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Abstract

Retrosynthesis, which predicts the reactants of a
given target molecule, is an essential task for
drug discovery. Retrosynthesis prediction based on
molecular graph editing has garnered widespread
attention due to excellent interpretability. Existing
methods fail to effectively incorporate the chem-
ical knowledge when learning molecular repre-
sentations. To address this issue, we propose a
Knowledge-enhanced Graph Contrastive Learning
model (KGCL), which retrieve functional group
embeddings from a chemical knowledge graph
and integrate them into the atomic embeddings of
the product molecule using an attention mecha-
nism. Furthermore, we introduce a graph con-
trastive learning strategy that generates augmented
samples using graph edits to improve the molecular
graph encoder. Our proposed method outperforms
the strong baseline method Graph2Edits by 1.6%
and 3.2% in terms of the top-1 accuracy and top-1
round-trip accuracy on the USPTO-50K dataset, re-
spectively, and also achieves a new state-of-the-art
performance among semi-template-based methods
on the USPTO-FULL dataset. The source code of
this work and associated trained models are avail-
able at the KGCL GitHub : https://github.com/
mrzhaodekui/KGCL.

1 Introduction

Retrosynthesis prediction is an indispensable strategy for
designing drugs, from small molecules to complex natural
products[Gothard er al., 2012]. Al-based models for ret-
rosynthesis prediction has achieved great progresses, which
are divided into three classes: template-based, template-free,
and semi-template-based methods. Template-based methods
cannot predict reactions beyond the available templates, de-
spite their strong interpretability [Segler and Waller, 2017;
Dai et al., 2019; Chen and Jung, 2021; Xie et al., 2023].
Template-free methods do not rely on predefined templates
[Tetko et al., 2020; Seo et al., 20211, but the reactants gen-
erated by these methods are probably chemically invalid and
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Figure 1: An example of retrosynthesis prediction based on
molecular graph editing: Given the target molecule 1-iodo-4-
(methoxymethoxy) benzene, the first edit predicted by the model
is the removal of the C:3-0O:4 bond. The second edit predicted by
the model is the attachment of *CI’ to C:3. Finally, a termination
symbol indicates the completion of the retrosynthesis process.

lack interpretability[Wan et al., 2022; Tu and Coley, 2022;
Yao et al., 2024; Han et al., 2024]. To balance the dependence
on templates and interpretability of the prediction process,
semi-template-based methods were proposed, which per-
form retrosynthesis in two sequential steps: (1) breaking the
molecule by identifying a reaction center, and (2) transform-
ing the resulting fragments into potential reactants[Sacha et
al., 2021].

The retrosynthesis prediction method based on molecular
graph editing, which is inspired by the arrow-pushing method
in reaction mechanism description, is one of the most repre-
sentative semi-template-based strategies. As shown in Figure
1, the molecular graph editing methods formulate retrosyn-
thesis as a sequential modification process on the product
graph, which is guided by simplified reaction mechanisms.
However, existing methods typically treat individual atoms
in molecules as independent functional units when learn-
ing molecular graph representations. They ignore functional
groups, which are substituents or moieties in molecules that
cause the molecule’s characteristic chemical reactions, thus
limiting the predictive performance of the models[Zhong et
al., 2023].

To address this issue, this paper incorporates the func-
tional group knowledge from the chemical knowledge graph
into the embeddings of molecular graphs. In details, we
first extract functional group knowledge related to the target
molecule from the knowledge graph, and then employ an at-
tention mechanism to integrate the functional group knowl-
edge into the atomic representation of the molecular graph.
Such that the learned molecular embeddings become more
discriminative and interpretable.

Furthermore, to enhance the accuracy of molecular graph
representations, this paper introduces a contrastive learning
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strategy based on molecular graphs. The primary challenge
is how to construct the rational positive and negative sam-
ples for the target molecular graph. Traditional random graph
augmentation strategies are not suitable due to unique chem-
ical constraints [Fang et al., 2023]. To address this issue, we
use graph edit operations predicted by the model as perturba-
tions to generate positive and negative samples for the target
molecular graph.
The main contributions are summarized as follows:

* We propose a strategy to incorporate the chemical func-
tional group knowledge from knowledge graph into ret-
rosynthesis prediction based on molecular graph editing.
To the best of our knowledge, this is the first study to ap-
ply the chemical knowledge graph to retrosynthesis pre-
diction within the context of molecular graph editing.

