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Never Train from Scratch: Fair Comparison of Long-Sequence Models Requires
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Abstract
This paper is an extended abstract of our ICLR 2024
Outstanding Paper Award work. Modeling long-
range dependencies across sequences is a longstand-
ing goal in machine learning. While state space mod-
els reportedly outperform Transformers on bench-
marks like Long Range Arena, we show that ran-
dom initialization significantly overestimates archi-
tectural differences. Pretraining with standard de-
noising objectives on downstream task data leads
to dramatic gains across architectures and minimal
performance gaps between Transformers and state
space models (SSMs). We demonstrate that prop-
erly pretrained vanilla Transformers match S4 per-
formance on Long Range Arena and improve SSM
results on PathX-256 by 20 absolute points. Our
analysis shows previously-proposed structured pa-
rameterizations for SSMs become largely redundant
with pretraining. When evaluating architectures on
supervised tasks, incorporating data-driven priors
via pretraining is essential for reliable performance
estimation.

1 Introduction
Self-supervised pretraining is widespread across machine
learning, with pretrained model finetuning now standard prac-
tice for downstream tasks [Touvron et al., 2023; Baevski et
al., 2020; Reed et al., 2022; Raffel et al., 2020]. However,
when developing architectures with better inductive biases for
specific skills, training from scratch with random initializa-
tion remains common [Tay et al., 2021; Delétang et al., 2023;
Velickovic et al., 2022; Dwivedi et al., 2022]. This practice
stems from computational constraints and attempts to enable
fair comparisons without requiring a standard pretraining cor-
pus.

Long Range Arena (LRA) exemplifies this pattern, with
Transformers showing poor performance on these stress

∗Ido Amos, Jonathan Berant, and Ankit Gupta. Never train from
scratch: Fair comparison of long-sequence models requires data-
driven priors. In The Twelfth International Conference on Learning
Representations, 2024.
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Figure 1: Evaluation of Transformers and S4 on Long Range Arena
when trained from scratch vs. when self pretrained.

tests [Tay et al., 2021], spurring development of new ar-
chitectures biased toward capturing long-range dependen-
cies [Gu et al., 2022; Gupta et al., 2022a; Li et al., 2023;
Ma et al., 2023]. These results contradict the success
of pretrained Transformers on long-range tasks like text
summarization and protein folding [Touvron et al., 2023;
Jumper et al., 2021]. Despite advances in long sequence
modeling, the reasons for this discrepancy remain unexplored,
while competitive methods rely on architectural modifications
[Ma et al., 2023; Zuo et al., 2022].

We demonstrate this discrepancy stems from inadequate
training and evaluation practices and propose a simple so-
lution. While avoiding large-corpus pretraining is under-
standable, random initialization overlooks how pretraining
objectives create beneficial inductive biases. Recent work
shows pretraining solely on downstream training data (self
pretraining or SPT) often yields gains comparable to large-
corpus pretraining [El-Nouby et al., 2021; He et al., 2022;
Krishna et al., 2023]. This suggests SPT offers a more re-
alistic performance estimate while serving as a data-driven
initialization method that enables fair comparisons using only
the task data.

Our empirical evidence shows that priors learned through
SPT with denoising objectives effectively capture long-range
dependencies across architectures, often eliminating the need
for complex hand-crafted modeling biases [Gu et al., 2022;
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Approach Listops Text Retrieval Image Pathfinder PathX Avg.
Transformer 36.37 64.27 57.46 42.44 71.40 ✗ 53.66
Local Attention 15.82 52.98 53.39 41.46 66.63 ✗ 46.71
Longformer 35.63 62.85 56.89 42.22 69.71 ✗ 52.88
Linformer 35.70 53.94 52.27 38.56 76.34 ✗ 51.14
Reformer 37.27 56.10 53.40 38.07 68.50 ✗ 50.56
BigBird 36.05 64.02 59.29 40.83 74.87 ✗ 54.17
Linear Trans. 16.13 65.90 53.09 42.34 75.30 ✗ 50.46
Performer 18.01 65.40 53.82 42.77 77.05 ✗ 51.18

Transformers + Masked SPT 59.75 89.27 88.64 74.22 88.45 87.73 81.34
Transformers + Causal SPT 59.15 88.81 90.38 76.00 88.49 88.05 81.81

Table 1: Long Range Arena. (top) performance of models trained from scratch as reported in [Tay et al., 2021], (bottom) performance of self
pretrained (SPT) Transformers of sizes comparable to the ones on top. ✗ denotes chance accuracy.

