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Abstract

Retina images provide a minimally invasive view
of the central nervous system and microvascula-
ture, making it essential for clinical applications.
Changes in the retina often indicate both oph-
thalmic and systemic diseases, aiding in diagno-
sis and early intervention. While deep learning
algorithms have advanced retina image analysis,
a comprehensive review of related datasets, tasks,
and benchmarking is still lacking. In this survey,
we systematically categorize existing retina image
datasets based on their available data modalities,
and review the tasks these datasets support in mul-
timodal retina image analysis. We also explain
key evaluation metrics used in various retina im-
age analysis benchmarks. By thoroughly examin-
ing current datasets and methods, we highlight the
challenges and limitations in existing benchmarks
and discuss potential research topics in the field.
We hope this work will guide future retina analy-
sis methods and promote the shared use of existing
data across different tasks.

1 Introduction
The retina is a light-sensitive layer of tissue in the back of
the eye that sends visual signals to the brain. As the only hu-
man tissue allowing direct, noninvasive visualization of the
central nervous system and microvascular circulation, retina
images play a vital role in clinical applications. Changes in
the retina show signs of not only ophthalmic diseases, such as
Diabetic Retinopathy (DR), Age-related Macular Degenera-
tion (AMD), and GLaucoma (GL), but also systemic diseases,
such as Alzheimer’s disease (AD), cardiovascular diseases,
and neurological diseases.

In practice, multiple imaging techniques are developed to
examine various views of the retina. For example, Color
Fundus photography (CF) provides views of the retina sur-
face, Optical Coherence Tomography (OCT) delivers high-
resolution cross-sectional images of retina layers, and Optical
Coherence Tomography Angiography (OCTA) visualizes mi-
crovascular networks without the need for invasive contrast
agents. By integrating these techniques, clinicians obtain de-

Figure 1: Publication trend on retinal image analysis from PubMed.
The histogram indicates the number of total publications on multi-
modal retina analysis methods, while the curve indicates the percent-
age of multimodal based methods in overall retina analysis methods.

tailed images of anatomical and vascular structures for pre-
cise diagnosis and early disease intervention.

With the increasing availability of retina datasets [Has-
san et al., 2022; Khan et al., 2023; Li et al., 2024], deep
learning techniques [Liu and Yu, 2021; Wu et al., 2021;
Xie et al., 2024; Chen et al., 2024] have proven effective
in retina images analysis tasks such as disease classification,
cross-modal registration, and lesion segmentation in clinical
applications. As demonstrated in Fig. 1, we present the pub-
lication trend of multimodal deep learning research in reti-
nal image analysis, along with the increasing proportion of
such studies relative to the overall retinal imaging research
publications. The adoption of multimodal deep learning al-
gorithms in ophthalmology follows an increasing trajectory,
reflecting its growing clinical promise.

In this paper, we revisit the multimodal retina datasets,
tasks, and corresponding methods and discuss the limita-
tions and challenges in retina image analysis. To be specific,
we first categorize publicly available datasets based on their
imaging modalities and analyze their characteristics. We then
review the primary multimodal retina image analysis tasks,
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Figure 2: An overview of popular retinal imaging modalities. (a)
Color fundus photography (CF); (b) Fundus angiography (FA);
(c) Near infrared image (NIR); (d) Optical coherence tomograph
(OCT); (e) OCT angiography (OCTA); (f) Histology image (HI).

including classification, grading, registration, segmentation,
image generation, and medical report generation, highlight-
ing the associated datasets, evaluation metrics, methods, and
the benchmarks established for each task. In addition, we
further highlight some critical issues regarding the existing
datasets and benchmarks, such as dataset overfitting by ex-
isting methods, inconsistent dataset splits, and incompetent
evaluation of different modalities.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a revisit of existing datasets and the corre-
sponding retina imaging modalities. In Section 3, we out-
line the tasks for retina image analysis and present the used
dataset, evaluation metrics, and benchmarks. Section 4 em-
phasizes the challenges in the current research and explores
future research directions. In the end, we conclude the survey
with a summary of our findings and a call to action for further
research in Section 5.

2 Multimodal Retina Image Datasets
Multimodal retina image datasets represent incredibly valu-
able resources for both the development and evaluation of
deep learning models. Through the seamless integration of
various imaging modalities, these datasets enable a wide ar-
ray of fundamental yet diverse computational tasks, including
disease classification, lesion segmentation, and vascular anal-
ysis. Such datasets exhibit significant diversity in terms of
modality combinations, dataset size, annotation quality, and
accessibility. In this context, we first present a systematic re-
view of multimodal retina image datasets, focusing on their
applications and support for various deep learning tasks.

2.1 Overview of Datasets
During our paper collection, we identified 17 publicly avail-
able datasets. These datasets cover a variety of retina imag-
ing modalities, with CF and OCT being the most common.