L]

We present a new molecular graph contrastive learning
method. This method generates positive and negative
samples for the target molecular graph using molecular
graph edit operations predicted by the model, thereby
preserving the semantic information of molecular graphs
to the greatest extent.

Experiments on two benchmark datasets demonstrate
that our proposed model KGCL consistently outper-
forms the compared baseline methods and achieve new
state-of-the-art performance among the semi-template-
based methods.

2 Related Work

2.1 Knowledge-aware Semi-template-based
Retrosynthesis Prediction

A series of semi-template-based retrosynthesis models were
proposed in [Shi et al., 2020; Somnath et al., 2021; Wang et
al., 2021; Sacha et al., 2021; Zhong et al., 2023]. Although
achieved some progresses, these models did not consider the
chemical knowledge when learning molecular representation.
Thus the prediction performance of these models needs to
be improved. Afterward, the models in [Chen et al., 2023;
Liu er al., 2024] embedded the chemical knowledge, such
as reaction center types and chemical synthesis rules, into
the retrosynthesis systems to improve the accuracy and in-
terpretability. But in these models, the knowledge was prede-
fined and lacked flexibility. In the present paper, the knowl-
edge is from the chemical knowledge graph, not from prede-
fined rules. The knowledge graph has achieved great success
to predict molecular properties[Fang er al., 20231, but not yet
for retrosynthesis predictions. In the two scenarios, the fusion
strategies of the chemical domain knowledge are different.

2.2 Molecular Graph Contrastive Learning

Inspired by the success of contrastive learning in image and
language domains, it was introduced to molecular learning
and was shown to be effective [Chen et al., 2024]. Some
researchers generated positive and negative samples by ran-
dom perturbations for data augmentation [Luo ef al., 2023;
Zheng et al., 2023; Sun et al., 2022]. However, these methods
inevitably introduce variance in critical semantic information,
which can mislead contrastive learning [You er al., 2020;

Sun et al., 2021al. To address this issue, some works pre-
defined some domain knowledge and then utilized them to
generate two augmented views [Sun et al., 2021a; Kim et al.,
2023]. In the present paper, we need not predefine any do-
main knowledge, but directly utilize the graph edits predicted
by the model to construct positive and negative samples.

3 Proposed Method

The overall framework of the KGCL model is shown in Fig-
ure 2, and the details are in the following subsections.

3.1 Problem Definition

A molecule M is represented as a graph G = (A, B) in ret-
rosynthesis prediction based on molecular graph editing. A
is the set of atoms and B is the set of bonds in the molecule,
where each atom corresponds to a node and each bond cor-
responds to an edge. The graph edit set includes an atom-
level edit set E/,, a bond-level edit set £, and a molecule-
level edit set ;. Specifically, F, includes (1) atom modifi-
cation and (2) attaching a leaving group to the atom, Ej, in-
cludes (1) bond modification and (2) bond deletion, and edits
in I, determine whether the graph editing process has been
completed. The task of the retrosynthesis prediction model
is, given a target product molecule M, and its graph G,, to
predict a sequence of graph edits (el,--- el -+ eL) with
length L and u € {a,b,g} (i.e., €, € E, U E, U E,), which
modifies G,, sequentially, until the graphs Gyectane Of the reac-
tant molecules, which could potentially synthesize the prod-
uct, are obtained. This process can be formally described as
follows:

Greactant € R (1)

where R denotes the set of all possible reactant graphs. The
priority order of these operations is the same as in [Zhong et
al., 2023].

3.2 Knowledge-based Molecular Graph
Enhancement

In KGCL, the ¢-th atom and the undirected bond be-
tween the i-th and j-th atoms are initially encoded as
hi = (hia,---hipn,) with dimension n, and h;; =
(hij1s- - 5 hijn,) with dimension ny, respectively, for 1 <
i,7 < |A]. The initial features of atoms and bonds are pre-
defined in terms of chemical properties. More details can be
found in [Zhong et al., 2023].

A functional group is a group of atoms in a molecule with
distinctive chemical properties, regardless of the other atoms
in the molecule. To enhance the accuracy of molecular learn-
ing, we integrate the functional group knowledge into the rep-
resentations of molecular graphs.

