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Abstract

Automated medication recommendation is a cru-
cial task within the domain of artificial intelli-
gence in healthcare, where recommender systems
are supposed to deliver precise, personalized drug
combinations tailored to the evolving health states
of patients. Existing approaches often treat clin-
ical records (e.g., diagnoses, procedures) as iso-
lated or unified entities, neglecting the inherent set-
structured nature of medical data and the need to
model interdependencies among clinical elements.
To address the gap, we propose SSPNet , a novel
end-to-end framework designed to process com-
plete clinical record sets and directly generate opti-
mal medication sets. SSPNet employs a set-based
encoder to effectively capture and represent a pa-
tient’s health condition from the electronic health
records (EHRs), while a permutation-consistent de-
coder predicts the entire medication combination
as a set. In addition, we introduce a novel per-
sonalized representation mechanism to capture the
drugs previously used by individual patients. Ex-
tensive experiments on MIMIC-III and MIMIC-
IV data sets reveal that SSPNet surpasses existing
state-of-the-art methods in the accuracy of medica-
tion recommendations.

1 Introduction

In the healthcare domain, medication recommendation plays
a vital role in determining the optimal combination of drugs
tailored to the specific health conditions of a patient. The
complexity increases significantly in cases of multimorbidity
[Skou et al., 2022], where patients suffer from multiple co-
existing conditions, making medical decision-making partic-
ularly challenging. The current approach to prescribing med-
ications is predominantly manual, which poses a significant
challenge in achieving a balance between therapeutic bene-
fits and minimizing associated risks, such as side effects and
potential drug interactions. The crafting of an optimal med-
ication regimen is a complex endeavor, even for experienced

healthcare professionals, due to the multitude of factors and
interactions that must be considered. The extensive adoption
of digital health records in modern healthcare settings has sig-
nificantly enriched electronic health records (EHRs) [Cowie
etal.,2017; Evans, 2016], providing detailed and comprehen-
sive patient data. This abundance of healthcare data presents
a promising opportunity to develop advanced predictive mod-
els that can enhance clinical decision-making processes.

Due to the clinical importance of drug recommendation,
numerous promising methods based on deep learning have
been proposed. However, these methods often overlook the
set-based nature of drug recommendation [Tan et al., 2022].
The predominant existing methods obtain representations of
patients’ health conditions by aggregating their diagnoses and
procedures information into a unified entity [Wang er al.,
2021; Mi et al., 2024]. Yet, these methods can lead to a loss
of detailed patient health information. Additionally, some
methods [Zhang et al., 2017; Wu et al., 2022] treat drug rec-
ommendation as a sequential decision-making process rather
than the prediction of a set of drugs. These methods implicitly
or explicitly establishes an order in the drug recommendation
process. However, the process of actual medication recom-
mendation is not governed by a predetermined sequence.

In this paper, we propose Set-to-Set Prediction Net (SSP-
Net), an encoder-decoder-based framework that predicts ap-
propriate medication combinations in a set-to-set manner.
Our model recommends a set of drugs to patients based on the
set of their health status. Concurrently, our model is capable
of capturing previously used medications, thereby facilitating
the provision of personalized drug recommendations. SSP-
Net! consists of a permutation-consistent encoder-decoder-
based network and a personalized drug representation mod-
ule. Two encoders model the dependencies of diagnoses and
procedures to obtain a patient’s health condition representa-
tion set. The personalized drug representation module scales
the representation of medications based on the correlation
between the patient’s health status and historical medication
records. The decoder takes into the set of patient health sta-
tus and drug representations to predict the target set of drugs.
Our contributions can be summarized as follows.

'https://github.com/ResearchGroupHdZhang/SSPNet. git
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e We introduce SSPNet, a novel set-to-set prediction
framework for automated medication recommendation
that handles the complexity of predicting sets of med-
ications. SSPNet encodes patient health condition set
from EHRSs into robust high-dimensional representations
and directly outputs appropriate set of medications. We
highlight the robustness of our framework with respect
to different orders of the inputs.