Ma et al., 2023; Li et al., 2023; Orvieto et al., 2023]. On
Long Range Arena (LRA), SPT improves vanilla Transformer
performance by more than 30%, allowing them to match state-
of-the-art results without architectural changes (Figure 1),
contradicting prior works showing significantly lower Trans-
former performance.

SPT also benefits State Space models (SSMs), which use
modified linear RNNs in place of attention. S4 achieves im-
pressive performance on long sequence tasks through special-
ized parameterization and initialization [Gu et al., 2022]. With
SPT, S4 shows gains in 5 of 6 LRA tasks and solves the chal-
lenging PathX-256 task with 20% improved accuracy (Figure
1). Our analysis reveals that data-driven priors from SPT make
many hand-crafted modeling biases redundant [Gupta et al.,
2022b], enabling competitive performance with simple diago-
nal linear RNNs without manual modifications [Orvieto et al.,
2023].

Our findings demonstrate that beneficial priors for capturing
distant dependencies can be learned directly from task data
through standard denoising objectives. The benefits of SPT
become more pronounced with scarcer data. For SSMs, our
analysis of convolution kernels reveals that, depending on
the modality, rapidly decaying kernels sometimes outperform
the slowly decaying ones used in native S4, highlighting the
advantages of learning data-specific priors [Gu et al., 2020].

Our main contributions are:
(i) Demonstrating that reported performance on long-range

benchmarks is severely underestimated, and proposing
an inexpensive data-driven approach for accurate evalu-
ation, without requiring any additional data.

(ii) Reporting significant empirical gains across architec-
tures on LRA, improving the best reported accuracy on
PathX-256 by 20 absolute points (67 → 87).

(iii) Showing that manually-designed biases become redun-
dant with pretraining, enabling simpler models to match
sophisticated architectures. We achieve competitive
performance on LRA with Transformers and diagonal
linear RNNs.

The substantial improvements from SPT across LRA’s
multi-modal tasks suggest including pretraining when evaluat-
ing models for multidimensional inputs [Nguyen et al., 2022],
algorithmic reasoning [Diao and Loynd, 2023], or graphs
[Shirzad et al., 2023].

Our code & data are available at https://github.com/
IdoAmos/not-from-scratch.

2 Experimental Setup
We evaluate Transformers and SSMs on Long Range Arena
(LRA), a benchmark for testing long-range dependency mod-
eling [Tay et al., 2021]. It contains 6 sequence classification
tasks:
1. ListOps: Nested lists with operations (MAX, MEAN,

etc.) applied to multiple token arguments [Nangia and
Bowman, 2018]. 10-way classification with 2K sequence
length. INPUT:[MAX 4 3[MIN 2 3]1 0[MEDIAN
1 5 8 9 2]] OUTPUT: 5

2. Text: Character-level IMDb reviews [Maas et al., 2011].
Binary sentiment classification with up to 2048 sequence
length.

3. Retrieval: Character-level AAN dataset [Radev et al., 2009]
for document similarity. Binary classification with 8K total
tokens.