Dataset Name[Year] Size Type Imaging Device

INSPIRE-stereo[2011] 0.03k C,O Nidek 3Dx
CF-FA[2012] 0.06k C,F -
CF-OCT-REG-22[2013] 0.02k C,O Topcon 3D OCT 1000
CF-OCT-OSD-50[2014] 0.10k C,O Multiple Devices
Project Macula[2015] 0.13k C,O,H Multiple Devices
GL-CF-OCT[2018] 0.05k C,O Topcon 3D OCT 2000
Biomisa-ARMD[2018] 0.1k/68k C/O TopCon TRC 50EX
OCTA-500*[2024] 0.5k O,OA RTVue-XR
PRIME-FP20[2021] 0.01k C,F Optos California
DeepEyeNet[2021] 18k/14k F/C -
GL-Dis[2022] 9k/0.18k O/C Topcon 3D OCT 2000
OLIVES[2022] 1k/78k IR/O -
GAMMA[2023] 0.3k C,O TRC-NW400, Kowa
APTOS2023[2023] 55k** -
FPRM[2024] 5k/0.7k I/V Discovery Model E
APTOS2024[2024] 1k/7k C/O Kowa VX-20
FOCTAIR 0.09k/0.2k F/OA -

Table 1: Summary of dataset size and recording devices. “ / ” de-
notes the inclusion of multiple imaging modalities or sample counts.
“-” denotes the information is not available or not found. * The
OCTA-500 dataset is first released in the year 2020. ** 55k contains
5.8k FA images, 4.2k ICGA images, and 45k FA&ICGA images.
“O” denotes OCT. “C” denotes CF. “F” denotes FA. “H” denotes
histology image. “OA” denotes OCTA. “IR” denotes near-infrared
image. “I” denotes image. “V” denotes video.

Specifically, 13 datasets include CF images, while 11 uti-
lize OCT. FA presents in 5 datasets, and OCTA appears
in 2 datasets. In addition to these widely used modali-
ties, other imaging techniques are represented in individ-
ual datasets: histology images (HI) in Project Macula, near-
infrared (NIR) images in OLIVES, and indocyanine green
angiography (ICGA) images in APTOS2023. Notably, the
FPRM dataset stands out for its diverse imaging modalities,
including oxygen saturation images, pupillary light reflex
videos, and retina blood flow (RBF) videos. However, despite
its uniqueness, this newly published dataset has seen limited
citations and lacks established benchmarking data or methods
for comparison, similar to the GL-Dis dataset. In this section,
we categorize these datasets by their imaging modalities and
analyze their key characteristics and limitations.

2.2 Datasets with CF and OCT
Eight datasets that include both CF and OCT, namely CF-
OCT-REG-22, CF-OCT-OSD-50, Project Macula, Biomisa-
ARMD, GL-CF-OCT, GL-Dis, GAMMA, INSPIRE-stereo,
and APTOS2024. As the most common combination, the
CF and OCT provide complementary structural information
about the retina. CF captures a global view of the retina
surface, while OCT provides high-resolution cross-sectional
imaging of retina layers. This combination is particularly use-
ful for analyzing morphological and structural changes in the
retina associated with retina diseases, including DR, AMD,
and GL. Several datasets in this category support disease clas-
sification and structural analysis tasks. Notable examples in-
clude GAMMA, Biomisa-ARMD, GL-CF-OCT, GL-Dis, and

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Dataset Name CF OCT FA OCTA Others Supported Tasks
CF-FA ✓ ✓ DR Grading, Registration, Generation
PRIME-FP20 ✓ ✓ Vessel Segmentation
DeepEyeNet ✓ ✓ Multi Classification, Medical Report Generation
CF-OCT-REG-22 ✓ ✓ Registration
CF-OCT-OSD-50 ✓ ✓ Registration
Project Macula ✓ ✓ ✓ Multi Classification
Biomisa-ARMD ✓ ✓ AMD Classification
GL-CF-OCT ✓ ✓ GL Classification
GL-Dis ✓ ✓ Multi Classification, OD/C Segmentation, Lesion Segmentation
GAMMA ✓ ✓ OD/C Segmentation, GL Grading, Fovea Localization
APTOS2024 ✓ ✓ Generation
INSPIRE-stereo ✓ ✓ Registration, Generation
OLIVES ✓ ✓ DR Classification, DME Classification
OCTA-500 ✓ ✓ Vessel Segmentation, FAZ Segmentation, Multi Classification
APTOS2023 ✓ ✓ Multi Classification, Eye Impression Assessment
FOCTAIR ✓ ✓ Registration
FPRM ✓ ✓ Quality Assessment, Multi Classification, Psychological Assessment

Table 2: Distribution of datasets modalities and corresponding computational tasks. “CF-OCT-REG-22” denotes “Database for the purpose
of vessel-based registration of Fundus and OCT projection images”. “CF-OCT-OSD-50” denotes “OCT data & Color Fundus Images of
Left & Right Eyes of 50 healthy persons” dataset. “GL-CF-OCT” denotes “Glaucoma Fundus and OCT Dataset”. “GL-Dis” denotes “retina
Image Database for Macular and Glaucomatous Disorders” dataset. “Others” denotes other modalities, including histology images (HI),
near-infrared (NIR) images, indocyanine green angiography (ICGA), oxygen saturation images, pupillary light reflex videos, and retina blood
flow (RBF) videos.