L]

We develop a personalized drug representation module
(PDRM) to capture the historical use of medications in
patients. This module precisely models the correlation
between current health condition and historical medi-
cation information. Moreover, the PDRM module also
has excellent compatibility and can benefit other base-
line approaches.

We conducted extensive experiments on MIMIC-III, and
the results show that SSPNet outperforms current state-
of-the-art methods. The effectiveness of SSPNet is val-
idated through both quantitative metrics and qualitative
case studies, confirming its practical utility and reliabil-
ity in real-world clinical settings.

2 Related Work

In this section, we present a comprehensive review of the rel-
evant methodologies, categorized according to the types of
information utilized.

2.1 Multi-label Classification-based Medication
Recommendation

Existing predominant approaches uniformly regard drug rec-
ommendation as a multi-label classification task [Sun et al.,
2022; Zhang et al., 2023; Chen et al., 2023; Shang et al.,
2019a; Bhoi e al., 2021]. For example, SafeDrug [Yang et
al., 2021] and MoleRec [Yang et al., 2023] models a patient’s
health condition using a Dual-RNN and enhances the efficacy
and safety of drug recommendation considering the molec-
ular structures of the drugs. Recently, 4SDrug [Tan et al.,
2022] proposed medication combinations by employing a set-
oriented approach to measure the similarity between symp-
tom sets and individual drugs. These methods assume in-
dependence among medications, or equal contribution of all
diseases to the medication combinations. Given the complex
relationships among drugs, the assumptions are ineffective
for medication recommendation. In this paper, inspired by
4SDrug [Tan et al., 2022], we aim to model the dependencies
among medications while recommending drugs in parallel.

2.2 Sequential Decision-making in Medication
Recommendation

There exist models that regard the drug recommendation
process as a series of sequential decision-making processes
[Wang et al., 2024]. An early work, known as LEAP [Zhang
et al., 2017], uses a recurrent decoder to capture the drug-
disease relationship for the current health condition of the
patient, allowing sequential drug recommendation. COGNet
[Wu et al., 2022] and VITA [Kim et al., 2024] employ an
encoder-decoder generative network to predict medicines in-
dividually. These methods also mine the relationship between

current patient health and past visits via a copy module. How-
ever, these methods implicitly or explicitly impose an order
on the medication sets [Li ef al., 2023], which may lead to
sub-optimal recommendations. In this paper, we aim to pro-
duce medication combinations with a set prediction method,
which models the relationship between diseases and medica-
tions while alleviating the ordering restrictions.

2.3 Set Prediction

For a considerable duration, approaches predicting sets from
feature vectors have consistently neglected the inherent un-
ordered quality of sets. Recently, several frameworks [Lo-
catello et al., 2020; Kosiorek et al., 2020; Carion et al.,
2020] have incorporated permutation-consistent set genera-
tors to address this challenge, since they do not require a spe-
cific ordering. DSPN [Zhang et al., 2019], a permutation-
consistent set generator, employs backpropagation to de-
code a set. However, generating a set using gradient de-
scent from an initially guessed set can be computationally
expensive. The Transformer [Vaswani er al., 2017], which
is permutation-consistent, learns to update the elements of
the initial set in a joint manner. Therefore, both TSPN [Ko-
siorek et al., 2020] and DETR [Carion et al., 2020] lever-
age Transformer architecture to predict the final set in paral-
lel. Inspired by these methods, we design a set recommenda-
tion framework based on Transformer architecture, ensuring
permutation-consistency for medication recommendations.

3 Problem Formulation

In this section, we formulate the core task of automated med-
ication recommendation.

