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Abstract
Accurate mapping of irrigation methods is cru-
cial for sustainable agricultural practices and food
systems. However, existing models that rely
solely on spectral features from satellite imagery
are ineffective due to the complexity of agricul-
tural landscapes and limited training data, mak-
ing this a challenging problem. We present
Knowledge-Informed Irrigation Mapping (KIIM),
a novel Swin-Transformer based approach that uses
(i) a specialized projection matrix to encode crop
to irrigation probability, (ii) a spatial attention map
to identify agricultural lands from non-agricultural
lands, (iii) bi-directional cross-attention to focus
complementary information from different modal-
ities, and (iv) a weighted ensemble for combining
predictions from images and crop information. Our
experimentation on five states in the US shows up
to 22.9% (IoU) improvement over baseline with a
71.4% (IoU) improvement for hard-to-classify drip
irrigation. In addition, we propose a two-phase
transfer learning approach to enhance cross-state ir-
rigation mapping, achieving a 51% IoU boost in
a state with limited labeled data. The ability to
achieve baseline performance with only 40% of
the training data highlights its efficiency, reducing
the dependency on extensive manual labeling ef-
forts and making large-scale, automated irrigation
mapping more feasible and cost-effective. Code:
https://github.com/Nibir088/KIIM

1 Introduction
Mapping Irrigation Assets: A Social Good Problem.
Irrigation is a crucial component of agricultural manage-
ment, supporting approximately 40% of global food produc-
tion [WWAP, 2019]. As a dominant freshwater-use prac-
tice, irrigation accounts for nearly 90% of global consump-
tive freshwater use [Döll et al., 2009; Meier et al., 2018;
Dieter et al., 2018; Zhou et al., 2020], significantly shaping
regional and global hydrological cycles [de Vrese et al., 2016;
Leng et al., 2014]. In regions like northwestern China and

Figure 1: Irrigation mapping from satellite imagery: (left) RGB im-
age showing citrus, alfalfa, and jojoba fields (red borders); (right)
irrigation classification mask with Sprinkler, Flood, and Drip irriga-
tion methods.

the US High Plains, excessive irrigation has caused sub-
stantial declines in river discharge and groundwater levels,
highlighting the impact of inefficiency of irrigation meth-
ods [Hao et al., 2015; Pérez-Blanco et al., 2020]. The irriga-
tion type (e.g., drip, sprinkler, or flood irrigation) determines
how extracted water is distributed across irrigated areas, af-
fecting water quantity and quality [Ippolito et al., 2019].
While accurate mapping of irrigation methods can facilitate
identification of current practices and sustainable upgrades,
traditional approaches only distinguish irrigated from non-
irrigated fields or focus only on small areas or a single type
of irrigation; large-scale cross-region generalization remains
underexplored [Tang et al., 2021; Nouwakpo et al., 2024;
Hoque et al., 2024]. Thus, effective irrigation mapping aligns
with the United Nations Sustainable Development Goals 2
and 8 [Nations, 2015], which aim to promote sustainable agri-
cultural practices and food systems, while also supporting the
goal of “Leave No One Behind” [WWAP, 2019].

Team. This work is an interdisciplinary collaboration be-
tween computer scientists (at universities) and an agricultural
scientist (at the US Department of Agriculture).

Challenges. Due to differences in climate, crop types, and
water availability, irrigation practices can vary significantly
from one region to another [Nie et al., 2021]. As a re-
sult, traditional methods that perform well locally may strug-
gle to accurately classify irrigation across multiple regions,
making large-scale, consistent irrigation mapping an ongo-
ing challenge. Many regions lack sufficient labeled data for
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training robust irrigation classification models, as collecting
ground truth across vast farmland areas is costly and time-
consuming. Remote sensing offers a scalable solution us-
ing multispectral satellite imagery, but challenges persist due
to spectral ambiguity, resolution limits, class imbalance, and
regional differences. Furthermore, available data are often
highly imbalanced, with drip-irrigated fields constituting only
a small fraction of samples, making it difficult for the model
to learn minority classes effectively. For instance, drip irriga-
tion accounts for just 0.08% of Utah’s irrigated land1.

