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Abstract
The outbreak of pandemic has a huge impact on
production and consumption in the business world,
especially for the retail sector. As a crucial com-
ponent of decision-support technology in the retail
industry, sales forecasting is significant for produc-
tion planning and optimizing the supply of essential
goods during the pandemic. However, due to the
irregular fluctuation pattern caused by uncertainty
and the complex temporal correlation between mul-
tiple covariates and sales, there is still no effective
approach for sales forecasting in this extreme event.
To fill this gap, we propose a Pandemic-Compatible
Attentive Network (PCAN) for retail sales forecast-
ing. Specifically, to capture the irregular fluctuation
patterns from the sales series, we design a fluctua-
tion attention mechanism based on association dis-
crepancy in the time series. Then, a parallel atten-
tion module is developed to learn the complex rela-
tionship between target sales and various dynamic
influence factors in a decoupled manner. Finally,
we introduce a novel rectification decoding strategy
to indicate fluctuation points in prediction. By eval-
uating PCAN on four real-world retail food datasets
from the SF Express international supply chain sys-
tem, the results show that our method achieves su-
perior performance over the existing state-of-the-
art baselines. The model has been deployed in the
supply chain system as a fundamental component
to serve a world-leading food retailer.

1 Introduction
The global pandemics (e.g., COVID-19) would result in pro-
found socio-economic consequences [Nicola et al., 2020], es-
pecially for the retail industry [Sayyida et al., 2021]. For ex-
ample, the Canadian leading food retail supply chain Sysco
saw a 12% drop in its sales in 2020 versus the 2019 fi-
nancial year, significantly impacted by the pandemic [Ryan,
2020]. Sales forecasting plays an important role in the sup-

∗Corresponding author

ply chain management of the retail sector. It can help re-
tailers achieve better production planning, inventory control,
and financial estimation [Taşdemir, 2022; Li et al., 2024b;
Wang et al., 2025], thus optimizing their business decision-
making. Furthermore, accurate sales prediction can help pro-
vide the required quantities of essential goods (e.g., food
and clothing) for people in need and reduce the waste of re-
sources [Burgos and Ivanov, 2021]. This is especailly impor-
tant for safeguarding the well-being of people and maintain-
ing social stability during the pandemic. However, shifts in
consumer behaviors and government’s containment measures
(e.g., social distancing and lockdown) can greatly alter the
sales patterns of retail products, thereby disrupting the sales
forecasting process [Jha et al., 2023]. Thus, it is necessary
yet challenging to develop a sales forecasting model that is
adaptable to the pandemic scenario.

Traditional approaches like Holt-Winter’s method [Sugia-
rto et al., 2016] and autoregressive integrated moving average
(ARIMA) [Ramos et al., 2015] employ techniques of time se-
ries analysis for sales forecasting. To achieve better nonlinear
modeling capacity, machine learning methods such as support
vector machine (SVM) [Di Pillo et al., 2016] and gradient-
boosting decision trees (GBDT) [Cheriyan et al., 2018] are
utilized and perform exceptionally well in the sales prediction
task [Feizabadi, 2022]. Recently, deep learning approaches
have been widely used in designing end-to-end sales forecast-
ing models. DSF [Qi et al., 2019] and MQ-RNN [Gasthaus
et al., 2019] are two popular deep forecasting models based
on Recurrent Neural Networks (RNNs), which focus on se-
quential modeling. To achieve efficient parallel training and
better capture long-term temporal dependencies in sales se-
ries, Convolution Neural Network (CNN) based models such
as InceptionTime [Ismail Fawaz et al., 2020] and TrendSpot-
ter [Ryali et al., 2023] have been devised. Furthermore, some
studies attempted to apply transformer-based models, which
have achieved remarkable success in Natural Language Pro-
cessing, to sales forecasting [Li and Yu, 2023] (e.g., Auto-
former [Zhou et al., 2021a], FEDformer [Zhou et al., 2022]
and InParformer [Cao et al., 2023]), and achieve the state-of-
the-art prediction performance.

Nevertheless, developing a retail sales forecasting model
adapted to the pandemic environment is challenging due to
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the following reasons: (1) Sales series are prone to fluctuating
in an irregular manner since changes in disease transmission
risks and pandemic policies can swiftly alter consumer behav-
iors [Becdach et al., 2020; Tan et al., 2025]. Existing meth-
ods fail to capture these complex fluctuation patterns in sales
series, resulting in severe forecast bias. (2) Many dynamic
covariates related to pandemic events (e.g., newly infected
cases) and real business operations (e.g., daily promotions)
may significantly influence the target sales. However, these
covariate time series are often composed of intricate tempo-
ral patterns and entangled noise. How to model their latent
relationship with sales and learn informative covariate repre-
sentations remains challenging for existing approaches.

To address the aforementioned issues, we propose PCAN,
a novel attention-based framework that is adaptable to retail
sales forecasting during the pandemic period. Specifically,
we first design a group embedding layer to encode hetero-
geneous features, including static item profiles and dynamic
covariates. We also develop a series augmentation strategy to
better represent target sales in the network. Next, to address
the challenge of capturing abnormal fluctuation patterns, we
propose a fluctuation attention module based on association
discrepancy. This module effectively learns fluctuation in-
formation in sales series and guides the model to rectify its
predictions accordingly. Additionally, we present a parallel
attention module consisting of a pandemic attention stream
(PAS) and a business attention stream (BAS), aiming at ex-
tracting sales-related dynamic features. The cross-attention
mechanism within the module filters irrelevant noise in co-
variates and captures complex correlations between dynamic
features and target sales. To make the final forecast, the de-
coder integrates the knowledge from the above modules and
applies novel rectification coefficients learned from fluctua-
tion information. Extensive experiments on four real-world
retail food datasets from the SF Express intelligent supply
chain system1 demonstrate that PCAN consistently achieves
an improvement of over 2% in ACC and a reduction of over
9% in RMSE compared to the state-of-the-art methods. The
case study shows that our model significantly outperforms the
existing online prediction model. The main contributions of
our work can be summarized as follows:

• We present PCAN, an end-to-end pandemic-compatible
attentive network, for retail sales forecasting. The model
significantly enhances production planning and supply
management in the retail industry during extreme events
such as pandemics. It has now been deployed as a func-
tional component in a real-world intelligent supply chain
system, serving a world-leading food retailer.