3.1 Electrical Health Records (EHR)

Denote D the set of diagnoses, P the set of procedures and M
the set of medications. For a patient p, the healthcare infor-
mation from p’s EHR is a sequence V of all historical visits,

V= [v(l),v(g),...,v(T)], (D

where v(® is the i-th visit and T is the total number of visits
for the patient. Each visit v(*) € V is a triplet that contains
the diagnosis, procedure, and medication records,

v® = (0, o) oD, @

where v((;) C D, v}(f) C Pand vl C M. We denote all
EHRs by V, and all patient by P. Note that |V| = |P|. To
enhance the accuracy and interpretability of the recommen-
dation, we integrate domain knowledge from the EHR graph
and the drug-drug interaction (DDI) graph into the recom-
mendation model. The EHR graph is an undirected graph
G. = (M, e.), where the nodes are all drug M, and the edges
are defined as:

ge={(my,my) | IV eV. T cV.m; € UMY mo € v,(,?}., 3
If two drugs in D appear in the same medication record of
some visit of some patient, they are connected by an EHR
graph edge. The DDI graph G4 = (M, ¢.) is the induced
subgraph of the DDI information from database Twosides
[Tatonetti er al., 2012] with respect to the given medication
space M. Then, we denote A., A, € {0, 1}|MMM| the ad-
jacency matrices of the graphs G. and G, respectively.
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3.2 Medication Recommendation Problem

For some visit v!) € V of a given patient p € P, suppose
that the diagnosis record vg) = {d,ds, ...,dy}, and the pro-
cedure record vl(f) = {p1,p2,...,p}- With EHR and DDI
graphs G, and G4 as domain knowledge, we aim to learning a

recommendation predication function f(-) : 2P x 2F s 2M
that generates a proper medication combinations for the visit,

m" = P, 0|G., Ga). )

where " C M is encoded into multi-hot vector in the rest
of the paper.

4 Methodology

Our framework SSPNet consists of four main modules, as
shown in Figure 1. The details of these modules are presented
in the following subsections.

4.1 Medication Representation Module

The co-occurrence and DDI of certain medications in a sin-
gle prescription is a common practice in human-expert med-
ication recommendation. We fuse the medication’s feature
vectors with co-occurrence and DDI information in the EHR
graph. We first convert all medications into vectors via an em-
bedding matrix E,,, € RIMI*" where h is embedding size.
Given the drug features M € RIMIX" and the co-occurrence
adjacency matrix A., we can fuse the co-occurrence infor-
mation to medication representations by a dual-layer convo-
lutional network (GCN) [Kipf and Welling, 2016] as:

G.=GCN(ReLU(GCN(M,A.))W,, A.),
whereGCN(M, A,) = U(OAf%AACOAféM)7

where W, is the learnable parameter. The Ac =A.+1I,and
I represents the identity matrix. The diagonal node degree

matrix associated with A, is denoted by O. Similarly, we
can capture the DDI relations of medications:
Gy =GCN(ReLU(GCN(M,A;))Wa,Ag), (6)

The above two parts are aggregated to obtain the representa-
tion of medications.

&)

Z =G, — \G,. (7
where the A is a learnable parameter.

4.2 Patient Representation Module

Patient’s healthcare information includes diagnose records
and procedure records. We design two embedding tables,
E; € RIPIx E, € RIPIXh where each row corresponds
to the embedding vectors of the diagnose and the proce-
dure, respectively. Given the diagnose and procedure codes
of i-th visit, v((;), Ul(f), each diagnose and each procedure
are converted into h-dimensional vectors e’ and e; using
the embedding matrices E;, and E,,, respectively. They con-
stitute the patient’s diagnose and procedure embedding ma-
trices D® e RIFIXP and PO ¢ RIEXE - Two en-
coders based on set attention block (SAB) [Lee et al., 2019;
Kosiorek et al., 2020] are utilized to obtain the patient’s rep-
resentation. In the following, we present the details of SABs.