Our Contributions. To address these challenges, we pro-
pose the Knowledge-Informed Irrigation Mapping (KIIM)
model (Fig. 2), which leverages the Normalized Difference
Vegetation Index (NDVI), the Normalized Difference Water
Index (NDWI), and the Normalized Difference Tillage Index
(NDTI) derived from additional remote sensing bands (de-
tails in Appendix) to capture plant health, water content, and
soil conditions. KIIM also uses land-use data and crop-type
information, from the USDA Cropland Data Layer, to refine
predictions by focusing on cultivated areas and incorporating
crop-irrigation relationships, improving the identification of
underrepresented irrigation methods like drip irrigation. Our
main contributions are:

• We propose a vision transformer-based multi-stream learn-
ing framework that integrates RGB and vegetation indices
using a Bidirectional Cross-Attention module (Fig. 2).
Vegetation indices are closely related to irrigation meth-
ods; for example, NDWI identifies flood-irrigated fields
better, while NDVI distinguishes healthy crop growth as-
sociated with sprinkler or drip irrigation [Dempsey, 2024;
Allen et al., 2021]. While straightforward single-stream
channel stacking may lead to the loss of modality-specific
information due to early fusion, our framework instead
guides the model to capture complementary relationships
allowing each stream to query relevant information from the
other stream’s perspective.

• We encode crop-irrigation relationships in a state-specific
projection matrix, capturing historical irrigation prefer-
ences, and use weighted ensemble method with the predic-
tion from the multi-stream module. Crop-type information
further refines predictions, as certain crops are historically
associated with specific irrigation methods (e.g., vineyards
with drip irrigation, alfalfa with flood irrigation; see Fig 1).

• We incorporate a spatial attention map to enhance agricul-
tural land segmentation by generating pixel-level attention
map. This assigns higher weights to agricultural regions
and field boundaries while suppressing non-agricultural ar-
eas, effectively highlighting irrigation-relevant features.

• Our extensive evaluations across five states (Arizona (AZ),
Colorado (CO), Utah (UT), Washington (WA), and Florida
(FL)) show that each module in KIIM improves perfor-
mance individually, with the best results achieved when
all modules are combined. KIIM consistently outperforms
the baseline, achieving an average IoU improvement of
18.1% across states and a 71.4% improvement in challeng-
ing cases (i.e., drip). KIIM demonstrates strong generaliza-

1https://dwre-utahdnr.opendata.arcgis.com/pages/wrlu-data

tion to unseen state data, achieving impressive performance
in both zero-shot and few-shot settings. Impressively, KIIM
achieves this performance using Landsat’s 30m resolution,
demonstrating its ability to learn irrigation patterns despite
coarse spatial granularity.

2 Related Work
Remote Sensing for Mapping Agricultural Infrastructure.
Deep learning models in agricultural remote sensing have
been applied to crop classification, field boundary detection,
and irrigation mapping [Jin et al., 2017; Weiss et al., 2020;
Paolini et al., 2022]. CNNs have been used for classify-
ing invasive species [Hung et al., 2014], segmenting mixed
crops [Mortensen et al., 2016], and detecting weeds [Milioto
et al., 2017; Di Cicco et al., 2017]. Attention-based mod-
els [Wang et al., 2020a; Zheng et al., 2021] and channel-
wise feature selection techniques [Cheng et al., 2021; Tao
et al., 2020] improve segmentation accuracy in complex
landscapes. However, CNNs and ViTs struggle to differ-
entiate irrigation methods due to spectral similarity. Multi-
stream fusion of spectral indices (NDVI, NDWI, NDTI) en-
hances segmentation robustness but still demands large la-
beled datasets for reliable generalization [He et al., 2017;
Touvron et al., 2021]. While progress has been made in other
agricultural infrastructure, advancements in irrigation map-
ping remain limited.
Multi-Channel Representation Learning. Recent advances
in deep learning have significantly improved semantic seg-
mentation, evolving from FCNs to encoder-decoder models
like U-Net, LinkNet, and DeepLabv3+ [Long et al., 2015;
Ronneberger et al., 2015; Chen et al., 2017; Chaurasia and
Culurciello, 2017]. Multi-scale feature extraction is enhanced
by FPN and PAN [Li et al., 2018], while transformer-based
models (ViTs, Swin-Transformers) improve global context
learning [Dosovitskiy et al., 2021; He et al., 2022]. Atten-
tion mechanisms, such as CBAM [Woo et al., 2018], refine
feature representation, and multi-stream architectures lever-
age attention for modality fusion in remote sensing [Wang
et al., 2020b; Bastidas and Tang, 2019]. Unlike prior works
that stack agricultural indices with RGB [Hoque et al., 2024;
Nouwakpo et al., 2024], our approach employs bidirectional
cross-attention within a multi-stream architecture to enable
dynamic feature interaction between streams.
Domain-Aware Segmentation Models. Remote sensing
in agriculture faces domain shifts due to variations in
soil, cropping patterns, irrigation, and climate [Raei et al.,
2022; WANG, 2024; Chen et al., 2024]. Transfer learn-
ing techniques, including feature adaptation and domain-
aware fine-tuning, help align feature representations across
regions [Zhuang et al., 2020; Bosilj et al., 2020; Coulibaly
et al., 2019]. Recent studies show that incorporating domain
knowledge enhances generalization and reduces dependence
on large labeled datasets [Shi et al., 2021].