This study only focuses on the functional groups that
are actually present in the target molecule to reduce the
noises introduced by irrelevant functional groups. Specifi-
cally, given a product molecule M, and the predefined set
of functional groups F' = {f1, -+, fi, -+, fn}, Where n
is the number of predefine functional groups, we first de-
termine whether each f; is a substructure of the molecule

L l 1
Greactant = €y0"0€,0---0 eu(g;v)7
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Figure 2: Overview of the proposed KGCL model. (a) Knowledge-based molecular graph enhancement, (b) The molecular graph encoder
and the predictors for molecular graph edits, and (c) Molecular graph contrastive learning module.

M, using the substructure matching algorithm. There-
fore, we obtain the set of functional groups within M,
denoted as F), {fprs s fo;o o+ fom }» Where m is
the number of the functional groups in M,.  Subse-
quently, the embeddings of these functional groups Heyne =
[hﬁmC 1seee ,hg;ncyj, . hfunc )T, where hfunc,; is the em-
beddlng vector of fp]. ,are retrieved from the chemical knowl-
edge graph [Fang et al., 2023]. Finally, these functional group
embeddings are incorporated into the representation of the
molecular graph using an attention mechanism.

Specifically, the embeddings of the atoms in the original
molecular graph are used as queries to attend to all functional
groups. The knowledge-enhanced embedding h; for the i-th
atom is computed as follows:

NZT
h; = hi + Attention(h, Hiune) - Hiune, (3)

where d is the dimension of the functional group embedding.
Next, the embeddings of bonds are enhanced and injected di-
rection information as follows:

hij = hi @ hij, (4)

Attention(h;, Hpyne) = softmax (

ﬁji — ilj ® hyj, &)
where & denotes the concatenation operation. Finally, the
knowledge-enhanced molecular graph is denoted as

Hy = ({hill < i <A} {hi 1 < 0,5 < JAD). - (©)

3.3 The Molecular Graph Encoder

We use the directed message passing neural network (D-
MPNN) [Gilmer ef al., 2017] to encode the molecular graph.

At the (¢ 4+ 1)-th iteration, hidden representation h(tH) of

each edge is updated based on messages m( b according to
m D = 3T My, b ), (7)
EEN(i)\j
R = Uy (R, miEY), (8)
BEZ) = I/Vinput(]t"ilc)a (9)

where h;y, is the initial feature of the edge from the node i to
the k in the knowledge-enhanced molecular graph, Wiypy is
the learnable weight matrix, N (7) is the neighbors of the i-th
vertex, and m;; is the message feature vector from the node
1 to the node j. M, and U, are the message and edge update
function:

My(hi, by, 1) = B, (10)
U(h m{) = GRUGRY +m{TY). (b

After T iterations, the embedding of the i-th vertex is updated
as follows:

hi = T(Woutput(hi S¥ Z ilg?)) + 0)7
JEN(d)

where o is the SELU activation function, Wy is the learn-

able weight matrix and c is the bias of the fully connected

network.

12)
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3.4 The Generation of Edit Sequences

The edit sequence (el,--- el -, eL) for the target molec-
ular graph is generated in an autoregressive manner [Zhong et
al., 2023], in which three MLPs are used to predict the atom-
level, the bond-level and the graph-level edits, respectively.
At the [-th step, to strengthen the relationship between the
current editing operation and previous ones, the atom embed-

dings obtained from the D-MPNN encoder are updated by:
WY = o, (Wb Y 4+ wn®), (13)

where hEO) = h; defined in (12), W), and W, are the learn-
able weight matrices, and o, is the SELU activation function.
After the atom features are updated, the bond features are re-
computed using the features of the atoms at its two ends, and
the molecular features are obtained by summing the hidden
representation of all its atoms as follows:

hl) =n" @ nl, (14)
WY =3 A, (15)
i€eg®

where & denotes the concatenation operation.

At last, the logits OE? iy oE?ij) and ogl) corresponding to the
atom-level edit a € E,, bond-level edit b € Ej, and graph-
level edit at the [-th step are predicted as follows:

0(l sy = Walor(Wih{" + c1) + ca), (16)
0 4y = Walon(Wsh() + e3) + ca), a7
ol) = We (o (WshS) +¢5) + cq), (18)

where W; is the weight matrix, and ¢; is the corresponding
bias for 1 < ¢ < 6, and o, is the SELU activation function.

