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Abstract

The deep operator networks (DON), a class of neu-
ral operators that learn mappings between func-
tion spaces, have recently emerged as surrogate
models for parametric partial differential equations
(PDEs). However, their full potential for accu-
rately approximating general black-box PDEs re-
mains underexplored due to challenges in train-
ing stability and performance, primarily arising
from difficulties in learning mappings between
low-dimensional inputs and high-dimensional out-
puts. Furthermore, inadequate encoding of input
functions and query positions limits the general-
ization ability of DONs. To address these chal-
lenges, we propose the Dynamical Coupled Opera-
tor (DCO), which incorporates temporal dynamics
to learn coupled functions, reducing information
loss and improving training robustness. Addition-
ally, we introduce an adaptive spectral input func-
tion encoder based on empirical mode decompo-
sition to enhance input function representation, as
well as a hybrid location encoder to improve query
location encoding. We provide theoretical guaran-
tees on the universal expressiveness of DCO, ensur-
ing its applicability to a wide range of PDE prob-
lems. Extensive experiments on real-world, high-
dimensional PDE datasets demonstrate that DCO
significantly outperforms DONs.

1 Introduction
Solving black-box parametric partial differential equations
(PDEs) remains a significant challenge in many scientific
and engineering disciplines [Zachmanoglou and Thoe, 1986].
Traditional methods, such as the finite element method, are
computationally expensive and poorly scalable for large-scale
or real-time problems. This is particularly problematic in
scenarios where large amounts of data need to be processed
quickly, such as uncertainty quantification, optimization un-
der uncertainty, or optimal experimental design.
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Figure 1: proposed coupled ϕ(u, y) v.s decoupled ϕ(y): RMSE per-
formance at different lead time steps under the same training steps.
It can be found that ϕ(u, y) is more stable and performs better.

The emergence of neural networks has provided a powerful
alternative for approximating solutions to complex problems.
Some studies directly apply neural networks [Ruthotto and
Haber, 2020; Huang et al., 2022], while others use Neural
ODEs [Chen et al., 2018; Verma et al., 2024] to learn map-
pings between infinite-dimensional function spaces. How-
ever, both approaches face distinct challenges: neural net-
works often struggle with issues such as fixed query loca-
tions, whereas Neural ODEs require numerical integration,
which can lead to significant error accumulation over time.

Therefore, the Deep Operator Network (DeepONet) [Lu et
al., 2019] has gained prominence, offering a more specialized
framework for learning mappings between function spaces.
DeepONets represent a mapping F(u) from a function u to
an output function at a query location y as:

F(u)(y) =
n∑

i=1

ϕi(y)⊙ vi(u), (1)
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where ϕi(y) are functions mapping the query location y to a
finite-dimensional vector, and vi(u) are functionals mapping
the input u to real numbers in R. They form a linear com-
bination to approximate the true operator. DONs confront
three fundamental limitations. First, the mapping ϕ from the
low-dimensional input y to high-dimensional latent represen-
tations (Fig. 1) induces inevitable information bottlenecks,
compromising approximation learning and inducing training
instability. Second, existing approaches exhibit deficiencies
in encoding mechanisms for input functions and query loca-
tions, constraining their capacity for approximation. Third,
while the original DeepONet architectures have universal ap-
proximation guarantees, many derivative formulations sacri-
fice this theoretical foundation without rigorous justification,
undermining their reliability in scientific computing applica-
tions.

For instance, MIONet [Jin et al., 2022] enhances the ex-
pressivity of the operator v by incorporating multi-input func-
tion information. However, it still fails to address training
stability issues effectively. The LOCA method [Kissas et
al., 2022] enables efficient approximation of the operator ϕ
by calculating kernels between input and query locations. It
struggles with early training stability and has shown limited
practical effectiveness. On the other hand, IPOT [Lee and
Oh, 2024] introduces lightweight operators based on atten-
tion mechanisms, aiming to improve efficiency. However,
these approaches still do not guarantee the desired approxi-
mation properties. Additionally, related neural operator ar-
chitectures and their variants, such as those in [Li et al., 2020;
Li et al., 2022a], further highlight the challenges in achieving
both stability and approximation guarantees.