4. Image: Flattened grayscale CIFAR10 images as 1D se-
quences. 10-way classification with 1024 sequence length.

5. Pathfinder, PathX: Synthetic visual path-tracing tasks [Lins-
ley et al., 2018; Kim et al., 2020]. Binary classification
with lengths 1024 and 16384.
We also test on PathX-256 (sequence length 2562 = 65536)

and additional datasets described in Section 3.4.
Self Pretraining (SPT) We perform SPT using only the
downstream task training set, with causal/autoregressive ob-
jectives for unidirectional models and masked modeling for
bidirectional models. Masking ratios: 50% for visual tasks
[He et al., 2022], 15% for language tasks [Liu et al., 2019],
and 10% for ListOps. We use FLASH attention [Dao et al.,
2022] for Transformers, with blocked attention (block size
4096) for sequences over 16K. Our code builds on the official
S4 repository. For details on hyperparameters and compute,
refer to the original paper [Amos et al., 2024].

3 Results
Section 3.1 shows SPT results on LRA with official configu-
rations. Section 3.2 compares SPT for Transformers and S4.
Section 3.3 evaluates SSM design choices with SPT. Section
3.4 presents additional experiments on different modalities.
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Approach Listops Text Retrieval Image Pathfinder PathX PathX-256 Avg.

Transformers + Rotary 47.90 79.08 82.31 75.04 76.64 84.72 ✗ 74.28
Transformers + Rotary + Masked SPT 61.49 91.02 91.57 86.04 94.16 92.98 ✗ 86.21
S4 [Gu et al., 2022] 59.60 86.82 90.90 88.65 94.20 96.35 67.82† 86.09
S4 + Masked SPT 61.25 90.34 88.74 89.36 94.92 96.94 87.11 86.75
SPADE [Zuo et al., 2022] 60.50 90.69 91.17 88.22 96.23 97.60 ❑ 87.40
MEGA [Ma et al., 2023] 63.14 90.43 91.25 90.44 96.01 97.98 ❑ 88.21

Pythia 70M (Rand Init) 41.20 69.29 76.45 52.55 74.31 ✗ ✗ 62.76
Pythia 70M 43.05 83.41 84.29 67.41 80.05 ✗ ✗ 68.04

Table 2: Long Range Arena. Self pretrained (SPT) Transformers and S4 compared to existing trained from scratch models. Average
performance (“Avg.”) is reported without PathX-256 to align with prior work. Results for MEGA, SPADE & S4 are taken from original papers
with exceptions denoted by †. ✗ denotes computationally infeasible, ❑ denotes unreported results.

3.1 Underestimation of Long-range Abilities of
Transformers

We investigate the reliability of historically-reported LRA
model performances with pretraining. We repeat the Trans-
former experiments from [Tay et al., 2021], first pretraining
models on task data before finetuning, strictly following their
configurations. We test both next token prediction and masked
token prediction objectives with masking ratios as described
in Section 2.

As Table 1 shows, both pretraining objectives dramatically
improve Transformer performance compared to random initial-
ization, with average test accuracy increasing by roughly 30%.
Causal and masked pretraining yield similar results even for
visual tasks and ListOps (where arguments are randomly sam-
pled, making token prediction from context difficult). Since
we made no architectural changes and used no additional data,
these improvements come entirely from priors learned during
SPT, demonstrating its importance for reliable evaluation.

3.2 Comparing S4 and Transformers
In the above set-up we strictly adhered to the model sizes used
by [Tay et al., 2021] and consequently the absolute perfor-
mances are still low compared to the current state-of-the-art
on LRA. In this section, we scale the model sizes and eval-
uate the utility of SPT for the best performing architectures
including S4 [Gu et al., 2022]. For Transformers, we replace
the positional embeddings with the more commonly used ro-
tary embeddings [Su et al., 2021] and only train bidirectional
models in line with prior works reporting high performance.

As summarized in Table 2, SPT leads to dramatic perfor-
mance gains for Transformers with performance gains ranging
from 8−15% across tasks, even surpassing the average perfor-
mance of a well-tuned S4 (86.2 vs 86.1). SPT Transformers
surpass the performance of both trained from scratch and SPT
versions of S4 on 3 out of 6 tasks. The results in Table 2
defy current understanding, with prior works citing the sub-
par LRA performance of Transformers as a prime motivating
factor for new methods. Yet we show that, while architectural
developments indeed lead to remarkable performance gains,
most of the priors essential to high performance can already
be learned from data directly.