Set Attention Blocks
Set attention blocks aim to model relationships among diag-
noses and procedures within the same visit while ensuring
permutation-consistency, respectively. Given a query matrix
Q € R™*" and key-value pairs K € R"*" and V € R"*",
we can formulate the attention function as follows:
, QK"

Attention(Q,K,V) = Softmax(W)V, (8
To efficiently capture the interaction information spanning
multiple views, SAB leverages multi-head attention by pro-
jecting the Q, K, V onto different representation subspaces.
Next, a linear layer is used to transform the concatenation of
all attention outputs:

Multihead(Q, K, V) = concat(01,0s...,0,)W ), ©
where O; = Attention(QW?, KWX VW),

?

Given matrices X, Y € R™* b the Multihead Attention Block
(MAB) encodes them based on encoder block of the Trans-
former [Vaswani et al., 2017], without positional encoding:

MAB(X,Y) = LayerNorm(H + rFF(H)), (10)

H = Layer Norm(X + Multihead(X,Y,Y;w)), (11)
Where rF'F' denotes a feed-forward layer and Layer Norm
refers to layer normalization [Ba et al., 2016]. The w is a

parameter. Subsequently, the SAB is capable of being defined
in conjunction with the MAB:

SAB(X) := MAB(X,X). (12)

To sum up, SAB takes a set as input and models the interac-
tions between each element through self-attention, and ulti-
mately outputs a set of the same dimensionality.

Patient’s current health condition encoder

We denote the patient’s current visit record as the ¢-th visit.
After converting the diagnose and procedure codes of pa-
tient’s current visit record into embedding matrices D) and
P!, we use two SABs, which defined in (12), to encode the
diagnoses and procedures:

D® = SAB,(DW), P =SAB,(P®),  (13)

where D(®) and P(®) are the patient’s current health condition
representations encoded by SABs, respectively.

4.3 Personalized Drug Representations Module

The historical drug treatments can lead to variations in the
final prescriptions, even when patients present with similar
current health conditions [Shang er al., 2019b; Zheng et al.,
2023]. Thus, we have developed a personalized drug repre-
sentations module. This module leverages historical drug us-
age information to obtain personalized drug representations.

Pooling by Multihead Attention
The pooling by multihead attention (PMA) [Lee et al., 2019]
able to aggregate features while taking into account the im-

portance of different features. Given a set of features X &€
R™*"_the PMA can be defined as:

PMA(X) = MAB(S,rFF(X)). (14)

where S € R1*" ig a learnable vector.
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Figure 1: Overview of SSPNet Framework, (a): the medication representation module aggregates EHR information to obtain the representa-
tions of medications, (b): the patient representation module employs two SAB blocks to model the patient’s current diagnoses and procedures
to obtain patient heath representations, (c): the personalized drug representations module scales the medication representations based on the
relevance between the patients’ current and historical health conditions, and (d): the drug set prediction module utilizes a decoder to take into
account the patient health representations and personalized drug representations, predicting the final prescription.

Scale Drug Representations
We use two PMAs to aggregate diagnosis and procedure rep-
resentations of patient’s all visits.

v{) = PMADY), of) = PMAPY), (15

We model the sequential relationship between patient diag-
noses and procedures with a Dual-RNN:

n) = NN, ),

; N (16)
h{) = RNN,(v{?, hi-Y),

Then we concatenate the hg) and the h,(,i) to obtain each
visit’s representation V().

v(® = CONCAT[RY, h{"], (17)

We employ an attention mechanism to assess the correlation
between patients’ historical medical records and their previ-
ous health conditions.

VOwwTy®
Vh

Denote the multi-hot vector m() € {0, I}IM‘ as the ¢-th his-
()
j .
has been treated with the j-th drug, and mgl) = 0 signifies
that the j-th drug has not been used. Then we aggregate the

historical medication records by a(?:

o'V = Softmax( ), (18)

torical medications, where m:’ = 1 represent the patient

t—1

q=>» a’m, (19)

i=1

where the g represents the correlation between the patient’s
current health condition and the medications previously used.