To address these challenges, we propose the Dynamical
Coupled Operator (DCO), a novel operator in the Deep-
ONet class. We introduce a new approximation formulation
for ϕ that incorporates temporal dynamics to learn an input-
query coupled function. By leveraging function information,
we tackle the issue of mapping low-dimensional inputs to
high-dimensional information bottlenecks and improve ro-
bustness. Additionally, we introduce an adaptive spectral in-
put function encoder based on empirical mode decomposi-
tion to decompose non-stationary functions, thereby enhanc-
ing function representation. Furthermore, we propose a hy-
brid location encoding mechanism to improve query location
encoding.

Overall, our method is compared with other operator
method in Tab 1 and contributions are as follows:

• Dynamically Coupled Representations: We integrate
temporal dynamics to learn an input-query coupled func-
tion, address the information bottleneck and and im-
prove robustness.

• Adaptive spectral Input Function Encoder and Hy-
brid Location Encoding: We integrate EMD to handle
non-stationary functions and utilize hybrid location en-
coding techniques to enhance model performance.

• Theoretical Guarantees of Universality: We prove
that the proposed framework satisfies the universal ap-
proximation property, meaning it can approximate any
continuous operator with arbitrary accuracy.

Class Method Universality
Guarantee

Dynamics-
informed

Information bot-
tlenecks in Map-
ping

Non-DON Class
OFormer ✗ ✗ ✓
IPOT ✗ ✗ ✓

DON Class

DeepONet ✓ ✗ ✗

FNO ✓ ✗ ✗

LOCA ✓ ✗ ✗

DCO (ours) ✓ ✓ ✓

Table 1: Comparison of different operator methods

• Numerical Experiments: We conduct extensive nu-
merical experiments on real-world physical systems,
demonstrating that DCO outperforms models in the
DON class.

2 Related Work
2.1 Operator Learning
Neural operators, which approximate mappings between in-
put and output function spaces, include DeepONet [Lu et al.,
2019], which utilizes branch and trunk networks to handle
inputs and query positions, demonstrating strong approxima-
tion capabilities. The Fourier Neural Operator (FNO) [Li
et al., 2020] operates in the frequency domain to capture
global dependencies but lacks the ability to generalize to ar-
bitrary query locations. Extensions like MIONet [Jin et al.,
2022] improve flexibility of multiple input functions. LOCA
[Kissas et al., 2022] calculates kernels between input func-
tion locations and query locations, enabling efficient approx-
imation of query location representations. Some attention-
based frameworks, including Galerkin Transformers [Cao,
2021] and OFormer [Li et al., 2022b], employ cross-attention
mechanisms to enhance adaptability to diverse input condi-
tions. These models reduce computational costs while main-
taining flexibility. IPOT [Lee and Oh, 2024] offers flexibility
in processing arbitrary discretization. However, DONs do not
leverage dynamic information and fail to address information
bottlenecks, while non-DONs approaches lack universal ap-
proximation guarantees. In contrast, we address these issues
by proposing a universal approximation guarantee and a more
flexible operator formulation.

2.2 Approximation Theory
The approximation properties of neural networks have been
extensively studied, with a focus on network structures such
as feedforward neural networks [Cybenko, 1989; Hornik et
al., 1989; Leshno et al., 1992] and residual networks [He et
al., 2016]. These traditional networks often use a fixed ar-
chitecture, with weights adjusted to approximate target func-
tions. Recent theoretical advancements have extended uni-
versal approximation results to infinite-dimensional function
spaces and nonlinear operators. For instance, Chen and Chen
[Chen and Chen, 1995] demonstrated that neural networks
can approximate nonlinear operators, providing a founda-
tional theoretical basis for operator learning. Building on this,
architectures like DeepONet [Lu et al., 2019], LOCA [Kissas
et al., 2022], holomorphic operators [Adcock et al., 2024],
and neural operators [Kovachki et al., 2021] have emerged,
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focusing on learning mappings between infinite-dimensional
Banach spaces. While these methods primarily rely on static
state representations, they lack flexibility in incorporating dy-
namic information, which limits their robustness and scalabil-
ity.