In case of S4, while SPT leads to modest gains on most

tasks, a substantial gain of 20% is observed on the challeng-
ing PathX-256 task with input length of 65K, significantly
improving over the best reported performance of 63.1% by
[Dao et al., 2022] who, in addition, used extra data from the
Pathfinder-64 task.

The additionally reported models, SPADE and MEGA, are
Transformer variants that augment the model with a single or
several state space layers. SPADE combines the outputs of
a frozen S4 layer and local attention in the first block, while
MEGA incorporates a learned exponential moving average,
an instance of diagonal SSMs, into gated attention blocks. To
the best of our knowledge, we are the first to show that purely
attention-based methods, without any architectural modifica-
tions, can achieve competitive results on LRA. While incorpo-
rating SSMs can be important in terms of scalability to longer
sequences due to their log-linear complexity with respect to
input length, we show that in terms of model performance,
pretraining leads to biases that are as effective as manual de-
signs.

An important aspect of SPT is the use of additional compute
compared to the trained from scratch baseline and it is natural
to investigate if similar gains can be obtained by training from
scratch for longer. For all our trained from scratch baselines,
we ensured that the validation performance had converged and
did not improve for several consecutive epochs. We examine
the aspect of the computational overhead of SPT in detail in
the original paper [Amos et al., 2024], where we show that
SPT leads to significant gains, even in the setting where the
same amount of compute is used for SPT models and the ones
that are trained from scratch.

3.3 The Role of Explicit Priors
Having established that SPT enables more reliable architec-
tural evaluation and improves SSM performance, we now
examine S4’s design complexity. S4’s theoretically-motivated
design enables long-range signal propagation, explaining its
slight advantage over SPT Transformers. While various S4
simplifications have been proposed, we show that SPT enables
even simpler diagonal linear RNNs to match S4 performance.

For SSMs (see [Gu et al., 2022] for details), given input
scalar sequence u, a linear recurrence generates hidden state
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Approach SC sCIFAR BIDMC
Causal Bi. HR RR SpO2

S4 93.60 96.08 91.13 0.999† 0.994† 0.999†
Transformers 84.55 86.93 79.41 0.998 0.981 0.998
S4 + SPT 95.09 96.52 91.67 0.999 0.990 0.997
Transformers + SPT 86.13 91.49 90.29 0.992 0.956 0.993

Table 3: Additional Experiments. Performance on Speech Commands (SC), sCIFAR (accuracy) and BIDMC (R2) tasks. Results for trained
from scratch S4 taken from [Gu et al., 2022], except for BIDMC (denoted by †) that are reproduced for the more interpretable R2 score.
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Figure 2: Average performance of models when trained from scratch
or self pretrained, for different sets of initializations prior to pretrain-
ing. See the original paper [Amos et al., 2024] for per-task results.

x⃗n at timestep n and a scalar output sequence y as:

x⃗n = Ax⃗n−1 +Bun A ∈ CN×N ,B ∈ CN×1

yn = C x⃗n C ∈ C1×N
(1)

This can be computed by convolving u with kernel defined by
Kk = C TAkB . S4 uses a specialized parameterization with
transformations:

A = Λ−PQ∗ (2.1)

Ā = (I −∆/2 ·A)−1(I +∆/2 ·A) (2.2)

B̄ = (I −∆/2 ·A)−1∆B C̄ = C (2.3)

K k = C̄
T
Ā

k
B̄ (2.4)

with learnable parameters Λ,P ,Q ,B ,C ,∆ where Λ ∈
Diag(CN×N ),P ,Q ∈ CN×1. S4 uses principled initializa-
tion for slow kernel decay to capture long-range dependencies.