Then, we scale the drug representations based on the g and
use a eed-forward network to obtain the personalized drug

representations Z "
Z =FF(Z+q"2). (20)

4.4 Drug Set Prediction Module

The drug set prediction module is designed to recommend
appropriate sets of medications based on the patient’s health
condition and personalized drug representations.

Drug Set Prediction

Inspired by previous works [Zaheer et al., 2017; Carion et al.,
2020], we first designed a permutation-consistent decoder.
In contrast to sequence generation models [Wu er al., 2022;
Kim et al., 2024] that generate drug representations sequen-
tially, the decoder takes as input all candidate drugs and pre-
dicts a targeted drug combination, without imposing any ir-
relevant sequential information. Given the personalized drug
representations set Z /, a multi-head self-attention mechanism
defined in (9) is utilized to model the interactions among the
medication combinations,

Z" = layerNorm(Z' + Multihead(Z ,Z ,Z")), (21)

Conditioned on the diagnose representations D(*) and pro-

cedure representations P(*) of the patient’s current visit, we

further refine the medication representations,
Z = layerNorm(Z” + Multihead(Z“, D,, bt) 22)
+ Multiheacl(Z”7 b, Pt)),

Then, a fully connected feed-forward network (with a sig-
moid function) transforms the representation Z into predicted
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medication representation M,

M = o(FFy(Z)), (23)

Subsequently, we use a feed-forward network F'Fy : R* — R
with a sigmoid activation function o to derive the probability
of each drug being recommended,

= o(FFy(M)). (24)

Finally, we select entries from 1 where values exceed prede-
fined threshold 4, to obtain a multihot prediction vector O.

Loss Function Design

We first optimize all learnable parameters of SSPNet in train-
ing phase. As stated in the previous section, SSPNet gets
the predicted medication representation and picks out the pre-
dicted medications with drug set prediction module. We con-
sider it as a multi-label binary classification problem. Follow-
ing [Yang er al., 2021; Yang et al., 2023], we introduce the
binary cross-entropy loss Lpec, the multi-label margin loss
L and DDI loss as our loss functions. The details are
presented in the Appendix A.

S Experiments

In this section, we conduct a series of extensive experiments
to evaluate the performance of SSPNet, by comparing it with
several competing models.

5.1 Dataset

We conducted experiments on the MIMIC-III [Johnson et al.,
2016] and MIMIC-IV [Johnson e al., 2023]. Following the
setting in [Yang et al., 2021], we split the datasets into train-
ing, validation and test as 4 : 1 : 1. The statistical informa-
tion of the preprocessed dataset is shown in Table 1. Details
of data pre-processing are presented in the Appendix B.

5.2 Setting

We implement our method using PyTorch 1.9.0, which is built
on Python 3.8.16. We conducted all experiments on an Intel
Xeon Platinum 8260 server, comprising 24 CPU cores, 188G
memory and a 12GB NVIDIA TITAN V GPU. In our mod-
els, we set h = 64 for E4, E, and E,,. The number of initial
medications n = 131. The feed-forward network F'F, F'F}
and F'Fj3 are designed as one linear layer. We determined
the best hyperparameters based on their validation set perfor-
mance, setting the threshold § = 0.5, weight 5 = 0.95 and
K, = 0.05. The Adam optimizer [Kingma and Ba, 2014] is
applied for model training, with a learning rate of 1 x 10~

5.3 Baselines and Metrics

We assess the performance of SSPNet through a compara-
tive analysis with the following models: the instance-based
standard Logistic Regression (LR), the chain-structured LR
classifier model: Ensemble Classifier Chain (ECC) [Read et
al., 2011], the dynamic graph-augmented memory-based ap-
proach: GAMENet [Shang et al., 2019b], the drug molecule
structure-based approaches: SafeDrug [Yang ez al., 2021] and
MoleRec [Yang et al., 2023]. the sequential decision mak-
ing approach LEAP: [Zhang et al., 2017], and the conditional