3 Problem Formulation

Symbol Description
[n] The set {1, . . . , n} ⊂ N.
u⊙ v Element-wise product of u and v.
C(A,B) Continuous functions from space A to space B.
∆n n-dimensional simplex.
X Domain for input functions.
Y Domain for output functions.
x Input function arguments.
y Output function arguments (queries).
u Input function in C(X ,Rdu).
s Output function in C(Y ,Rds).
F Mapping input functions to output functions.
ψ(y) Query encoding function.
v(u), k(u) Feature encoding function.
ϕ(u, y) State query coupled-kernel function.

Table 2: Symbols and their descriptions.

In this section, we aim to formalize the operator learning
problem, specifically the relationship between input and out-
put functions as defined by the symbols in Table 2.

Given N pairs of dynamic series of input functions and
output functions {uℓt−1(x), u

ℓ
t(x), s

ℓ(y)}Nℓ=1, where uℓ ∈
C(X ,Rdu) and sℓ ∈ C(C(X ,Rdu) × Y ,Rds), the data pairs
are assumed to be generated by an unknown ground truth op-
erator G, defined as:

G : C(X ,Rdu) → C(C(X ,Rdu)× Y ,Rds),

which maps an input function uℓt−1(x) to its corresponding
output function sℓ(uℓt(x), y).

Our goal is to learn an operator F such that for each func-
tion pair, the learned operator should satisfy:

F : C(X ,Rdu) → C(C(X ,Rdu)× Y ,Rds),

and for ℓ = 1, . . . , N , we want:

F(uℓt−1(x)) = sℓ(uℓt(x), y).

We discuss this from the perspective of a simplified ver-
sion, this formulation can be applied to various scenarios. For
instance, consider a case where u represents a temperature
field over the Earth’s surface, and X is the spatial domain.
The output s could be the pressure field sampled at specific
locations Y . The operator F would then predict the pressure
fields given new temperature distributions.

4 Method
We construct our model in two steps, inspired by attention
mechanisms. First, we map the input function ut−1 to a fea-
ture vector v(ut−1) ∈ Rn. For each output location y and

input function ut, we enhance the model by coupling the cur-
rent state ut and y using an attention kernel, as in formula 1,
to obtain an approximating function ϕ : C(X ,Rdu) × Y →
Rn×ds through ψ(y) and k(ut). Here, σ denotes the softmax
function. The forward pass of the proposed model is written
as follows:

F(ut−1)(ut, y) =
n∑

i=1

σ (k(ut)⊗ ψ(y))⊙ vi(ut−1) (2)

In this section, we will describe how the functions v and ϕ
are constructed through ψ and k.

4.1 Adaptive Spectral Input Function Encoder
In our approach, the feature mappings k(·) and v(·) are con-
structed through two main operations. The first operation is
the function E , which maps an input function u to a finite -
dimensional vector space Rd:

E(u) : C(X,Rdu) → Rd.

Traditional spectral methods, such as the Fourier Transform
and wavelet scattering networks[Bruna and Mallat, 2013] us-
ing in LOCA, offer effective feature representations but strug-
gle with non-linear and non-stationary functions. For in-
stance, Fourier Transform is sensitive to small deformations,
while wavelet scattering relies on fixed basis functions that
may not adapt to input signals’ intrinsic characteristics. To
address these challenges, we use Empirical Mode Decompo-
sition (EMD) for feature extraction.

EMD is a data - driven technique that decomposes sig-
nals into multiscale oscillatory components, making it well
- suited for non - linear and non - stationary signals. EMD
decomposes an input signal u into Intrinsic Mode Functions
(IMFs), denoted as χi(m), where each IMF captures an os-
cillatory component of the signal at a particular scale. The
decomposition can be expressed as:

u =
d∑

i=1

χi(m), m = 1, 2, . . . ,M,

where d is the number of IMFs and M is the sequence
length. Each IMF χi(m) satisfies: The difference between
zero crossings and extrema is at most 1.

|Z(χi)− E(χi)| ≤ 1.

The mean of the upper and lower envelopes of χi(m) is zero.
eup(m) + edown(m)

2
= 0, m = 1, 2, . . . ,M.