3 Knowledge-Informed Irrigation Mapping
3.1 Problem Formulation
We formulate irrigation mapping from satellite imagery as
a semantic segmentation problem. Given a satellite image
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Figure 2: Overview of our Knowledge-Informed Irrigation Mapping model. (i) A soft attention module refines spatial focus by highlighting
irrigated areas. (ii) The multi-stream module processes RGB and vegetation indices through a shared Swin Transformer and fuses features
using bidirectional cross-attention, allowing adaptive feature interaction. (iii) A projection module incorporates domain knowledge by map-
ping crop types to irrigation probabilities using a predefined projection matrix. (iv) Finally, an ensemble module balances satellite-derived
predictions with knowledge-informed irrigation likelihoods, optimizing weights through end-to-end training.

X ∈ RH×W×C , crop mask M ∈ {0, 1}H×W×G, and land
mask L ∈ {0, 1}H×W , where H,W,C, and G denote height,
width, spectral bands, and crop groups, respectively, our goal
is to classify each pixel into one of K irrigation methods.

Let Y ∈ YH×W be the ground truth irrigation labels,
where Yi,j represents an irrigation type for pixel (i, j). We
aim to learn a mapping function:

fθ : RH×W×C×{0, 1}H×W×G×{0, 1}H×W → [0, 1]H×W×K

parameterized by θ, that outputs a probability distribution
over irrigation methods. The optimal parameters θ∗ are ob-
tained by minimizing a loss function L:

θ∗ = argmin
θ

L
(
fθ(X,M,L), Y

)
(1)

3.2 Methodology
Our knowledge-informed irrigation mapping (KIIM) model
addresses the key challenges in irrigation mapping through a
specialized architecture that combines satellite imagery with
crop knowledge. The model takes three inputs to capture
different aspects of agricultural landscapes: (i) Land mask
(224×224×1), a binary mask defining agricultural bound-
aries; (ii) Satellite bands (224×224×B), multi-spectral im-
agery providing spectral reflectance across B wavelength
bands; and (iii) Crop mask (224×224×21), a one-hot en-
coded spatial representation where each channel corresponds

to a specific crop type. These inputs are processed through
specialized modules designed to maximize irrigation map-
ping accuracy. Our architecture comprises four main mod-
ules: (i) soft attention module, (ii) multi-stream module,
(iii) projection module, and (iv) ensemble module. Figure 2
illustrates the complete architecture.

• Soft Attention Module applies sequential 3 × 3 convolu-
tions followed by sigmoid activation on the land mask to
generate a spatial attention map that highlights irrigated ar-
eas. In contrast to hard attention, it preserves spatial con-
tinuity, refining boundaries and preventing abrupt transi-
tions between irrigated and non-irrigated areas. By adap-
tively scaling pixel-wise attention weights, it filters out
background noise while increasing the contrast between ir-
rigated and non-irrigated regions.

• Multi-Stream Module processes two complementary in-
put streams through a shared Swin Transformer ϕ: RGB
data (XRGB ∈ RH×W×3) and derived vegetation indices
(NDVI, NDTI, and NDWI) (XVI ∈ RH×W×3). The ex-
tracted feature maps FRGB, FVI preserve modality-specific
features while enhancing fusion and reducing overfitting
compared to a single-stream model. Instead of naı̈ve con-
catenation or averaging for merging these feature maps
before it goes to the decoder, we introduce bidirectional
cross-attention, allowing RGB and vegetation indices to
exchange information and dynamically prioritize relevant
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features across streams, leading to more context-aware fea-
ture fusion. Unlike spatial and self-attention, bidirectional
cross-attention enables explicit feature interaction between
RGB and spectral streams, allowing each stream to dy-
namically query and integrate complementary information
from the other stream [Tan and Bansal, 2019], rather than
just focusing on spatial relationships within individual fea-
ture maps or single feature spaces. To achieve this, we
first transform RGB and VI features into queries (Q), keys
(K), and values (V ) using 1 × 1 convolutions for both
streams. The RGB stream is projected into Qrgb,Krgb, Vrgb,
while the VI stream is mapped to QVI,KVI, VVI with anal-
ogous definitions for Qaux, Krgb, Vrgb. Next, we calcu-
late the standard scaled dot-product attention operation as
done by [Vaswani et al., 2017]. For brevity, consider a
single query–key–value triplet (Q,K,V) ∈ RB×C×H×W

to compute Attention(Q,K,V) = softmax
(
QK⊤
√
C

)
V.