Project Macula dataset. Meanwhile, CF-OCT-REG-22 and
CF-OCT-OSD-50 datasets are designed for registration tasks,
facilitating multimodal alignment studies. Additionally, the
APTOS2024 challenge introduces an image synthesis task,
where models generate OCT images from CF inputs.

2.3 Datasets with CF and FA
Three datasets contain both CF and FA modalities, namely
CF-FA, PRIME-FP20, and DeepEyeNet. FA enables high-
contrast visualization of retina vasculature, while CF provides
complementary contextual information, capturing retina sur-
face features, including tissue morphology. These datasets
are commonly used for tasks involving vascular abnormali-
ties. For example, PRIME-FP20 is derived from a DR study
project in clinical settings to segment vasculature. The CF-FA
is proposed for DR detection and become an important re-
source for registration and image generation. Meanwhile, the
DeepEyeNet covers 265 different disease conditions along
with corresponding textual descriptions, making it a valuable
dataset for medical report generation.

2.4 Other Multimodal Datasets
Some datasets incorporate imaging modalities beyond CF,
OCT, FA, and OCTA, introducing unique imaging techniques
that enable specialized tasks. These datasets provide valu-
able resources for exploring novel AI applications in retina
images. For example, APTOS2023 includes ICGA images,
which can provide additional vascular insights beyond FA.
FOCTAIR combines FA and OCTA, making it one of the few
datasets emphasizing vasculature. FPRM is particularly no-
table for its diverse range of imaging modalities, including
oxygen saturation imaging, videos of pupillary light reflex,

videos of retina blood flow (RBF), textual psychological as-
sessment results and image quality reports, enabling research
in quality assessment, disease classification, and psycholog-
ical assessment. These above modalities, though relatively
rare, provide unique perspectives for multimodal image anal-
ysis. Their diverse imaging techniques contribute to the scope
of AI applications in retina research, beyond traditional struc-
tural and vascular assessments.

Additionally, the OCTA-500 dataset integrates OCT and
OCTA to support not only multi-class disease classification,
but also fine-grained segmentation tasks such as capillary seg-
mentation, artery segmentation, vein segmentation, and FAZ
segmentation. OLIVES incorporates near-infrared (NIR)
imaging, a modality that assists in the analysis of retina tis-
sue properties, particularly in detecting structural alterations
and fluid accumulation associated with diabetic retinopathy
(DR) and diabetic macular edema (DME). Both OCTA-500
and OLIVES are widely used datasets, supporting various
retina AI research applications.

3 Multimodal Retina Image Analysis Tasks
We identify five distinct categories of tasks based on their
input and output characteristics. This section discusses the
benchmarks, evaluation metrics, and state-of-the-art methods
associated with each multimodal retina image analysis task.

3.1 Classification and Grading
Problem Setting. retina classification tasks primarily focus
on detecting ocular pathologies by analyzing disease-specific
features in retina images, such as GL classification and DME
Classification. Grading derives from classification as it fol-
lows a predefined ordinal scale, where class labels have a set
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Dataset Method Year Acc. Sen. Spe. Pre. AUROC F1-score TV Kappa

CF-FA VTGAN [2021] 85.7 83.3 90.0 - - - - -

Project Macula Yoo et al. [2019] 97.3 - - - 99.4 - - -
El-Ateif & Idri [2024] 100 100 100 100 100 100 - -

GAMMA

SmartDSP [2023] - - - - - - - 85.49
EyeMoSt [2024] 86.0 - - - - - - 76.1

DGLR [2023] - 82.0 94.0 - 98.7 - 0.64 -
MM-RAF [2023a] - 93.33 80.78 89.25 95.84 85.15 - -

OLIVES
Method Year DR/DME Detection BioMarker TV KappaAcc. Sen. Spe. AUROC Ave. Spe. Ave. Sen.