This decomposition allows for the extraction of features at
multiple scales. We define the mapping E(·) using the first d
IMFs, along with the input signal u:

E(u) = χ1(m)⊕ χ2(m)⊕ · · · ⊕ χd(m)⊕ u,

where ⊕ denotes concatenation.
After obtaining the finite - dimensional representation of

u, we apply functions q and f , drawn from universal func-
tion approximators (e.g., fully connected neural networks), to
obtain the feature representations:

k(u) = q ◦ E(u) ∈ RL×D×ds , v(u) = f ◦ E(u) ∈ RL.
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4.2 Hybrid Query Locations Encoding
To encode the query locations y, we design ψ(y) to capture
both intrinsic location information and the relative distance
to the input function locations. To achieve this, we adopt a
hybrid encoding scheme that combines a normalized radial
basis function (RBF) kernel with discrete Fourier encoding.

The normalized RBF kernel is defined as:

κ(y, y′) =
exp

(
−∥y − y′∥2

)∫
Y exp (−∥y − y′∥2) dy′

,

where κ(y, y′) quantifies the similarity between y and y′ ∈ Y .
Using a set of reference points {y′i}ni=0, we compute the RBF
- based features as:

a = [κ(y, y′0), . . . , κ(y, y
′
n)]W1,

where W1 ∈ R(n+1)×d is a learnable weight matrix.
To complement the localized features provided by the RBF

kernel, we apply discrete Fourier encoding to capture periodic
features of y. The Fourier features are given by:

b =
N

concat
i=1

[
cos(2πc⊤i y), sin(2πc

⊤
i y)

]
(3)

where {ci}Ni=1 are predefined Fourier frequencies. Finally,
the combined features a and b are concatenated and passed
through a universal function approximator g to compute the
final representation:

ψ(y) = g(a⊕ b) ∈ RD,

This hybrid encoding effectively captures both localized and
periodic characteristics of y, enhancing the expressivity of y
representation.

4.3 Input-Query Coupled Function
To construct the state-dependent representation ϕ, we couple
the input function ut with the query points y. First, we encode
the current state ut using the feature encoder k, and encode
the query points y ∈ Y using ψ. Inspired by by attention
mechanism[Bahdanau, 2014], we compute a tensor-matrix
product between ψ(y) and k(ut), followed by applying the
softmax operation σ : Rn → ∆n to the rows. This softmax
operation bounds the values of ϕ, where ∆n represents the
probability simplex:

ϕ(ut, y) = σ(k(ut)⊗ ψ(y)) ∈ RL×ds ,

This formulation allows the representation ϕ(ut, y) to cap-
ture both the current state dependencies through the attention
mechanism and spatial correlations via the positional encod-
ing of y. By combining these components, the model is able
to learn a richer and more expressive mapping.

4.4 Loss Function
To account for the geometric properties of a sphere, we
employ a latitude-weighted mean squared error (MSE) loss
function[Nguyen et al., 2023]:

1

N

N∑
ℓ=1

1

|Ω|
∑
y∈Ω

L(y)
(
F(ut−1)(ut, y)− sℓ(y)

)2
(4)

where the latitude weight L(y) = cos(h)
1
H

∑H
y′ cos(y′)

, and h rep-

resents the latitude of the grid point y. Ω denotes the set of
all grid points, and N is the total number of samples.

5 Theoretical Guarantees of Universality
In this section we give conditions under which the DCO
model is universal. There exist multiple definitions of uni-
versality present in the literature, for example see[Sriperum-
budur et al., 2010]. To be clear, we formally extend the defi-
nition we use below.
Definition 1 (Universality). Let X ⊂ Rdx , Y ⊂ Rdy , and
U ⊂ C(X ,Rdu) be compact sets. A class of operators A is
said to be universal if for any continuous operator

G : C(X ,Rdu) → C(C(X ,Rdu)× Y ,Rds),

and any ϵ > 0, there exists an operator F ∈ A such that:
sup

ut−1∈U
sup

ut∈U ,y∈Y
∥G(ut−1)(ut, y)−F(ut−1)(ut, y)∥2Rds < ϵ.