3.5 Molecular Graph Contrastive Learning Based
on Edit Sequences

In order to enhance the representation learning ability of
the encoder, we propose a novel molecular graph contrastive
learning strategy. One main challenge in contrastive learning
is to generate rational positive and negative samples:

* The anchor sample should be semantically similar to the
positive sample while far from the negative samples;

* In our context, the molecules corresponding to the pos-
itive and negative samples should satisfy the chemical
property constraints.

To address this issue, we leverage predicted edit se-
quences as augmentation operations to  construct
positive and negative samples. Specifically, let
Shatch = {M1, -+, M;, -+, My} denote the set of product
molecules in the current training batch. For each molecule
M,;, the predicted edit sequence is (e't,e’2, ... eiLi),
where L; is the length of current edit sequence for
M;.  This sequence generates a set of intermediates
St = M =¢clto-coet (M)l <1 < L;j}. We
randomly select one M;" from S;" as the positive sample
of M;. The set of negative samples for M, is defined

as S; = U#i{/\/l;,/\/l?, e ,ij}, which includes
intermediates generated from all other molecules in the
batch.

In this study, we adopt a variant of InfoNCE loss as the
contrastive loss, which assigns dynamic Gaussian weights to
negative samples[Wu er al., 2024]. The contrastive loss func-
tion is defined as:

N .. ..
1 hg, - hg hg, - hg+
Leos = — i z(log(exp =) — (log(exp )
Wj (ﬁg] ~g”*)
+( ) exp ),
M;es;
(19)

where i~zg~ , ?Lg? and ?lg; are molecular graph embedding for

the molecule M;, its positive sample M;" and its negative
sample M~ as defined in (15), 7 is temperature coefficient
and w; is the weight of the negative sample M, which is

dynamically computed based on the similarity between the
anchor sample MM; and the negative sample M~ as follows:

1 ( 1((’~”Lcjl'hgj)—/i
exp(— - (—————
o\ 2T S 2 o

wj = %), Qo)
where p and o, two hyperparameters, are the mean and vari-
ance, respectively. Samples closer to p have larger weights.
The smaller the value of ¢ is, the more pronounced the weight
differences between samples are.

3.6 Overall Loss Function for Model Training

We utilize the following cross-entropy loss, referred to as the
edit prediction loss, to measure the difference between the
ground truth labels and the predicted labels:

L
Ledits = —% Z ( Z ( Z yl(l) log(ogfl)yi))

=1 GmEbatch “Na€E,
l l l l
+ 3y log(OEb),ij)) + yé) log(og)», 21)
bEE,

where L is the length of the graph edit sequence, G,, is an
intermediate in the current batch during the training process.

?sz’ yg) and yg) are the ground-truth labels for the atom edit

a € E,, the bond edit b € Ej, and the molecular graph edit
at the [-th step. oEQi), OE?’L‘]’) and og) are the output scores of
the model for the corresponding edits.

The overall loss is defined as the weighted combination of
the edit prediction loss and the contrastive learning loss:

Etotal = Eedits + A Ecosa (22)

where ) is a hyperparameter that controls the weight of the
contrastive loss.
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4 [Experiments

4.1 Experimental Setup

Datasets. Our experiments are conducted on public bench-
mark datasets USPTO-50K [Schneider et al., 2016] and
USPTO-FULL [Dai et al., 2019]. The USPTO-50K is a high-
quality dataset that contains 50,016 reactions with the cor-
rect atom-mapping. It is divided into the training, validation,
and test sets according to the partitioning scheme as [Coley
et al., 2017], with each set containing 40k, 5k, and 5k reac-
tions, respectively. Compared with the USPTO-50K dataset,
the USPTO-FULL dataset has higher coverage and diversity,
containing 1000k unfiltered chemical reactions. We adopt the
same splitting method as [Dai et al., 2019] and divide it into
800k, 100k, and 100k reactions as the training set, validation
set, and test set respectively. For fair comparisons, the extrac-
tion of graph editing operations and other data preprocessing
are the same as those in [Zhong er al., 2023].