OLIVES [2022] 82.33 80.4 74.2 79.0 77.2 67.5 - -
EyeMoSt [2024] 100.0 - 100.0 - - - - 100.0

DEN

Method Year Pretrain Random Init
Pre@1 Pre@5 Pre@1 Pre@5

ResNet [2016] 37.09 63.36 36.60 62.87
VGGNet [2014] 54.23 80.75 35.93 73.73

Jing et al. [2018] 32.72 63.75 29.11 60.68

Table 3: Classification and grading benchmarks on the CF-FA, Project Macular, GAMMA, and OLIVES datasets. AUROC is tested under
95% confidence interval. “-” denotes the metric that is not available or not mentioned in the original method paper. “Acc.” denotes accuracy.
“Sen.” denotes sensitivity. “Spe.” denotes specificity. “Pre.” denotes precision. “TV” denotes threshold value. “Ave.” denotes average.
“Pre@k” denotes top-k precision.

distance between them, rather than being distinct categorical
labels. It follows an ordinal classification paradigm based on
clinical needs, allowing the assessment of disease progression
and severity (e.g., DR grading).
Associated Datasets. There are 10 datasets supporting
classification and grading tasks. Five of them form avail-
able benchmarks, providing standardized evaluation frame-
works. Among these, the GAMMA dataset comes with an
online challenge. DEN, Biomisa-ARMD, and OLIVES con-
duct baseline benchmarks.
Evaluation Metrics. As shown in the Table 3, Cohen’s
kappa (Kappa) is served as an evaluation metric for grading
problems to amplify the distance of the error:

κ =
Po − Pe

1− Pe
, (1)

where Po is the observed agreement, and Pe is the expected
agreement by chance. The other metrics, such as Accuracy,
Sensitivity (Recall, True Positive rate), Specificity (True Neg-
ative Rate), Precision, Area Under Receiver Operating Char-
acteristic Curve (AUROC), F1-score are all commonly used
metrics in classification tasks. Biomisa-ARMD originally
provides a confusion matrix of normal, early, and advanced
AMD as a baseline result.
Related Methods. Yoo et al. [2019] describe itself as the
first to explore the use of both fundus and OCT images in a
deep learning-based classification algorithm. Their prelimi-
nary findings suggest that multimodal integration of CF and
OCT may enhance diagnostic accuracy. Notably, in recent
years, the metrics on the Project Macular dataset reach 100%.
Similarly, Zou et al. [2024] integrate uncertainty estimation

into the fusion process, leading to a 100% outcome for the
OLIVES dataset in the grading task. However, their models
do not achieve top performance on the GAMMA dataset.

3.2 Registration
Problem Setting. multimodal registration aligns corre-
sponding features across images from different modalities. It
enables more precise comparisons, downstream multimodal
fusion, and enhanced diagnostic decision-making

Problem Setting. The CF-FA dataset is one of the most
used public datasets for retina registration. Other multimodal
retina datasets offering registration annotations are CF-OCT-
REG-22, CF-OCT-OSD-50, INSPIRE-stereo, and FOCTAIR.
INSPIRE-stereo dataset is rarely cited in recent registration
works. Table 4 demonstrates recent research on datasets CF-
FA, CF-OCT-REG-22, CF-OCT-OSD-50, and FOCTAIR.

Evaluation Metrics. Success Rate (SR) quantifies the pro-
portion of registration cases where alignment error falls
within a predefined threshold, reflecting the reliability of the
registration method. SR metrics, such as SRME(n) and
SRMAE(n), measure the proportion of cases where registra-
tion error remains below a given threshold. While SRME

relies on mean error, SRMAE uses absolute error, both pro-
viding insights into the preservation of anatomical structures.
Mean Euclidean Error (MEE) quantifies the average registra-
tion error across all points, while Maximum Euclidean Error
(MAE) highlights the worst-case misalignment by consider-
ing the largest observed discrepancy. Root Mean Squared Er-
ror (RMSE) further refines error measurement by emphasiz-
ing larger deviations through squaring, making it particularly
sensitive to misalignments. Unlike these direct error metrics,
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Dataset CF-FA CF-OCT-REG-22 CF-OCT-OSD-50 FOCTAIR

Method [2021] [2022] [2022] [2024a] [2013] [2018] [2018] [2023]
SR 100 100 - - - - - -
SRME(ϵ = 2) - - 92.9 - - - - -
SRME(ϵ = 3) - - 100.0 - - - - -
SRMAE(ϵ = 3) - - 92.9 - - - - -
SRMAE(ϵ = 5) - - 100.0 - - - - -
REP (ϵ = 5) - - - - - - - -
SDP - - - - 1.02 3.92 4.21 -
MAE - - 2.47 - - 6.17 5.39 -
MEE - - 1.50 2.01 - 3.83 3.93 -
RMSE - - - - - 3.12 3.70 -
AUC - - - 0.858 - - - -
Dice 0.679 0.663 0.659 - - - - 0.7166
ZNCC - - - - - - - 0.8211
|Jϕ|≤0 - - - - - - - ✓

Table 4: Registration benchmark on datasets. “-” denotes the metric that is not used in the corresponding method paper.