To explore the universality properties of our model we note
that evaluation of the model can be written as

F(ut−1)(ut, y) =
n∑

i=1

ϕi(ut, y)⊙ vi(ut−1).

We will show that our model with the bounded normal-
ization, state-query coupling ϕ and Adaptive spectral input
function encoder v are universal by adding these components
back one at a time. First, the following theorem shows that
bounded normalization, state-query coupling ϕ does not re-
duce the approximation power of this class of operators.
Theorem 1 (DCO Preserves Universality). Let U ⊂
C(X ,Rdu) be a compact set, and let

G : U → C(C(X ,Rdu)× Y ,Rds)

be a continuous operator, where X ⊂ Rdx and Y ⊂ Rdy

are compact. Then, for every ϵ > 0, there exist n ∈ N,
functionals vj : U → R for j ∈ [n], and functions ϕj :
C(X ,Rdu)× Y → Rn×ds , such that:

sup
ut−1∈U

sup
ut∈U ,y∈Y

∥G(ut−1)(ut, y)−F(ut−1)(ut, y))∥2Rds < ϵ.

Proof. The proof is provided in Appendix A.

Lastly, we present a result showing that a particular archi-
tecture choice for the input feature encoder v also preserves
universality. We show that EMD can be used to construct a
universal class of functionals on C(X,Rdu).
Proposition 1 (EMD Encoding Preserves Universality). Let
Ad ⊂ C(Rd,Rn) be a set of functions dense in C(Rd,Rn),
and {ei}∞i=1 a set of basis functions such that for some com-
pact set U ⊂ C(X,Rd). Let Ed : U → Rd denote in 4.1.
Then for any continuous mapping h : U → Rn and any
ϵ > 0, there exist d and f ∈ Ad such that:

sup
u∈U

∥h(u)− f ◦ Ed(u)∥ < ϵ.

Proof. The proof is provided in Appendix B.

For example, if our compact space of input functions U
is contained in C1(X,Rdu), the architecture proposed is ex-
pressive enough to approximate any functional from U → R.
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Metric Model 3h 6h

t2m u10 v10 t850 z500 Avg t2m u10 v10 t850 z500 Avg

MSE

DeepONet 0.0180 0.1642 0.1990 0.0088 0.0022 0.0785 0.0278 0.2173 0.3015 0.0130 0.0045 0.1128
LOCA 0.0085 0.1407 0.1631 0.0073 0.0013 0.0642 0.0105 0.1853 0.2457 0.0103 0.0031 0.0910
IPOT 0.0071 0.1326 0.1549 0.0071 0.0013 0.0606 0.0088 0.1771 0.2411 0.0100 0.0031 0.0880

DCO (ours) 0.0046 0.1298 0.1507 0.0062 0.0011 0.0585 0.0061 0.1755 0.2391 0.0088 0.0026 0.0864

RMSE

DeepONet 2.8472 2.2346 2.1189 1.4746 163.2574 34.3866 3.5376 2.5708 2.6074 1.7870 232.8443 48.6694
LOCA 1.9572 2.0683 1.9183 1.3371 127.6338 26.9829 2.1819 2.3734 2.3540 1.5919 193.1909 40.3384
IPOT 1.7887 2.0073 1.8692 1.3249 126.4169 26.6814 1.9961 2.3206 2.3316 1.5677 194.4303 40.5293

DCO (ours) 1.4393 1.9862 1.8439 1.2319 114.1292 24.1261 1.6630 2.3099 2.3225 1.4699 176.5892 36.8709

Metric Model 9h 12h

t2m u10 v10 t850 z500 Avg t2m u10 v10 t850 z500 Avg

MSE

DeepONet 0.0353 0.2784 0.4250 0.0178 0.0072 0.1527 0.0365 0.3405 0.5523 0.0226 0.0111 0.1926
LOCA 0.0126 0.2437 0.3471 0.0143 0.0056 0.1247 0.0144 0.3017 0.4489 0.0185 0.0084 0.1584
IPOT 0.0102 0.2347 0.3581 0.0139 0.0059 0.1246 0.0123 0.2921 0.4378 0.0179 0.0091 0.1539

DCO (ours) 0.0077 0.2331 0.3352 0.0122 0.0048 0.1186 0.0087 0.2913 0.4287 0.0158 0.0075 0.1504