Implementation details. The KGCL model uses the
Adam optimizer for gradient descent training. For the
USPTO-50K dataset, the initial learning rate is set to 0.001
(0.0001 for the USPTO-FULL dataset), and a polynomial de-
cay learning rate scheduler is applied. When the improve-
ment in accuracy on the validation set is less than a predefined
threshold 0.01 within 5 consecutive epochs, it is considered
to have reached a plateau (or peak). At this point, the learning
rate is reduced by a decay factor 0.8. The hidden dimension
of the encoder is set to 256, the number of iterations of mes-
sage passing is 10, and node embeddings are dropped with
the probability 0.15. We use three MLPs with a hidden di-
mension 512 and a dropout rate of 0.2 to predict the initial
edit scores. The model was trained for 200 epochs using a
batch size of 256. All experiments were conducted on a sin-
gle NVIDIA RTX A6000 GPU.

Evaluation and baselines. We employ the top-k ex-
act match, round-trip and MaxFrag accuracy as the metrics
to measure the retrosynthesis performance. The top-k ex-
act match accuracy is calculated by comparing the standard
Simplified Molecular Input Line Entry System (SMILES)
of predicted reactants with the ground-truths in the dataset
[Weininger, 1988]. We report the top-k accuracy where k=1,
3, 5, 10 and 50. The round-trip accuracy is computed by
evaluating the similarity between the ground-truth product
and the product generated by a forward-synthesis model us-
ing the predicted reactants [Schwaller ef al., 2020]. We uti-
lize Molecular Transformer (MT) [Schwaller ef al., 2019] as
a forward-synthesis prediction model to compute the round-
trip accuracy. The MaxFrag accuracy is defined as the exact
match between the largest fragment of the predicted reactant
and the ground-truth in the dataset [Tetko et al., 2020].

We compared our model with representative baseline mod-
els in recent years, include:

* template-based methods: Retrosim[Coley er al., 20171,
Neuralsym [Segler and Waller, 2017], GLN [Dai
et al., 2019], LocalRetro [Chen and Jung, 2021],
RetroKNN[Xie et al., 2023];

» Tempate-free methods: Aug.Transformer [Tetko et
al., 20201, GTA[Seo et al., 2021], Dual-TF [Sun

et al., 2021b]l, Retroformer [Wan et al, 2022],
Graph2SMILES [Tu and Coley, 2022], NAG2G [Yao et
al., 2024];

* Semi-template-based methods: MEGAN [Sacha et al.,
2021], RetroPrime [Wang er al., 2021], GraphRetro
[Somnath er al., 2021], G2Retro [Chen et al., 20231,
Graph2Edits [Zhong et al., 2023], MARS [Liu et al.,
2024].

4.2 Main Results

The comparison of model performance, in terms of the top-
k exact match accuracy, on the USPTO-50K dataset is pre-
sented in Tables 1 and 2. When the reaction class is un-
known, the KGCL model achieved a top-1 accuracy of 56.3%.
In more detail, KGCL achieves state-of-the-art performance
among all semi-template-based methods for all values of k
and surpasses the strong baseline Graph2Edits by margins of
1.2% and 1.9% in top-1 and top-10 accuracy, respectively.
In addition, the performance of KGCL outperforms those of
all template-free methods and is better than those of most
template-based methods. Even compared with RetroKNN,
a strong baseline for template-based methods, KGCL also
shows strong competitiveness. When the reaction type is
known, KGCL also outperforms all other semi-template-
based methods for all k£ values and improves the top-1 accu-
racy by 1.6% compared to the strong baseline Graph2Edits.

Model Top-k accuracy (%)
k=1 3 5 10 50
Template-Based Methods
GLN 525 69.0 756 837 924
LocalRetro 534 775 859 924 977
RetroKNN 572 789 864 92.7 98.1
Template-Free Methods
Retroformer 532 71.1 76.6 82.1 -
Graph2SMILES 529 66.5 700 729 -
Dual-TF 53.6 70.7 746 71.0 -
NAG2G 551 769 834 89.9 -
Semi-Template-Based Methods

MEGAN 48.1 70.7 784 86.1 932
GraphRetro 537 683 722 755 -
MARS 546 764 833 885 -
G2Retro 541 741 812 86.7

Graph2Edits 551 773 834 894 927
KGCL(ours) 563 78.1 854 913 96.1

Table 1: Top-k exact match accuracy on USPTO-50K Dataset with-
out reaction classes.