[Gupta et al., 2022b] proposed a simplified Diagonal Linear
RNN (DLR):

x⃗n = Λx⃗n−1 + 1un Λ ∈ diag(CN×N )

yn = C x⃗n C ∈ C1×N
(3)

where 1 is the all-ones vector. DLR is computationally sim-
pler than S4 yet reportedly matches state-of-the-art SSMs on
token-level tasks. We investigate when S4’s complex design
can be replaced by DLR, testing both on the hardest LRA
tasks (ListOps, Text, Image, PathX) with two initialization

schemes: random and ”structured” (designed for long-range
dependencies).

Results in Figure 2 show that when trained from scratch,
DLR lags behind S4 (77 vs 83), confirming that S4’s special-
ized initialization and parameterization are critical. However,
with SPT, DLR outperforms from-scratch S4 (83.4 vs 82.8)
and approaches SPT S4 (83.4 vs 84.5) suggesting that the
data-driven priors from pretraining can largely replace manual
biases.

These findings have broader implications. First, this is the
first demonstration of vanilla diagonal linear RNNs achiev-
ing competitive LRA performance without normalization or
specialized initialization [Orvieto et al., 2023]. Second, many
global convolution designs follow similar principles to SSMs,
like generating smooth decaying kernels [Li et al., 2023] or
applying deterministic transformations [Fu et al., 2023]. Our
results suggest these explicit design steps become less critical
with self-pretraining.

3.4 Additional Experiments
We tested SPT on three additional datasets across different
modalities:
• Speech Commands (SC): Raw speech waveforms (16K

length) for 35-way classification [Warden, 2018], testing
both causal and bidirectional models.

• sCIFAR: Sequential CIFAR-10 with RGB channels as fea-
tures (richer than LRA’s grayscale Image task).

• BIDMC: Three regression tasks predicting health metrics
(RR, HR, SpO2) from 4K-length physiological signals.
Results in Table 3 further support our claims. On SC and

sCIFAR, SPT significantly improves Transformer performance
while modestly enhancing S4, substantially narrowing their
performance gap. For SC, Transformers gain 5% with SPT,
and the gap between causal and bidirectional S4 variants
diminishes, similar to our LRA observations. On sCIFAR,
Transformers improve by 11% with SPT, nearly matching
S4 (90.3 vs 91.7). BIDMC results show minimal gains as
both models already achieve near-perfect performance. These
findings suggest that performance underestimation likely af-
fects other domains where training from scratch remains stan-
dard practice [Delétang et al., 2023; Velickovic et al., 2022;
Dwivedi et al., 2022].
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Efficiently modeling long sequences with structured state
spaces. In Proc. of ICLR, 2022.

[Gupta et al., 2022a] Ankit Gupta, Albert Gu, and Jonathan
Berant. Diagonal state spaces are as effective as structured
state spaces. In Proc. of NeurIPS, 2022.

[Gupta et al., 2022b] Ankit Gupta, Harsh Mehta, and
Jonathan Berant. Simplifying and understanding state space
models with diagonal linear rnns. ArXiv preprint, 2022.

[He et al., 2022] Kaiming He, Xinlei Chen, Saining Xie,
Yanghao Li, Piotr Dollár, and Ross B. Girshick. Masked
autoencoders are scalable vision learners. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
CVPR, 2022.

[Jumper et al., 2021] John Jumper, Richard Evans, Alexander
Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek,
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domènech Badia, David Budden, Razvan Pascanu, Andrea
Banino, Misha Dashevskiy, Raia Hadsell, and Charles
Blundell. The CLRS algorithmic reasoning benchmark.
In Proc. of ICML, Proceedings of Machine Learning
Research, 2022.

[Warden, 2018] Pete Warden. Speech commands: A dataset
for limited-vocabulary speech recognition. ArXiv preprint,
2018.

[Zuo et al., 2022] Simiao Zuo, Xiaodong Liu, Jian Jiao, De-
nis Charles, Eren Manavoglu, Tuo Zhao, and Jianfeng Gao.
Efficient long sequence modeling via state space augmented
transformer. ArXiv preprint, 2022.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