RMSE

DeepONet 3.9930 2.9093 3.0940 2.0930 294.5810 61.3341 4.0593 3.2168 3.5260 2.3544 366.2193 75.8752
LOCA 2.3876 2.7218 2.7972 1.8727 260.0438 53.9646 2.5507 3.0280 3.1804 2.1309 318.4295 65.8639
IPOT 2.1443 2.6708 2.8402 1.8452 267.1718 55.3345 2.3596 2.9794 3.1402 2.0980 331.2527 68.3660

DCO (ours) 1.8669 2.6620 2.7496 1.7298 241.0392 50.0095 1.9815 2.9759 3.1094 1.9686 300.7749 62.1621

Table 3: Experiments on Solving Black-box PDEs: Evaluation of models for scale-invariant mapping.

6 Numerical Experiments
Unlike previous operator experiments, which typically in-
volve low - dimensional and relatively simple datasets, we
conduct experiments on a real - world, high - dimensional
black - box PDE dataset. In this section, we present a com-
prehensive set of experiments to evaluate the performance
of the proposed method. These experiments aim to assess
the model’s effectiveness in solving high - dimensional black
- box partial differential equations. Beyond ablation stud-
ies, we focus on addressing the following key research ques-
tions1:

• How does the model perform in predicting various phys-
ical quantities compared to baselines?

• How well does the model train to predict unseen query
locations compared to state-of-the-art DONs?

6.1 Experimental Setup
Datasets. We use the preprocessed 3 - hour increment ERA5
dataset from WeatherBench [Rasp et al., 2020], which con-
tains governing black - box PDEs. We consider a dimension-
ality of du = 54 for input function and ds = 5 for output
function from the ERA5 dataset: ground temperature (t2m),
atmospheric temperature (t), geopotential (z), and ground
wind vector (u10, v10). We use data at three different scales
for evaluation. More details can be found in Appendix C.

Metrics. We evaluate our benchmarks using two com-
monly used metrics: latitude - weighted RMSE and latitude

1https://github.com/ResearchGroupHdZhang/DCO

- weighted MSE. More metrics details can be found in Ap-
pendix D.

Baselines. To evaluate the effectiveness of our proposed
method, we compare it with several baseline methods:

• DeepONet[Lu et al., 2019]: A foundational neural op-
erator model that approximates functions using a branch
- trunk network architecture, offering a rigorous mathe-
matical framework based on approximation theory.

F(u)(y) =
n∑

i=1

gi(y)⊙ vi(u),

where g is the function representing query location y,
and v is the function representing the input function u.

• LOCA[Kissas et al., 2022]: An extension of DeepONet
that integrates the Wavelet Scattering Network and at-
tention mechanisms to enhance the coupling between the
input and query coordinates

F(u)(y) =
n∑

i=1

σ

(∫
Y
κ(y, y′)g(y′) dy′

)
i

⊙ vi(u),

where κ : Y × Y → R is the kernel, σ is the softmax
function, v is the input feature encoder, and g is the pro-
posed score function.

• IPOT[Lee and Oh, 2024]: A neural operator framework
designed for optimal transport problems, which employs
a differentiable iterative solver to approximate transport
maps.
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Metric Model 3h 6h

t2m u10 v10 t850 z500 Avg t2m u10 v10 t850 z500 Avg

MSE

DeepONet 0.0161 0.1574 0.1913 0.0084 0.0016 0.0750 0.0257 0.2025 0.2748 0.0119 0.0038 0.1037
LOCA 0.0097 0.1477 0.1757 0.0079 0.0013 0.0685 0.0117 0.1901 0.2534 0.0107 0.0031 0.0938
IPOT 0.0076 0.1380 0.1672 0.0077 0.0013 0.0643 0.0093 0.1810 0.2485 0.0104 0.0032 0.0905

DCO (ours) 0.0049 0.1351 0.1623 0.0065 0.0010 0.0619 0.0063 0.1802 0.2436 0.0091 0.0026 0.0883