Regional Error Propagation (REP) and Spatial Deformation
Penalty (SDP) assess the smoothness and spatial consistency
of transformations, ensuring that deformations remain locally
coherent. In the context of similarity-based evaluations, Zero-
mean Normalized Cross-Correlation (ZNCC) measures the
intensity correlation between registered images, making it
particularly suitable for multimodal registration tasks. Dice
Coefficient (DC) and Area Under the Curve (AUC) provide
an overlap-based perspective, with Dice quantifying spatial
alignment of segmented structures and AUC evaluating reg-
istration performance as a classification task. The Jacobian
determinant constraint |Jϕ|≤0 plays a crucial role in assessing
transformation field invertibility. A negative determinant in-
dicates non-physical folding in non-rigid deformations, high-
lighting structural inconsistencies that could invalidate regis-
tration outcomes.

Related Methods. Sindel et al. [2022] adopt a keypoint-
based vessel structure alignment method to optimize vessel
matching, enhancing the alignment accuracy of multimodal
retina images. Martı́nez-Rı́o et al. [2023] propose a weakly
supervised deep learning approach within a deformable reg-
istration framework. This method achieves effective multi-
modal retina image alignment with minimal annotation re-
quirements. Jahnavi and Sivaswamy [2018] discuss the
challenges and optimization directions in cross-modal align-
ment and provide a generalized multimodal retina registra-
tion pipeline. Retina IPA [Wang et al., 2024a] introduces a
self-supervised layer enhanced with keypoints as constraints
while refining feature extraction across modalities.

3.3 Segmentation
Problem Setting. Segmentation in retina image partitions
a raw image at the pixel level to delineate clinically signif-
icant anatomical structures or pathological regions, such as
lesions, vessel boundaries, or fluid cavities. The output is a
labeled mask that highlights these features, aiding in disease
diagnosis, staging, and monitoring.

Associated Datasets. PRIME-FP20 dataset supports the
vessel segmentation task, and OCTA-500 (two subsets: 6mm
and 3mm) supports Capillary Artery Vein Fovea (CAVF) seg-
mentation tasks. GAMMA dataset also provides annotations
for fovea localization task but lacks followers.

Evaluation Metrics. AUCPR, Dice Coefficient (DC), In-
tersection over Union (IoU), and Correctly Classified Area
over Lesion (CAL) each provide a unique perspective on
segmentation performance. AUCPR measures model ef-
fectiveness in imbalanced datasets by evaluating the trade-
off between precision and recall, ensuring that high recall
is not achieved at the expense of excessive false positives.
Dice and IoU both assess spatial overlap between predicted
and ground truth segmentations, with Dice emphasizing the
harmonic mean of precision and recall, while IoU penal-
izes over-segmentation more strongly. CAL, in contrast, fo-
cuses specifically on segmentation accuracy within lesion re-
gions, decomposing performance into correct lesion segmen-
tation (C), accurate boundary classification (A), and lesion
localization (L). These metrics balance global accuracy with
lesion-specific performance, making them particularly useful
in medical image applications.

Related Methods. The work of [Ding et al., 2021] pro-
poses a weakly-supervised approach for vessel detection in
ultra-widefield fundus photography by leveraging iterative
multimodal registration and learning. It exploits angiography
as an auxiliary modality for supervision without requiring
extensive manual annotations. The model refines vessel de-
tection iteratively, demonstrating improved performance over
standard weakly-supervised methods in challenging ultra-
widefield images. The authors of OCTA-500 [Li et al., 2020;
Li et al., 2024] introduce a large-scale OCTA dataset with
paired en face and volumetric angiography images. The study
benchmarks several deep learning models, including their
proposed IPNv2 for segmentation, highlighting the potential
of their dataset for advancing OCTA image understanding.
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Dataset Method Year Split AUCPR DC CAL(C,A,L)

PRIME-FP20 Self-supervised [2021] 5-fold cross-valid 0.842 0.772 0.730(0.999,0.849,0.860)
Unet-based [2021] 5-fold cross-valid 0.869 0.796 0.755(0.999,0.869,0.870)

OCTA-500 IoU(C) IoU(A) IoU(V) IoU(F) mIoU

OCTA-500-6mm IPN-V2 [2024] pre-defined 84.34 76.74 77.26 88.76 81.77
OCTA-500-3mm IPN-V2 [2024] pre-defined 86.16 82.26 81.38 95.15 86.24

Table 5: Segmentation benchmarks on the OCTA-500, PRIME-FP20 dataset. “mIOU” denotes mean IoU.

3.4 Image Generation
Problem Setting. Image generation tasks, sometimes re-
ferred to as image translation tasks, are very popular in medi-
cal images. Image generation tasks in medical images involve
creating new or enhanced images to augment existing datasets
or simulate realistic variations. Given a source image or latent
representation, these approaches output new medical images
with desired attributes. Such generation techniques can aid in
data augmentation and improve diagnostic clarity.

Associated Datasets. In the context of multimodal retina
images, only the CF-FA dataset, INSPIRE-stereo dataset,
and APTOS2024 dataset are accessible. INSPIRE-stereo
dataset has rare visibility in the deep learning community.
APTOS2024 is a new challenge held by Asia Pacific Tele-
Ophthalmology Society (APTOS), aiming to motivate CF to
OCT generation.