Items \ MIMIC-IIT \ MIMIC-IV
# patients 6,350 75752

# clinical events 14,995 197,522
# diseases 1,958 2,000

# procedures 1,430 1,500

# medications 131 131
avg. # of visits 2.37 2.61
avg. # of medications 11.44 6.18

Table 1: Statistics of processed MIMIC-III and MIMIC-IV.

generation network-based approaches: COGNet [Wu et al.,
2022] and VITA [Kim et al., 2024],

Following previous research [Yang et al., 2021; Wu et al.,
2022; Yang et al., 2023] on medication recommendations,
we employ four widely-used metrics: Jaccard similarity, F1
score, PRAUC and DDI rate, to verify the accuracy and ef-
fectiveness of these models. More details of baselines and
metrics are demonstrated in the Appendix C.

5.4 Main Result

The Table 2 presents a comparison of our method’s perfor-
mance with all baseline models. Overall, our present SSP-
Net outperforms the baseline models in Jaccard, F1 score and
PRAUC. Our proposed SSPNet recommends drugs in a set-
to-set manner. Hence, SSPNet can better represent the pa-
tient’s health condition. Predicting drugs in a set form can
avoid the influence of the order of predicted drugs. Further-
more, our PDRM module is capable of capturing the longi-
tudinal historical medical records of patients. Therefore, our
method can perform better than other methods.

Traditional classifiers, such as LR and ECC, which do not
leverage deep learning, cannot model the complex medica-
tion combination recommendation, demonstrate poor perfor-
mance. The multi-label classification-based medication rec-
ommendation methods, like GAMENet, neglect the impor-
tance of DDI. Consequently, SafeDrug and MoleRec incor-
porates the drug molecule structures and control DDI through
a loss function, which resulting in improved performance.
However, these methods aggregate the health status of pa-
tients, leading to the loss of patient health information, and
moreover, these methods overlook the drugs previously used
by the patients. Considering medication combination rec-
ommendation as a sequential decision-making task, LEAP
difficult to model long medication decision-making. Using
a Transformer, COGNet and VITA show improved perfor-
mance. However, these methods impose an order on the med-
ications, leading to unsatisfactory performance. VITA relies
on patients’ historical medical records, which makes it chal-
lenging to generalize to situations involving single visits.

5.5 Ablation Study

We conducted the following ablation experiments to validate
the effectiveness of each module in SSPNet. The result of
different variants of SSPNet is shown in Table 3.
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| Model | MIMIC-IIT | MIMIC-IV |

| | Jaccardt  F1f  PRAUCT DDI| Avg#Med | Jaccardt F14 PRAUC? DDI| Avg#Med |
LR 04920  0.6491  0.7552  0.0784 164293 | 04395 05850 0.7224  0.0764  8.2226
ECC 04868  0.6428  0.7382  0.0805 16.0100 | 04172 05575 0.7233  0.0754  7.4800
GAMENet | 05110  0.6668 07642  0.0796 254674 | 0.4480  0.5995  0.7099  0.0838  16.2131
SafeDrug | 05120  0.6685 07640  0.0619 20.4573 | 04457 05972  0.6917  0.0504  12.3890
MoleRec | 0.5296  0.6837  0.7767  0.0726 212022 | 04562  0.6065  0.6929  0.0687  12.9925
LEAP 04441  0.6068  0.6475 0.0730  18.8987 | 04085 05584  0.5306  0.0673  10.6090
COGNet | 05290 0.6823 07691  0.0813 27.8482 | 04682 0.6165 06883  0.0713  18.4972
VITA 0.5263  0.6786  0.7623  0.0765 292662 | 04716 06139  0.6792 00796  18.4972

| SSPNet | 05517 07057 07947 00773 21.6921 | 0.4948  0.6423 07386  0.0713  12.4286 |