RMSE

DeepONet 2.6937 2.1884 2.0781 1.4357 138.5084 29.3809 3.3961 2.4819 2.4898 1.7126 213.0866 44.6334
LOCA 2.0975 2.1196 1.9919 1.3903 125.9023 26.7003 2.2968 2.4049 2.3911 1.6252 194.2024 40.5841
IPOT 1.8505 2.0490 1.9426 1.3725 124.3201 26.307 2.0456 2.3461 2.3677 1.5990 196.5081 40.973

DCO (ours) 1.4816 2.0269 1.9138 1.2687 112.2921 23.797 1.6933 2.3411 2.3447 1.4921 176.9052 36.96

Metric Model 9h 12h

t2m u10 v10 t850 z500 Avg t2m u10 v10 t850 z500 Avg

MSE

DeepONet 0.0340 0.2613 0.3948 0.0167 0.0064 0.1426 0.0369 0.3231 0.5236 0.0217 0.0100 0.1830
LOCA 0.0137 0.2480 0.3553 0.0147 0.0057 0.1275 0.0157 0.3064 0.4575 0.0189 0.0086 0.1614
IPOT 0.0107 0.2384 0.3662 0.0143 0.0061 0.1271 0.0129 0.2960 0.4462 0.0184 0.0093 0.1565

DCO (ours) 0.0079 0.2370 0.3399 0.0124 0.0049 0.1204 0.0089 0.2944 0.4335 0.0160 0.0076 0.1521

RMSE

DeepONet 3.9053 2.8190 2.9828 2.0250 277.4299 57.8324 4.0641 3.1341 3.4335 2.3062 346.3043 71.8484
LOCA 2.4893 2.7461 2.7223 2.0955 243.8145 53.3789 2.6502 3.0916 3.2645 2.1797 298.6246 63.5578
IPOT 2.1963 2.6921 2.8724 1.8737 270.2282 55.973 2.4151 2.9991 3.1704 2.1239 335.0262 69.147

DCO (ours) 1.8939 2.6847 2.7694 1.7478 241.9643 50.21 2.0089 2.9920 3.1272 1.9859 301.9195 62.41

Table 4: Experiments on Query Locations Generation: Evaluation of models for small scale to medium scale.

Implementation Details. To comprehensively evaluate
our method, we conducted experiments using different lead
times (3, 6, 9, 12 hours) in both the black-box PDE solving
and query location generation tasks. All the training details
can be found in Appendix E.

6.2 Experiments on Solving Black-box PDEs
To answer first question, We evaluate our model’s perfor-
mance in predicting multiple forward time steps of black-box
PDEs. As shown in Table 3, our model significantly outper-
forms DONs and IPOT in terms of MSE and RMSE across
all time steps and physical quantities in small scale PDEs.
For instance, at 3h, our model achieves an average MSE of
0.0619, compared to 0.0750 for DeepONet and 0.0643 for
IPOT. Similarly, at 6h, our model’s MSE is 0.0883, while
DONs and IPOT report 0.1037 and 0.0905, respectively.
In terms of RMSE, at 3h, our model achieves a value of
23.797, which is a notable improvement over the 29.3809
from DeepONet and 26.307 from IPOT. At 6h, the RMSE
of our model (36.96) is also significantly lower than that
of DeepONet (44.6334) and IPOT (40.973). These results
demonstrate the superior predictive accuracy and generaliza-
tion ability of our model.

6.3 Experiments on Query Locations Generation
To answer the first question, we evaluate our model’s ability
to generalize to unseen query locations, specifically predict-
ing from small-scale to medium-scale. As shown in Table 4,
our model consistently outperforms baselines in both MSE
and RMSE for unseen queries. At 3h, our model achieves

Figure 2: Zero-shot generalization: small scale to large query scale.

an average MSE of 0.0619 and RMSE of 23.797, signif-
icantly lower than DeepONet’s 0.0750 and 29.3809, and
IPOT’s 0.0643 and 26.307. Similarly, at 6h, the aver-
age MSE and RMSE are 0.0883 and 36.96, compared to
DeepONet’s 0.1037 and 44.6334, and IPOT’s 0.0905 and
40.973. These results demonstrate the superior generaliza-
tion capability of our model for unseen query points. As
shown in Fig. 2, we also conduct zero-shot unseen query gen-
eration experiments to further highlight the superior perfor-
mance of our model, specifically from small-scale predictions
to large-scale ones. More details can be found in Appendix F.