Evaluation Metrics. Structural Similarity Index (SSIM),
Peak Signal-to-Noise Ratio (PSNR), Mean Squared Error
(MSE), Fréchet Inception Distance (FID), and Kernel Incep-
tion Distance (KID) are key metrics for evaluating image gen-
eration quality, each capturing different aspects of fidelity and
realism. SSIM measures structural similarity between im-
ages by considering luminance, contrast, and texture, making
it more perceptually relevant than pixel-wise comparisons.
PSNR, in contrast, quantifies reconstruction quality based on
logarithmic scaling of the pixel-wise error, favoring images
with less distortion but often misaligned with human percep-
tion. MSE directly computes the average squared pixel differ-
ence, serving as a simple but less perceptually aligned met-
ric, where lower values indicate better reconstruction fidelity.
For assessing realism in generated images, FID and KID go
beyond pixel-level comparisons. FID measures the distance
between real and generated image distributions in a deep fea-
ture space, assuming a Gaussian distribution, making it effec-
tive for capturing global image quality but sensitive to dataset
size. KID, as an alternative, leverages Maximum Mean Dis-
crepancy (MMD) to compare distributions without assuming
Gaussianity, providing a more robust, unbiased estimate, par-
ticularly for smaller datasets. In a nutshell, SSIM, PSNR,
and MSE focus on pixel-wise and perceptual fidelity, while
FID and KID assess realism in a learned feature space. Kam-
ran et al. [2018] use validation loss and a GAN-like module to
demonstrate the validity of the pseudo-angiography images.
FVD is an extension of the FID metric, specifically designed
to evaluate the quality of video-like sequences by measuring
their distributional distance from real data in a feature space.

In the APTOS2024 challenge, the FVD metric is applied by
treating these six-frame sequences as mini-videos and com-
paring their learned feature distributions with those of real
OCT frame sequences

Related Methods. Kamran et al. [2020] proposes an ad-
versarial framework, named Fundus2Angio, to improve the
realism of generated images, with a generator learning struc-
tural and vascular mappings while a discriminator enforces fi-
delity. Performance evaluation suggests that the synthesized
FA images retain key vascular details, supporting potential
clinical applications. Their following work [Kamran et al.,
2021] proposes a semi-supervised approach by integrating
Vision Transformers (ViT) with Generative Adversarial Net-
works (GANs). The key contribution lies in leveraging ViT
for feature modeling to enhance both image generation qual-
ity and downstream diagnostic performance.

3.5 Medical Report Generation
Problem Setting. The medical report generation task auto-
mates the creation of medical reports from image data, cov-
ering descriptions, diagnoses, and recommendations. It can
generate structured or free-text reports with disease classi-
fication, lesion localization, and clinical guidance. The re-
port generation task enhances diagnostic efficiency, reduces
reporting workload, and improves interpretability.

Associated Datasets. The DeepOpht dataset provides a
standardized collection of multimodal retina images, en-
abling the development and evaluation of AI models for med-
ical image captioning and disease classification. It provides
a total of 15709 images, including 1811 FA and 13898 CFP.
Clinical labels, keywords and clinical descriptions covering
265 different disease conditions are further provided.

Evaluation Metrics. This benchmark primarily focuses on
assessing model performance in generating structured med-
ical reports from retina images, ensuring clinical relevance
and interoperability. As shown in Table 7, the performance of
AI models on the DeepOpht dataset is evaluated using a range
of metrics, each serving a distinct role in assessing model ef-
fectiveness, BLEU [Papineni et al., 2002], CIDEr [Vedantam
et al., 2015] and ROUGE [Lin, 2004]. These are key met-
rics for evaluating text generation quality, particularly in ma-
chine translation, image captioning, and summarization tasks.
BLEU measures n-gram precision by comparing generated
text to reference text. BLEU-1 to BLEU-4 correspond to un-
igram to four-gram precision, respectively, with BLEU-avg
representing their averaged score. Lower-order BLEU scores
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Dataset Method Year SSIM PSNR MSE FID KID FVD

CF-FA Fundus2Angio [2020] - - - 30.3 - -
VTGAN [2021] - - - 17.3 0.00053 -

UDLM-FFA [2024] 0.6237 20.3488 838.9363 - - -

APTOS2024 NJUST-EYE 2024 0.1048 13.6502 - - - 624.5898

Table 6: Generation benchmarks on the CF-FA and APTOS2024 datasets.