Table 2: Performance Comparison on MIMIC-III and MIMIC-IV. The best results are highlighted in bold and runner-up are underline. 1
indicates that higher values are preferable, while | arrow signifies that lower values are more desirable. Avg.#Med denote the average number

of drugs recommended per visit.

| Model \ MIMIC-III | MIMIC-IV |
\ | Jaccardt  F1t  PRAUCt? DDI| Avg#Med | Jaccardt F1t PRAUCT DDI| Avg#Med |
SSPNet w/o G, 0.5504  0.7020  0.7925  0.0754  20.3192 0.4917  0.6392  0.7340  0.0739  12.3095
SSPNet w/o D 0.5243 06776 07712 0.0725  21.8232 0.4393  0.5885  0.6787  0.0707  11.9674
SSPNet w/o P 0.5308  0.6845  0.7780  0.0756  23.0812 0.4685  0.6189  0.6897  0.0705  13.1828
SAB — Dual-RNN 0.5384  0.6909  0.7841  0.0785  22.0585 0.4560  0.6058  0.6937  0.0685  13.9377
SSPNet w/o PDRM 0.5414  0.6939  0.7830  0.0750  21.9193 04767  0.6260 07195  0.0771  12.7840
Set prediction —> Sequential prediction | 0.5377  0.6906  0.7794  0.0738  21.4862 0.4638  0.6105  0.6299  0.6958  13.6584
\ SSPNet | 05517 07057 0.7947 00773 216921 | 04948  0.6423  0.7386  0.0713  12.4286 |

Table 3: Ablation study on MIMIC-III and MIMIC-IV.

Medication Representation Module

We evaluated the validity of the EHR graph information. The
results of SSPNet w/o G, indicate that the EHR graph in-
formation contributes to the final outcome. The EHR graph
encompasses co-occurrence information of medications and
drug-drug interaction (DDI) information, which can enhance
the representation of medications.

Patient Representation Module

We first assessed the validity of the patients’ diagnoses and
procedures information. We separately removed the infor-
mation regarding diagnoses and procedures. As indicated by
SSPNet w/o D and SSPNet w/o P, removes one of them lead
to a diminished model performance.

To verify the advantages of our set encoders, we compared
it with methods for modeling patient health conditions us-
ing aggregation. As show in Table 3, the SAB——Dual-RNN
[Le ef al., 2018] indicates that after replacing the SAB mod-
ule with the Dual-RNN (the details can referred to [Yang et
al., 2021; Yang et al., 2023]), the performance of SSPNet de-
creased. Applying the set encoder to obtain the representation
of patients’ health status can better model the information re-
garding patients’ health conditions.

Personalized Drug Representation Module

We have validated the superior performance of our proposed
PDRM. As indicated by SSPNet w/o PDRM, the performance
of SSPNet decreases when it is not equipped with the PDRM.
The proposed PDRM effectively enhances the model’s ability
to capture historical medication information.

Drug Set Prediction Module

To verify the superiority of our ensemble prediction module,
we replaced our medication set prediction module with the
decoder module of a traditional Transformer, similar to that
used in COGNet. The results are presented in Set predic-
tion — Sequential prediction. Recommending medications
in the form of sets can avoid the sequential recommendation
process which introduces specific medication orders, thus en-
hancing the accuracy of the model.

5.6 Case Study

We present a sample patient with historical visits to illustrate
our model’s drug recommendation. Figure 2 shows the vi-
sualization of drug representations through t-SNE [Van der
Maaten and Hinton, 2008] under the initial, personalized, and
predictive phases, corresponding to Equations (7), (20) and
(22), respectively. In the initial phase, the drug representa-
tions have identical distributions for each patient. Many exist-
ing methods recommend drugs based on drug representations
in the initial phase, which leads to suboptimal results. In the
personalized phase, our PDMR module personalizes the drug
representations according to the drugs the patient has previ-
ously used. Compared with the initial phase, the target drug
representations are more separated from other drugs. Drug
recommendations based on personalized drug representations
can effectively improve the model accuracy. In the predic-
tive phase, our permutation-invariant framework predicts the
representations of recommended drugs based on the patient’s
health status set and the personalized drug representations.
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Figure 2: Visualization of drug representations at different phases.