To evaluate the performance of our model in generating
valid retrosynthetic suggestions and predicting the correct
reaction class, we compared KGCL with baseline methods
in terms of round-trip and MaxFrag accuracy. The com-
parative results on the USPTO-50K dataset are presented in
Table 3. The top-1 round-trip accuracy of KGCL reached
89.1%, which is nearly comparable to the performance of Lo-
calRetro and surpasses the strong baseline Graph2Edits by
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3.2%. For other values k, KGCL also significantly outper-
forms Graph2Edits, demonstrating the validation of its pre-
dictive results. Furthermore, in terms of MaxFrag accuracy,
KGCL achieves a top-1 accuracy of 60.8%, significantly out-
performing all baseline methods.

Model Top-k accuracy (%)

k=1 3 5 10 50

Template-Based Methods
LocalRetro 639 86.8 924 963 979
GLN 642 79.1 852 90.0 932
RetroKNN 66.7 882 93.6 96.6 984
Template-Free Methods
Retroformer 64.0 82.5 86.7 90.2 -
Dual-TF 65.7 819 847 859 -
NAG2G 67.2 864 905 9338 -
Semi-Template-Based Methods
MEGAN 60.7 820 875 91.6 953
GraphRetro 639 815 852 88.1 -
G?Retro 63.6 836 884 915 -
MARS 662 858 902 929 -
Graph2Edits 67.1 87.5 91.5 938 94.6
KGCL(ours) 68.7 879 92.0 945 958

Table 2: Top-k exact match accuracy on USPTO-50K Dataset with
reaction classes.

Category ~ Model Top-k accuracy (%)
k=1 3 5 10 50
Template-Based Methods
Round-Tri LocalRetro 89.5 979 99.2 - -
accura cyp Semi-Template-Based Methods
MEGAN 82.0 89.9 91.7 94.0 96.4
GraphRetro 86.0 89.9 90.7 91.4 91.6
Graph2Edits 85.9 935 95.1 964 97.3
KGCL(ours) 89.1 97.5 98.7 99.5 99.9
Template-Based Methods
MaxFrag LocalRetro 57.8 82.1 89.7 95.0 98.4
accuracy Template-Free Methods

Aug.Transformer 58.5 73.0 85.4 90.0 -
Semi-Template-Based Methods

MEGAN 54.2 75.7 83.1 89.2 95.1
Graph2Edits 59.2 80.1 86.1 91.3 93.1
KGCL(ours) 60.8 81.3 87.9 93.0 96.8

Table 3: Top-k round-trip and MaxFrag accuracy on USPTO-50K
dataset without reaction classes.

In order to verify the generalization ability and robustness
of our method, we evaluated the model performance on the
USPTO-FULL dataset, which has a larger number of reac-
tions and more diverse reaction classes. The results are shown
in Table 4. For fair comparison, we did not clean the USPTO-
FULL dataset, including the test set. Despite the large amount
of noises in the original dataset, our method still achieve con-
siderable performance. Moreover, for k=1, 3, 5, 10, our

model achieves state-of-the-art performance among all semi-
template-based retrosynthesis methods. Additionally, KGCL
also shows strong competitiveness compared with current
leading template-free methods, which further highlights its
potential for efficient search in more complex and diverse re-
action spaces.

Model Top-k Accuracy (%)
k=1 3 5 10
Template-Based Methods
Retrosim 32.8 - - 56.1
Neuralsym 35.8 - - 60.8
LocalRetro 39.1 533 584 63.7
GLN 39.3 - - 63.7
Template-Free Methods
Graph2SMILES 45.7 - - 63.4
Aug.Transformer* 46.2 - - 73.3
GTA* 46.6 - - 70.4
NAG2G* 47.7 62.0 66.6 71.0
Semi-Template-Based Methods

MEGAN 33.6 - - 63.9
RetroPrime* 44.1 59.1 62.8 68.5
Graph2Edits 440 609 668 725

KGCL(ours) 44.1 614 673 73.0

Table 4: Top-k exact match accuracy on USPTO-FULL dataset
without reaction classes. * indicates that invalid reactions in the test
set were removed.