In our two-stream setting, RGB attends to vegeta-
tion indices as FVI-att = Attention(Qrgb,KVI,VVI),
while vegetation indices attend to RGB as Frgb-att =
Attention(QVI,Krgb,Vrgb). We then combine these at-
tended feature maps with a learnable fusion parameter α ∈
R (initialized to 0.8), resulting in the final fused represen-
tation Ffused = αFrgb-att + (1 − α)FVI-att. Lastly, we
employ a U-Net-style decoder [Ronneberger et al., 2015]
with skip connections to reconstruct pixel-level predictions.
A final 1× 1 convolution generates logits for segmentation
into four irrigation classes.

• Projection Module maps domain knowledge (i.e., crop
information) to irrigation probabilities using a predefined
projection matrix P ∈ [0, 1](G×K). The projection ma-
trix transforms crop information into irrigation method
probabilities based on regional farming practices. Let
G = {g1, . . . , gn} be the set of n crop groups and Y =
{1, . . . ,K} the set of K irrigation methods. The total area
of crop group g ∈ G under irrigation type i ∈ Y is denoted
by Ag,i. The probability Pg,i of irrigation type i for crop
group g is given by:

Pg,i =

{
Ag,i∑

j∈Y Ag,j
, if

∑
j∈Y Ag,j > 0

1
K , otherwise

(2)

where
∑

i∈Y Pg,i = 1 for each g ∈ G. The resulting P ∈
[0, 1]n×K matrix is structured as:

P =

P1,1 . . . P1,K

...
...

...
Pn,1 . . . Pn,K

 (3)

where each row represents a crop group’s probability dis-
tribution across irrigation methods. This predefined ma-
trix offers three key advantages: (i) it incorporates compre-
hensive historical knowledge about crop-irrigation relation-
ships that cannot be learned from limited satellite imagery;
(ii) it provides reliable predictions even when irrigation in-
frastructure is not visible in the imagery; and (iii) it en-
ables easy updates of irrigation statistics without retraining
the model.

• Ensemble Module combines data-driven predictions from
Multi-Stream Module and knowledge-informed irrigation
likelihoods using learnable weights w. Given two inputs
(224× 224×K), the module applies weighted summation
to aggregate predictions, followed by softmax activation to
normalize the final probability distribution. The weights are
optimized jointly with the model parameters through end-
to-end training. This enables the model to adaptively in-
tegrate spectral features with domain knowledge for more
informed predictions.

3.3 Loss Function
We use a composite loss L integrating cross-entropy loss
(Lc) [Jadon, 2020] for per-pixel classification and constrained
Dice loss (Ld) [Milletari et al., 2016] to enforce spatial con-
sistency:

L = αLc + (1− α)Ld, (4)

where α ∈ [0, 1] balances the two components.
For a given irrigation label Y and prediction Y , cross-

entropy loss (Lc) ensures pixel-wise class separation:

Lc(Y, Y ) = − 1

H ×W

K∑
k=1

∑
i,j

Yi,j,k log
(
Y i,j,k

)
. (5)

Land-masked dice loss Ld enhances segmentation quality
by constraining predictions to agricultural land.

Ld(Y, Y ) = 1− 1

K

K∑
k=1

2
∑

i,j Y i,j,k · Yi,j,k · Li,j∑
i,j Li,j(Yi,j,k + Y i,j,k)

, (6)

where L denotes the landmask. Land-masked dice loss en-
hances spatial coherence by considering neighboring pixels.
In addition, it adjusts for class imbalance for underrepre-
sented irrigation methods, such as drip irrigation, by normal-
izing over the sum of predictions and ground truth. Moreover,
it constrains optimization to agricultural regions to prioritize
learning irrigation patterns within farmland.