Dataset Method Year BLEU-1 BLEU-2 BLEU-3 BLEU-4 BLEU-avg CIDEr ROUGE

DEN

[Jing et al., 2018] 2018 0.184 0.114 0.068 0.032 0.100 0.361 0.232
[Li et al., 2019] 2019 0.181 0.107 0.062 0.032 0.096 0.453 0.230

[Huang et al., 2022] 2022 0.230 0.150 0.094 0.053 0.132 0.370 0.291
[Wang et al., 2024c] 2024 0.390 0.267 0.202 0.159 0.255 0.762 0.394

Table 7: Medical report generation benchmark on the DeepEyeNet(DEN) dataset. “-” indicates metrics not reported in the respective study.
Italic indicates the result is not provided originally and is calculated by us according to provided data, which may vary with the true value.

(e.g., BLEU-1) capture basic word accuracy, while higher-
order scores (e.g., BLEU-4) reflect fluency and coherence but
can be overly strict due to exact match requirements. CIDEr,
in contrast, emphasizes human-like relevance by weighting
n-grams based on their importance in a given corpus. Un-
like BLEU, which treats all matches equally, CIDEr assigns
higher scores to rare yet meaningful phrases, making it par-
ticularly effective for tasks like image captioning. ROUGE
evaluates recall-oriented overlap, commonly used in summa-
rization. Unlike BLEU, which prioritizes precision, ROUGE
measures how much of the reference text is retained in the
generated output, making it well-suited for evaluating com-
pleteness in extractive and abstractive summarization. For
text generation tasks, BLEU and ROUGE appear frequently,
reflecting their importance in assessing medical report qual-
ity. In the original paper of DEN, the authors also introduce a
human-involved visual evaluation named DNN Visual Expla-
nation Module. This module compares the heatmap obtained
from CAM [Zhou et al., 2016] with the manually labeled le-
sion sketch to qualitatively evaluate the effectiveness of the
models.

Related Methods. DeepOpht [Jing et al., 2018] proposes
the dataset DeepEyeNet (DEN) and explores the framework
and central challenges of automated medical report genera-
tion. Li et al. [2019] integrate prior knowledge into encoding
and retrieval processes, employing multi-stage paraphrasing
to enhance report quality. Huang et al. [2022] introduce a
non-local attention mechanism to capture more comprehen-
sive image features, thereby improving the description gener-
ation for retina images. EyeGraphGPT [Wang et al., 2024c]
is built on a multimodal large language model incorporating
knowledge graphs, aiming to enrich medical knowledge inte-
gration and expression in ophthalmic report generation.

4 Discussion
4.1 Challenge of Current Multimodal Datasets
Dataset Constraints. Some datasets, such as OLIVES and
Project Macula, have reached full accuracy, making it diffi-

cult to measure further improvements. Recent studies, such
as EyeMoSt [Zou et al., 2024], achieve full accuracy even
after adding Gaussian noise to OLIVES [2022], suggesting
that some benchmarking datasets may no longer differentiate
model performance effectively. These limitations reflect not
only the saturation of current benchmarks, but also deeper
issues in dataset design and availability. Many datasets re-
main small or contain biases, which limit the generalizabil-
ity of models trained on them. This scarcity is often rooted
in the challenges of clinical data governance, where privacy
concerns, patient consent requirements, and institutional reg-
ulations restrict the ability to share data across centers. These
challenges highlight the need for larger, more diverse, and
well-standardized multimodal retina image analysis datasets.

Modality Misalignment. A common response to these
constraints is to merge multiple datasets in order to construct
larger and more diverse evaluation pools [Stankevièius et al.,
2018; Pratap and Kokil, 2019]. While this strategy can im-
prove sample diversity by introducing a larger sample pool,
it also introduces practical challenges. In particular, these ef-
forts often encounter inconsistent labeling standards and di-
vergent annotation protocols, making it difficult to establish
unified benchmarks and conduct reliable cross-dataset evalu-
ations. These issues become more pronounced in multimodal
settings. Beyond label inconsistencies, this complexity arises
not only from device heterogeneity, but also from inconsisten-
cies in modality composition. First, multimodal retina image
datasets exhibit significant variation in acquisition devices,
as summarized in Tables 1 and 2. Different datasets often
use different imaging devices for the same modality. Such
variability in imaging devices, including differences in hard-
ware, resolution, contrast, and preprocessing pipelines, intro-
duces domain shifts. The cross-domain shifts in the cross-
modal scenarios may raise challenges to generalization. Sec-
ond, imaging modalities vary across datasets. While some
include OCT and CFP, others contain OCTA or FA, resulting
in limited modality overlap and poor cross-dataset compati-
bility. In multimodal settings, each sample refers to one sub-
ject. Different subjects may have different sets of available
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modalities, particularly when data from multiple sources are
combined. This makes it difficult to build data pipelines that
rely on consistent modality combinations, and constrains the
scalability of multimodal fusion strategies across large and
heterogeneous data sources.