Model | Jaccard F1 PRAUC
MoleRec + PDRM 0.5372 0.6902 0.7740
SafeDrug + PDRM 0.5203 0.6762 0.7689

GAMENet + PDRM | 0.5143 0.6694 0.7672

Table 4: The performance of different models equipped with our
PDRM on MIMIC-III.
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Figure 3: Performance of various methods on MIMIC-III across dif-
ferent label order.

5.7 The Stability of Set-to-Set Framework

We further assessed the performance of SSPNet, GAMENet,
SafeDrug, MoleRec, Leap, COGNet and VITA under follow-
ing five different input drug sequences:

* No process preserves the inherent sequence of drugs,
without performing any manipulation.

* Frequent is sorted the order of the drugs in descending
order based on their frequency.

* Rare first is arranged in ascending order by frequency.
* Vocabulary is sorted of drugs in alphabetical order.
* Random is randomly shuffled the order of the drugs.

The results are shown in Figure 3. Our model appropriately
treats patient health information and medications as sets, and
employs permutation-invariant encoders and decoders to pre-
dict drug prescriptions. Thus, our model exhibits stable per-
formance and possesses superior robustness. MoleRec, Safe-
Drug, and GAMENet models aggregate patient diagnostic
and surgical information to obtain patient health status, rather
than treating patient health information as a set. This ap-
proach leads to a slight deficiency in the robustness of these
models. VITA, COGNet and Leap which regard drug recom-
mendation as a sequential decision-making process are sensi-
tive to the medical implications of drug order.

5.8 Compatibility of PDRM

We validated the capability of our proposed PDRM module to
capture historical medication information and its orthogonal-
ity. We applied the personalized drug representation model
to MoleRec, SafeDrug and GAMENet. The performance is
shown in Table 4. The performance of these models is en-
hanced after the integration of our PDRM module. We further

Figure 4: Performance of Various Models Across Varying Numbers
of Historical Visits

evaluated the performance with varying numbers of historical
visits. The results shown in Figure 4 as shown. Since most
of the patients in the MIMIC-III data set have less than five
visits [Wu er al., 2022], we conducted experiments in patients
with fewer than five visits. MoleRec and SafeDrug have only
taken into account the current and historical health conditions
of patients, neglecting the drugs that the patient has previ-
ously used. Upon the incorporation of the personal medica-
tion module, they are able to account for historical medica-
tion information. GAMENet has individually considered the
relationship between patients’ health status and medication
as well as their historical drug use, leading to suboptimal out-
comes. When GAMENet is equipped with our PDRM mod-
ule, it can jointly consider the relationship between patients’
health status, medication, and historical medication informa-
tion. Our proposed PDRM not only shows exhibits flexibility
in its application in various models, but also excellent perfor-
mance across varying numbers of historical visits.

6 Conclusion

In this paper, we introduce SSPNet, a novel end-to-end frame-
work designed to tackle the intricate task of automated med-
ication recommendation. Unlike existing methods, which of-
ten overlook the essential set-based requirements, SSPNet
employs a set-based approach to encode comprehensive pa-
tient health condition and predicts appropriate prescription
through a permutation-consistent decoder. Furthermore, we
have designed a personalized drug representation module
with excellent compatibility to capture the medications pre-
viously used by patients. Our extensive evaluations on the
MIMIC-III and MIMIC-IV datasets demonstrate that SSPNet
outperforms existing state-of-the-art models.
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