4 Experimentation and Results
4.1 Dataset
Our study integrates multi-source geospatial datasets to con-
struct an irrigation and crop mapping framework across five
U.S. states, using the Utah Water-Related Land Use (WRLU)
Dataset (2023) for Utah2, the USGS Verified Irrigated Agri-
cultural Lands Dataset (2002–2017) for Arizona and Florida3,
the Washington State Department of Agriculture Agricultural
Land Use dataset for Washington4, and the Colorado Division
of Water Resources GIS dataset for Colorado5. In addition,

2https://dwre-utahdnr.opendata.arcgis.com/pages/wrlu-data
3https://catalog.data.gov/dataset/

verified-irrigated-agricultural-lands-for-the-united-states-200217
4https://agr.wa.gov/departments/land-and-water/

natural-resources/agricultural-land-use
5https://dwr.colorado.gov/services/data-information/gis
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Model AZ UT WA CO

MIoU Drip MIoU Drip MIoU Drip MIoU Drip

P R IoU P R IoU P R IoU P R IoU

ResNet50 0.880 0.916 0.922 0.850 0.542 0.625 0.117 0.110 0.505 0.616 0.485 0.372 0.740 0.866 0.661 0.600
LinkNet 0.878 0.914 0.925 0.851 0.456 0.755 0.035 0.035 0.539 0.612 0.583 0.425 0.733 0.748 0.771 0.612
PAN 0.856 0.907 0.897 0.821 0.561 0.590 0.394 0.309 0.550 0.650 0.550 0.425 0.699 0.743 0.617 0.508
FPN 0.836 0.897 0.871 0.792 0.556 0.625 0.311 0.262 0.566 0.718 0.535 0.442 0.722 0.782 0.684 0.575
DeepLabV3+ 0.873 0.913 0.915 0.841 0.564 0.448 0.316 0.228 0.606 0.700 0.646 0.506 0.747 0.796 0.712 0.602
ViT 0.751 0.873 0.831 0.742 0.467 0.427 0.178 0.144 0.478 0.600 0.398 0.314 0.626 0.782 0.491 0.432
FarSeg 0.878 0.930 0.903 0.846 0.575 0.575 0.374 0.293 0.554 0.682 0.556 0.441 0.769 0.850 0.742 0.656
SegFormer 0.867 0.918 0.901 0.833 0.577 0.580 0.425 0.325 0.558 0.720 0.528 0.438 0.727 0.833 0.651 0.576
Swin 0.896 0.942 0.913 0.865 0.640 0.472 0.584 0.353 0.645 0.752 0.663 0.544 0.786 0.810 0.797 0.671

KIIM 0.988 0.988 0.993 0.982 0.791 0.664 0.873 0.605 0.770 0.796 0.776 0.647 0.931 0.820 0.967 0.798

Table 1: Macro-IoU (averaged over Flood, Sprinkler, Drip, and non-irrigated land) and Drip-only performance (without Dice) for each model
in AZ, UT, WA, and CO.

we map various irrigation practices to three primary methods
(drip, sprinkler, and flood), as the original datasets contained
multiple irrigation subtypes that were unified for consistency
in this study. Crop data are derived from these sources, con-
solidating 143 distinct crop types into 20 standardized cate-
gories (details in Appendix). In addition, we collect Landsat-
8 satellite imagery to generate irrigation masks with a spatial
resolution of 30 meters.

Following standard remote sensing procedures, we seg-
ment satellite images into non-overlapping patches of size
224×224 pixels. The crop mask is created by assigning each
pixel to a crop group based on the mapped crop type, while
the land mask is derived by categorizing pixels into agricul-
tural and nonagricultural lands. The final dataset comprises
36738 image patches, including Arizona (7154 patches),
Utah (6062 patches), Washington (3557 patches), Florida
(1230 patches) and Colorado (18735 patches). Among the
state datasets, Utah and Florida have the lowest percentage
(1.8% and 0.08%) of patches with drip irrigation. We dis-
cuss further dataset collections, dataset details, preprocessing
steps, and projection matrix formulation in Appendix.

4.2 Evaluation Metrics
We evaluate the irrigation mapping task using four standard
segmentation metrics: Intersection over Union (IoU), Preci-
sion (P), Recall (R), and Dice Score (D). Let Y and Y be the
ground truth and predicted masks, respectively, for an image
of size H × W , where each pixel (i, j) is assigned a class
k ∈ Y . The ground truth and predicted pixel sets for class k
are defined as:

Tk = {(i, j) | Yi,j = k}, Mk = {(i, j) | Y i,j = k}. (7)

The evaluation metrics precision, recall, Dice, and IoU are
computed as:

Pk =
|Mk ∩ Tk|

|Mk|
, Rk =

|Mk ∩ Tk|
|Tk|

, (8)

Dk =
2× Pk ×Rk

Pk +Rk
, IoUk =

|Mk ∩ Tk|
|Mk ∪ Tk|

, (9)

Precision measures the proportion of correctly predicted ir-
rigated pixels among all predicted as class k, while recall

quantifies the fraction of correctly identified irrigated pix-
els out of all actual class k pixels. On the contrary, Dice
Score computes the harmonic mean of precision and recall.
IoU is defined as the ratio of intersection to union, provides
a more balanced spatial evaluation by penalizing both over-
segmentation (false positives) and under-segmentation (false
negatives).