4.2 Issues in Benchmarks
Evaluation Protocols. The current benchmarks exhibit sig-
nificant ambiguities regarding data splits for training and test-
ing. Many datasets do not specify clear partitions for training
versus testing, leading some studies to adopt 5-fold cross-
validation to compare their work against others. However,
this method can introduce randomness [Varma and Simon,
2006], while other researchers opt for purely random splits,
further complicating direct comparisons. Additionally, some
work (4.1) mix heterogeneous public datasets and even pri-
vate collections in their training or testing, often without clear
documentation of the split strategies. Such inconsistencies
limit the transparency, reproducibility, and comparability of
downstream evaluations. A robust benchmark should fea-
ture a well-designed testing set that guarantees the training
and testing data originate from the same distribution, ensur-
ing more consistent and reliable evaluations.

Evaluation Metrics. This survey exposes 28 distinct eval-
uation metrics and 14 variations. Although assessing per-
formance from various perspectives can be advantageous, an
overabundance of metrics often results in redundancy due to
overlapping characteristics. Moreover, the use of different
evaluation metrics across studies directly hinders the ability
to compare results effectively. Researchers in the retina reg-
istration field frequently reimplement existing methods using
their own chosen metrics and datasets to ensure fair compar-
isons. This practice imposes additional computational and
implementation burdens, and often results in incompatible re-
sults across studies. Benchmarks should therefore select met-
rics that are best suited to the dataset and task, providing a
comprehensive reflection of model performance and covering
all clinical-relevant aspects.

4.3 Evaluation of Individual Modality
Fusion Ambiguity. Multimodal fusion is a central objec-
tive in retina AI research, yet its practical benefits are not
well-characterized. While some works (e.g., Uni4Eye [Cai
et al., 2022]) report per-modality performance, they rarely
quantify the incremental gains achieved through fusion. In
some cases, such as IPNv2 [Li et al., 2024], models trained
solely on OCTA even outperform their fused counterparts,
challenging the common assumption that combining modal-
ities always improves performance. These findings suggest
that fusion may introduce redundancy, suboptimal architec-
tural interactions, or additional noise. This reveals a lack of
robust tools to isolate and evaluate individual modality con-
tributions, limiting the ability to systematically optimize the
fusion strategies.

Modality Variability. Beyond these methodological limi-
tations, the modality contribution itself is inherently dynamic
and context-dependent. First, the modality importance may

vary by task, as different objectives rely on different imag-
ing inputs. Second, the contributions may fluctuate across
subjects, depending on disease characteristics or image qual-
ity. Third, the utility of a modality during training may not
align with its value during inference, as some inputs en-
hance feature learning but contribute little to final predic-
tions. These nuances call for dropout-based or ablation-based
evaluations to assess modality-level robustness. Altogether,
these challenges emphasize the need for principled evaluation
frameworks that can disentangle, interpret, and benchmark
modality-specific contributions in multimodal retina systems.

4.4 Future Direction
We believe that a dataset and the corresponding benchmark
are essential to ensure a fair comparison and facilitate re-
producibility by providing uniform evaluation protocols. To
build such reliable and transparent evaluation protocols, sev-
eral key improvements are necessary. First, the community
must adopt shared protocols for dataset preprocessing, uni-
form training-validation-test splits, and explicit ablation stud-
ies to determine the impact of individual imaging modalities.
Second, expanding dataset diversity, both in terms of patholo-
gies and imaging devices, will mitigate the risk of overfit-
ting specific data distributions. Third, federated learning of-
fers a promising pathway for privacy-preserving data sharing
across institutions, allowing for large-scale validation with-
out compromising patient confidentiality. Finally, the devel-
opment of standardized benchmarking frameworks, including
robust cross-dataset validation, clinically interpretable eval-
uation criteria, and open-source reproducibility, is critical
for transforming multimodal retina AI from promising re-
search prototypes into clinically deployable tools. Emerging
foundation models offer new potential for cross-modal rea-
soning and automated reporting in retinal analysis [2023b;
2024; 2024b; 2025]. Most existing foundation models are
either limited to single-modality settings or trained on multi-
modal data without subject-level pairing. Foundation models
aligned at the patient level hold promise for meaningful clin-
ical integration and reasoning, a potential that is contingent
upon the availability and quality of multimodal datasets.

5 Conclusion
This survey highlights the critical role of multimodal retina
images in advancing ophthalmic diagnostics and AI-driven
analysis. By integrating complementary structural and vas-
cular modalities, multimodal approaches enhance disease de-
tection and monitoring. However, the field lacks standard-
ization in dataset usage, fusion methodologies, and evalua-
tion frameworks, limiting reproducibility and comparability
across studies. Our review systematically examines exist-
ing datasets, benchmarking methodologies, and deep learn-
ing strategies, emphasizing the need for standardized eval-
uation frameworks to ensure robust and clinically relevant
AI models. Future research should prioritize the develop-
ment of large-scale, well-annotated datasets and clinically in-
terpretable benchmarks to bridge the gap between research
advancements and real-world applications. Addressing these
challenges will be pivotal in realizing the full potential of AI-
driven multimodal retina analysis in clinical practice.
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