6.4 Ablation Study and Visualization
As shown in Table 5, we conducted an ablation study to
evaluate the impact of different components on model per-
formance. Removing the Wavelet scattering (w/o B) leads
to a decrease in performance across all time intervals, with
higher MSE and RMSE values. Similarly, removing the hy-
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Metric Model 3h 6h

t2m u10 v10 t850 z500 Avg t2m u10 v10 t850 z500 Avg

MSE
w/o A 0.0119 0.1534 0.1869 0.0079 0.0012 0.0723 0.0144 0.1970 0.2685 0.0108 0.0031 0.0987
w/o B 0.0056 0.1364 0.1651 0.0069 0.0011 0.0630 0.0074 0.1785 0.2384 0.0096 0.0028 0.0873
ours 0.0049 0.1351 0.1623 0.0065 0.0010 0.0619 0.0063 0.1802 0.2436 0.0091 0.0026 0.0884

RMSE
w/o A 2.3244 2.1605 2.0539 1.3942 122.8667 26.1599 2.5545 2.4478 2.4614 1.6273 192.0525 40.2287
w/o B 1.5949 2.0366 1.9306 1.3023 116.0252 24.5779 1.8286 2.3301 2.3190 1.5342 183.9327 38.3889
ours 1.4816 2.0269 1.9138 1.2687 112.2921 23.797 1.6933 2.3411 2.3447 1.4921 176.9052 36.96

Metric Model 9h 12h

t2m u10 v10 t850 z500 Avg t2m u10 v10 t850 z500 Avg

MSE
w/o A 0.0177 0.2528 0.3653 0.0149 0.0058 0.1313 0.0196 0.3117 0.4771 0.0190 0.0092 0.1673
w/o B 0.0090 0.2339 0.3380 0.0133 0.0057 0.1199 0.0103 0.2924 0.4406 0.0176 0.0088 0.1539
ours 0.0079 0.2370 0.3399 0.0124 0.0049 0.1204 0.0089 0.2944 0.4335 0.0160 0.0076 0.1521

RMSE
w/o A 2.8324 2.7729 2.8700 1.9158 264.6731 55.0129 2.9766 3.0781 3.2790 2.1584 332.3575 68.77
w/o B 2.0137 2.6668 2.7607 1.8093 262.3314 54.3164 2.1510 2.9810 3.1511 2.0764 325.18 67.11
ours 1.8939 2.6847 2.7694 1.7478 241.9643 50.21 2.0089 2.9920 3.1272 1.9859 301.9195 62.41

Table 5: Ablation Study: Evaluation of models for MSE, RMSE.

Figure 3: Visualization of different physical quantities u10, v10, t2m, t850.

brid query location encoding (w/o A) results in a significant
drop in performance, especially in the RMSE metric. Our full
model, which includes both components A and B, achieves
the best performance, demonstrating the importance of both
components in optimizing model accuracy and robustness.
As shown in Fig 1, and the complete comparison of training
stability can be found in Appendix G. In Fig 3, we campare to
4 physical quantities. it can be seen that our method also out-
performs in terms of intricate scale, as indicated by the black
box.

7 Conclusion
In this work, we introduced the Dynamical Coupled Opera-
tor (DCO), a novel framework for learning mappings between
continuous function spaces. DCO overcomes key limitations

of traditional neural operators by incorporating temporal dy-
namics and coupling input representations with query loca-
tions. This design reduces information loss, enhances the
model’s ability to capture complex spatio-temporal depen-
dencies, and improves prediction accuracy in dynamic envi-
ronments. We established a theoretical foundation for DCO,
proving its universal approximation capabilities. Extensive
benchmarking against existing models demonstrated DCO’s
superior performance in prediction accuracy, robustness, and
generalization across black-box partial differential equations
(PDEs). Additionally, the integration of Empirical Mode De-
composition enables DCO to outperform wavelet scattering
methods. In future work, we hope to develop a unified and
universality guarantee operator architecture based on this pa-
per.
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