4.3 Experimentation Setting
We split each state’s dataset into 85% training and 15% test-
ing, except for Florida, where we used a 50%-50% split
due to limited drip irrigation samples. Model implementa-
tion was conducted using PyTorch and executed on NVIDIA
A40 GPU. We performed 5-fold cross-validation and op-
timized hyperparameters through grid search over learning
rates {1e-4, 2e-4, 5e-4}, batch sizes {16, 32, 64}, and loss
weight α values {0, 0.4, 0.5, 0.6, 1}. The optimal configura-
tion was selected based on IoU performance on the validation
set.

4.4 Effectiveness of KIIM Model
We first evaluate KIIM’s ability to classify irrigation meth-
ods, particularly drip irrigation, and compare it against nine
state-of-the-art segmentation models, including transformer-
based architectures (Swin, ViT, SegFormer) and the remote
sensing-specific model FarSeg. We train each model on state-
specific irrigation datasets and evaluate on the correspond-
ing test dataset across Arizona (AZ), Utah (UT), Washing-
ton (WA) and Colorado (CO). In Table 1, we show the per-
formance of our KIIM model and state-of-the-art models.
Across all states, state-of-the-art models struggle to identify
drip-irrigated lands due to extreme class imbalance. The best
baseline (Swin) achieves only 0.353 and 0.544 IoU in Utah
and Washington which highlights the challenges of identi-
fying drip irrigation. Due to its sparse presence and high
spectral similarity with other irrigated lands, state-of-the-art
models fail to identify drip irrigated lands. In contrast, the
higher prevalence of drip irrigation in Arizona makes it eas-
ier for models to learn its spatial patterns and distinguish it
from other irrigation methods.

We notice that the KIIM model effectively captures spatial
dependencies and distinguishes underrepresented irrigation
methods, which leads to significantly improved segmentation
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Figure 3: Visual comparison of our model (KIIM) against top-
performing baselines (Swin and DeepLabV3+). KIIM accu-
rately segments farmland and correctly classifies irrigation methods,
whereas baseline models struggle to delineate agricultural farmland
and misclassify irrigation methods. The higher MIoU scores un-
derscores KIIM model’s effectiveness in detecting and identifying
different irrigation methods.

accuracy. Specifically, KIIM outperforms the best baseline
(Swin) in macro-IoU by 10.3% in AZ (0.988 vs. 0.896),
19.6% in CO (0.931 vs. 0.778), 22.9% in UT (0.791 vs.
0.644), and 19.4% in WA (0.770 vs. 0.645). Moreover, KIIM
achieves a 13.5% improvement in AZ (0.982 vs. 0.865),
18.9% in CO (0.798 vs. 0.671), 71.4% in UT (0.605 vs.
0.353), and 19.0% in WA (0.647 vs. 0.544). The most signif-
icant gain is observed in Utah, where baseline models strug-
gle due to severe class imbalance, but KIIM improves drip
IoU from 0.353 (Swin) to 0.605 (a 71.4% improvement). In
Figure 3, we present an example of KIIM model’s predic-
tions, demonstrating the model’s ability to accurately classify
irrigation methods These results highlight KIIM’s robustness
in handling extreme class imbalances and its effectiveness in
different geographical regions.

4.5 Transfer Learning for Cross-State Irrigation
Mapping

Mapping irrigation methods across different states is chal-
lenging due to limited labeled data, extreme class imbal-
ance, and substantial regional variations in irrigation prac-
tices. Therefore, training separate state-specific models is of-
ten impractical, as some irrigation methods (e.g., drip irriga-
tion) are severely underrepresented in many states. Moreover,
in some cases, sufficient training data is entirely unavailable.
For example, Florida has only 1230 training samples, with
only 11 samples containing drip irrigation, which makes it
impossible to train and test a reliable state-specific model.
To overcome this, we leverage transfer learning that enables
a model to learn common irrigation features from a diverse
multi-state dataset and adapt them to specific states with min-
imal labeled data.

In this work, we create a multi-state training dataset which
maintains enough drip irrigated samples in the training data.
Following [Buda et al., 2018], we construct the multi-state
training dataset (8880 samples where 4440 samples have drip
irrigation) where the total sample size is twice the number
of drip-irrigated samples, maintaining an imbalance ratio of
(2 : 1). The training samples were selected from the Arizona,
Utah, Colorado, and Washington training data.

