can enjoy a beautiful sunset
on the beach. Stay 3 nights and get the 4th free at the Beta Resort.

Experience the magic of Hawaii with a stay at the luxurious [Beta Resort]
and a refreshing flight on [Alpha Airlines].

0.45 Fly Alpha Airlines to sunny Hawaii and enjoy the secluded beaches and
private lagoons of the Royal Hawaiian Beta Resort.

Experience the magic of Hawaii with a stay at the luxurious [Beta Resort]
and a special flight offer from [Alpha Airlines].

0.4 Fly Alpha Airlines to sunny Hawaii and enjoy the first-class treatment that
awaits you at Beta Resort, all for one low price.

Experience the magic of Hawaii at the [Beta Resort], where you’ll feel like
you’re in a tropical paradise.

0.25 Experience the magic of Hawaii at the Beta Resort, where the sun shines
brighter and the waves crash louder — book your stay today with our exclu-
sive 20% off discount!

Experience the magic of Hawaii at the Beta Resort, where you’ll be pam-
pered like royalty and surrounded by breathtaking beauty.

0 Hawaii’s Beta Resort: a paradise where the sun shines brighter, the waves sing sweeter, and the sand feels softer.

Table 1: Text generation from two aggregation functions with different λ = b1/(b1 + b2).

realistic in our problem, so our core research question is to
design robust mechanisms that enjoy good incentive proper-
ties simultaneously for a broad range of valuation functions.

From this perspective, our work also bears some similarity
to the rich literature on robust mechanism design. Most of
this literature still assume existence of value functions with
uncertainty modeled by Bayesian beliefs or in a max-min
sense [Bergemann and Morris, 2005; Bergemann and Morris,
2012; Roughgarden and Talgam-Cohen, 2016; Carroll, 2015;
Dütting et al., 2019]. However, assuming such a valuation
function over tokens or their distributions does not appear re-
alistic in creatives generation, thus our model is more similar
to a worst-case style consideration during which we only as-
sume partial (“obvious”) preferences.

Follow-Up Work. Several papers follow-up on our work,
by studying mechanism design problems for LLMs. [Dubey
et al., 2024] consider bidders that bid for placement of their
content within a summary generated by an LLM. [Soumalias
et al., ] design a truthful mechanism that generates several
samples from a reference LLM, and incentivizes bidders to
truthfully reveal their preferences. [Mordo et al., 2024] con-
sider sponsored question answering, in which an organic an-
swer to a search query is fused with an ad to create a spon-
sored answer, and advertisers bid on the sponsored answers.

2 Demonstration
We implement the aggregation functions we proposed and
discuss the examples they produce. Off-the-shelf LLMs gen-
erate full text passages. In our case, we need to peek at the
internal states of LLMs (the probability distributions over to-
kens) at each token generation stage. Therefore, we use a
custom version of the Google Bard model with a modified in-
ference method that allows access to the token distributions.

Starting from the same base model, we simulate cus-
tomized LLMs for different agents by agent specific prompt-
tuning. A key advantage of simulating LLM agents with dif-
ferent prompts is the ability to use a single LLM, making mul-
tiple queries with different prompts instead of serving multi-
ple LLMs concurrently.

2.1 Setups
We illustrate our method with a co-marketing example here
(see original paper for a competing brands example), where
two agents would like to advertise for their brands, “Alpha
Airlines” and “Beta Resort” respectively, regarding a shared
topic “Hawaii.” We intentionally choose fictitious brands in
order to avoid the model directly retrieving any existing ads.
We use the brand names “Alpha” and “Beta” that do not have
strong meanings to minimize any potential hallucination, as
we are using a common purposed LLM that is not optimized
for our task. Each agent is given the following prompt:

“You are an expert of writing texts that naturally
combines two ads together. Your choice of words
and sentences is full of artistic flair.
Write a one-sentence ad for .”

Agent A uses “a flight to Hawaii using [Alpha Airlines]”
to fill the blank, while agent B uses “a vacation in Hawaii
at the [Beta Resort]”. The first two sentences in the prompt
aim to improve the quality of the ad generation through as-
signing roles (see, for example, [Wu et al., 2023]). A natural
question is whether the proposed method can adjust the com-
bining strategy according to the context. Since in both the
linear aggregation rule qKL and the log-linear aggregation rule
q̄KL, there is only one degree of freedom, we parameterize the
response by λ = b1/(b1+b2).

2.2 Results
The results for the co-marketing example are listed in Table 1,
where from top to bottom, the value of λ decreases from 1 to
0. As we can see for both aggregation functions, the gener-
ated texts roughly follow the pattern of “only Alpha Airlines”
→ “both Alpha Airlines and Beta Resort”→ “only Beta Re-
sort” when λ decreases. This is expected, as λ going from 1
to 0 corresponds to b2 increasing from 0 to∞ with b1 fixed.
The thresholds of pattern changes are 0.75 and 0.4 for the
linear aggregation, and 0.5 and 0.45 for the log-linear aggre-
gation. We emphasize that the example is generated with a
general purposed LLM, and it is reasonable to believe that
the performance can be improved with proper fine-tuning for
the specific task at hand.
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