4.3 Ablation Study

To investigate the contributions of different components, we
conducted ablation experiments on the USPTO-50K dataset.
The results are presented by comparing the top-1 exact match
accuracy of different models on the USPTO-50K dataset
without reaction classes, as shown in Table 5. Model I re-
moves the functional group knowledge and contrastive learn-
ing strategy, and its accuracy is 55.1%. Model II adds the
graph contrastive learning strategy into Model I, and the top-
1 accuracy increases by 0.5% to 55.6%, which proves the ef-
fectiveness of the graph contrastive learning strategy. Sim-
ilarly, Model III incorporates the functional group knowl-
edge into Model I, and the top-1 accuracy increases by 0.4%,
reaching 55.5%. The results show the importance of the
functional group knowledge for the retrosynthesis prediction
task. Model IV is a complete KGCL model. Its top-1 accu-
racy is improved by 1.2% compared to Model I, which ex-
ceeds the cumulative gains achieved by using the functional
group knowledge and the graph contrastive learning strategy
independently. This demonstrates the superior performance
achieved when these two strategies work together. Therefore,
every component is indispensable.

4.4 Case Study

To better understand the impact of the functional group
knowledge on retrosynthetic predictions, we randomly se-
lected a product molecule from the test set of the USPTO-50K
dataset. As shown in Figure 3, in the first step, Graph2Edits
and our model predicted correctly. In the second step,
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Figure 3: Investigation of importance of the functional group knowledge. Darker colors indicate higher weights of the functional groups.

our model still predicted correctly, but Graph2Edits made a
wrong prediction. The following is a detailed analysis: All
halogen elements possess oxidability due to the same outer
electrons number, but with the increase of the electron layers,
from F to I, electrophilicity is decreasing and nucleophilicity
continue to increase. It is well known that iodine is not only a
good nucleophile but also a good leaving group. Graph2Edits
incorrectly predicted to attach the fluorine atom to the ben-
zene ring in the second step. And our model identified the
presence of phenyl and iodine functional groups in the inter-
mediate. Thus it predicted to attach the iodine atom to the
benzene ring. Our prediction is more reasonable: On one
side, the iodobenzene radical intermediates has high reactiv-
ity and presents electron-deficient property for the iodine sub-
stituents, thus it is more suitable to react with the nucleophilic
iodine atoms. On the other side, iodine atom has the max-
imum atomic radius among halogens, which makes the C-I
bond easily broken. Therefore, the reactants predicted by our
model can produce the target product more easily.

4.5 Visualization of Molecular Graph Embeddings

To evaluate the quality of the learned molecular embeddings,
we visualize the embeddings of complex product molecules
and their intermediates from different reaction classes, as
shown in Figure 4. Specifically, we randomly selected a
complex product molecule from each reaction class in the
test set of the USPTO-50K dataset. The selected molecules
have at least one of the following characteristics: multi-
ple reaction centers, stereochemical features, or a long syn-
thetic pathway [Herges, 1994; Zhong et al., 2023]. We then
used Graph2Edits and KGCL with beam width = 10 and
beam size = 50 to generate graph edit sequences for these
molecules and obtain their intermediates. Subsequently, the
high-dimensional feature vectors of these molecules and their
intermediates were reduced to a two-dimensional embedding
space using the t-distributed stochastic neighbor embedding
(t-SNE) [Van der Maaten and Hinton, 2008] method.

It can be seen from Figure 4a that the embeddings
of product molecules and their intermediates generated by
Graph2Edits present a dispersed distribution, and the bound-
aries of the intermediate embeddings of different target
molecules are not sufficiently distinct. In contrast, KGCL
(Fig. 4b) is able to effectively distinguish intermediate em-
beddings of different target molecules, and all intermediate
embeddings of the same target molecule are tightly clustered
together. The visualization results show that our model is able

to capture differences between different molecular structures
and maintain the similarity between different intermediates of
the same molecule, which provides strong support to predict
the graph edit sequences.

Functional Contrastive
Group Learning Top-1 (%)
1 X X 55.1
11 X v 55.6
1T v X 55.5
v v v 56.3

Table 5: Ablation study on the USPTO-50K Dataset without reac-
tion classes.
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Figure 4: t-SNE visualization of the embeddings for complex

molecules from different reactions.

5 Conclusion

In the present paper, we improved the accuracy of retrosyn-
thesis prediction by introducing the functional knowledge and
the contrastive learning strategy. The experimental results on
two benchmark datasets, USPTO-50K and USPTO-FULL,
verified the effectiveness of our model KGCL. The success
of KGCL depends on merging the domain knowledge from
the chemical knowledge graph into the deep learning model
in a rational way. In the future, we will further improve the
prediction accuracy by introducing more domain knowledge,
such as the electronic effect and steric effect, into the ret-
rosynthesis prediction model.
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