To train our model, we follow a two-phase learning ap-
proach (training and state-adaptive fine-tuning). In the train-
ing step, we train KIIM on the multi-state dataset to learn

StateModel Flood Sprinkler Drip

Dice IoU Dice IoU Dice IoU

AZ
KIIM 0.991 0.983 0.995 0.989 0.991 0.982
w/o FT 0.982 0.964 0.993 0.986 0.985 0.971
w FT 0.986 0.973 0.994 0.988 0.988 0.976

UT
KIIM 0.876 0.780 0.893 0.806 0.754 0.605
w/o FT 0.722 0.565 0.766 0.620 0.613 0.442
w FT 0.884 0.792 0.900 0.819 0.835 0.717

WA
KIIM 0.759 0.611 0.926 0.863 0.786 0.647
w/o FT 0.702 0.541 0.928 0.866 0.780 0.640
w FT 0.820 0.695 0.945 0.896 0.838 0.722

CO
KIIM 0.983 0.966 0.981 0.963 0.887 0.798
w/o FT 0.950 0.904 0.932 0.873 0.852 0.743
w FT 0.984 0.969 0.980 0.961 0.937 0.882

Table 2: Performance of KIIM model for state-wise training (de-
noted as KIIM), cross-state training without state-adaptive fine-
tuning (denoted as w/o FT), and cross-state training with state-
adaptive fine-tuning (denoted as w FT) for Flood, Sprinkler, and
Drip (Dice and IoU).

universal irrigation patterns (e.g., circular sprinkler layouts)
that are consistent across states. In the state-adaptive fine-
tuning step, we initialize state-specific models with pre-
trained weights (from the training step) and fine-tune them
using state-specific data to adapt to regional farm sizes, irri-
gation preferences, and class distributions while keeping the
architecture unchanged. This hierarchical learning strategy
enables KIIM to generalize across states while capturing local
irrigation nuances and improving segmentation performance
with minimal state-level labeled data.
Effectiveness of cross-state transfer learning: To assess the
effectiveness of cross-state knowledge transfer, we compare
two training strategies for KIIM: (i) a two-step transfer learn-
ing approach, where the model is first trained on a balanced
multi-state dataset and then fine-tuned on state-specific data,
and (ii) state-specific training only (KIIM). Additionally, we
evaluate the model without the fine-tuning setting (zero-shot),
where the model is pretrained on the multi-state dataset but
not fine-tuned on the target state. The results in Table 2
demonstrate that transfer learning effectively enhances both
majority and minority class segmentation. Performance on
the majority class (sprinkler) remains consistent across ap-
proaches (AZ: 0.989, UT: 0.819, WA: 0.863, and CO: 0.961
IoU). However, minority class performance improves signif-
icantly (particularly for drip irrigation), where IoU increases
from 0.605 to 0.717 in Utah (18.5%), and from 0.647 to 0.722
in Washington (11.5%). Similarly, in Washington, flood IoU
improves from 0.611 to 0.695 (13.7%). This indicates that
transfer learning effectively captures underrepresented irriga-
tion patterns. It is noteworthy that the model without state-
specific adaptations achieves similar performance as com-
pared to the baseline (state-wise training only) for the major-
ity class (e.g., sprinkler). These results validate that cross-
state transfer learning retains general irrigation knowledge
while adapting to state-specific variations.
Generalization irrigation mapping across states: The
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Figure 4: KIIM model performance for the state of Florida for differ-
ent training approaches. ‘FL-Only Training’ indicates that KIIM is
trained solely on the Florida training dataset, whereas ‘Base + X%
data’ indicates that KIIM is trained on a combined dataset (with-
out Florida) and fine-tuned on X% of the Florida training dataset.
Notably, for drip irrigation, KIIM attains a 0.678 IoU score with
cross-state transfer learning which indicates 51% improvement over
state-wise training.

Florida data set is very sparse and has severe class imbal-
ance which makes state-only training ineffective for irrigation
mapping. To address this, we implement cross-state transfer
learning, where KIIM is pretrained on a multi-state irrigation
dataset and fine-tuned with incremental portions of Florida
training data (30%, 40%, 60%, 80%, and 100%). This ap-
proach allows the model to leverage universal irrigation fea-
tures learned from diverse states (e.g., AZ, WA, CO, and UT)
and improve the mapping task even with small amounts of
labeled data. Figure 4 shows that our model achieves IoU of
0.56 and 0.86 for flood and sprinkler irrigation without see-
ing any data from Florida. This demonstrates that irrigation
structures exhibit transferable patterns across regions. More-
over, tuning the model with Florida data, the performance im-
proves significantly. For drip irrigation (minority class), the
model achieves IoU 0.678 when tuned on all the training data.
This underscores the necessity of state-specific fine-tuning
to capture local irrigation practices. In comparison to the
baseline (state-wise training), the IoU improves from 0.447
to 0.678 (51%) for drip irrigation. Notably, even with 40%
fine-tuning, performance is comparable to full-state training.
This suggests our model can be effectively used for irrigation
mapping when very limited data are available. These findings
show that cross-state learning enables the model to generalize
irrigation patterns across regions with minimal labeled data.

5 Ablation Study
To evaluate the individual contribution of each architectural
component and validate our design choices, we conduct an
ablation study by systematically removing different modules
from our KIIM model. Our results demonstrate that each
module plays an important role in irrigation type mapping.

AM PM LDL MSM Dice IoU

✓ ✓ ✓ cross 0.937 0.883
✓ ✓ ✓ self 0.931 0.873
✗ ✓ ✓ cross 0.850 0.747
✗ ✗ ✓ cross 0.842 0.736
✗ ✓ ✗ cross 0.853 0.753
✗ ✗ ✗ cross 0.844 0.739
✗ ✗ ✗ ✗ 0.826 0.712

Table 3: Performance of KIIM on validation data while varying dif-
ferent modules. AM indicates attention module, PM denotes pro-
jection module, LDL indicates land-masked dice loss, and MSM in-
dicates multi-stream module technique. Checkmarks (✓) indicate
inclusion of the respective module, while crosses (✗) indicate exclu-
sion. Note that we report macro IoU, and macro Dice scores in the
Table.

From Table 3, we show that the model, without any special-
ized modules, achieves a macro IoU score of 0.712, while our
complete architecture incorporating all components reaches
0.883. Similarly, the exclusion of any module reduces the
macro IoU score. This highlights the importance of land mask
information, crop information, land-masked Dice loss, and
multistream module for identifying irrigation patterns.

6 Discussion
While accurate irrigation mapping is crucial for identifying
current practices and guiding sustainable upgrades, existing
approaches rely on manual surveys (e.g., USGS data) or lack
generalization across different regions and irrigation meth-
ods. To address this, we propose the Knowledge-Informed
Irrigation Mapping (KIIM) model, a multi-stream framework
that integrates RGB and agriculture-specific indices through
a bidirectional attention module for enhanced feature fu-
sion across different modalities of input streams. Addition-
ally, KIIM incorporates land-use and crop data, enabling the
model to focus on agriculture-specific pixels and leverage his-
torical crop-irrigation relationships for improved classifica-
tion. Our findings highlight the effectiveness of the proposed
approach in improving irrigation mapping across multiple
states, particularly in challenging cases like drip irrigation.
The substantial performance gains over the baseline demon-
strate the model’s ability to capture complex spatial patterns
and stream-specific relationships. Therefore, KIIM enables
timely identification of irrigation, which directly contributes
to SDG 2 by supporting sustainable food production systems
and resilient agricultural practices in water-stressed regions.

However, part of our model’s performance relies on histor-
ical crop-irrigation data, which may change over time. Also,
crop-type (and land-use) masks may be erroneous or outdated
in certain regions. Future work could explore more repre-
sentative region-specific datasets and extending this frame-
work to more diverse agricultural landscapes and refining it
for even greater adaptability across varying irrigation prac-
tices.
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and René Gislum. Semantic segmentation of mixed crops
using deep convolutional neural network. 2016.

[Nations, 2015] United Nations. Transforming our world:
The 2030 agenda for sustainable development, 2015. Ac-
cessed: 2014-01-15.

[Nie et al., 2021] Wanshu Nie, Benjamin F. Zaitchik,
Matthew Rodell, Sujay V. Kumar, Kristi R. Arsenault,
and Hamada S. Badr. Irrigation water demand sensitivity
to climate variability across the contiguous united states.
Water Resources Research, 57(3), 2021.

[Nouwakpo et al., 2024] S. K. Nouwakpo, D. Bjorneberg,
K. McGwire, and O. Hoque. Mapping irrigation methods
in the northwestern us using deep learning classification.
Water Resources Research, 60(8):e2023WR036155, 2024.

[Paolini et al., 2022] Giovanni Paolini, Maria Jose Escori-
huela, Olivier Merlin, Magı́ Pamies Sans, and Joaquim
Bellvert. Classification of different irrigation systems at
field scale using time-series of remote sensing data. IEEE
Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 15:10055–10072, 2022.
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