• We propose a parallel stream attention module to better
learn the latent relationship between dynamic covariates
and sales sequence. Besides, we design a fluctuation at-
tention mechanism to capture irregular fluctuation pat-
terns in sales series and apply a rectification decoding
strategy to inject learned fluctuation information into the
final prediction.

• We conduct extensive experiments on four real-world re-

1https://www.sf-international.com/

tail food datasets and establish the new state-of-the-art
performance with a clear gain compared to the existing
state-of-the-art sales forecasting methods.

2 Preliminary
2.1 Notations
In practice, retail sales forecasting during the pandemic is
a complex temporal analysis problem with multiple influ-
ence factors. We denote historical sales of the product as
Y = {yt}Tt=1, where T is the length of the time series and
yt is the sale on the day t. Moreover, we consider sales-
related features Xs including static item profile P and tempo-
ral covariates C. P includes various types of time-invariant
product-related inputs, such as product text attributes and
store attributes. In this problem, C can be divided into Cp

and Cb, which are covariate series related to pandemic events
and retail business, respectively.

2.2 Problem Formulation
Given a series of historical sales Y and sales-related features
Xs =< P,Cp, Cb >, our task is to learn a regression model
fΘ to precisely estimate the sales of the product over period
[T + 1, T + l], where parameter l is the prediction horizon.
The sales forecasting problem can be formulated as follows:

Ŷ = fΘ(Y,Xs) (1)

where Ŷ = {ŷT+k}lk=1 are predicted sales and Θ is the set
of learnable model parameters.

3 Methodology
In this section, we present the proposed PCAN in detail. We
first give an overview of our architecture. After that, we de-
scribe each component of PCAN. Finally, we report the loss
function and optimization strategy.

3.1 Overview
Figure 1. shows the overall architecture of PCAN. The model
takes historical sales series, product profiles, pandemic-
related covariates, and business-related covariates as inputs.
Then, it processes each kind of feature in the group embed-
ding layer. After that, we apply the fluctuation attention mod-
ule (FAM) to detect abnormal sales fluctuations caused by
pandemic events and generate instruction messages. More-
over, the parallel attention module, which consists of a pan-
demic attention stream (PAS) and a business attention stream
(BAS), is adopted to capture complex relationships between
sales and pandemic events as well as business features. Fi-
nally, the rectification decoder integrates extracted knowledge
from historical sales and multiple covariates to forecast sales.

3.2 Group Embedding Layer
To better vectorize various types of input data including sales
records and auxiliary features that can boost forecasting accu-
racy, we propose a group embedding layer with four encoding
strategies: static profile embedding, temporal covariates en-
coding, series augmentation, and timestamp tagging.
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Figure 1: The pipeline of PCAN

Static Profile Embedding. The static item profile contains
various time-invariant features related to the product (e.g., the
product category and store location). As most of them are dis-
crete in our task, we apply a learnable embedding method to
encode them. Suppose P = {pi}mi=1, where pi is the i-th
static feature. For each pi, we first use one-hot encoding to
transform it to a sparse vector oi ∈ Rci where ci is the cate-
gory number of pi. Then we map it to a column of learnable
embedding matrix Ei ∈ Rd×ci , where d is the embedding
dimension, and output dense embedding ei as:

oi = OneHot(pi)

ei = Eioi
(2)

We aggregate the embedded static features of each item as:

Ps =
m∑
i=1

ei (3)

where Ps ∈ Rd is the encoded static profile representation.
Temporal Covariates Encoding. For sales-related covari-
ates, we consider pandemic events covariates Cp ∈ RN1×T

and business covariates Cb ∈ RN2×T , where N1, N2 denote
the number of two covariates, respectively. We apply multi-
channel 1-D convolutional filters on the time dimension to
extract complex temporal information and extend zero vec-
tors along the time dimension as placeholders for unknown
future features. This process can be formulated as:

Ep =
[
Conv1d(Cp)||E0

p

]
Eb =

[
Conv1d(Cb)||E0

b

] (4)

where Ep,Eb ∈ Rd×(T+l) are denoted as embedding matri-
ces of two kinds of covariates, respectively. E0

p,E
0
b ∈ Rd×l

are zero padding matrices. || is the concatenation operator.

Series Augmentation. The sales series Y = {yt}Tt=1 con-
tains a single value at each time step, which cannot fully re-
flect the temporal pattern. We propose to augment it into a
multivariate series to better represent the status of each po-
sition in the series. These augmented sales include lag sale
value, average sales of the last week, etc. The augmented
time series Ỹ can be formulated as:

Ỹ = {ỹa,1, ...ỹa,t..., ỹa,T }
ỹa,t = [yt, at,1, ...at,i...at,N3

]
(5)

where ỹt ∈ RN3+1 is the augmented sale vector at time point
t and at,i refers to the i-th augmented value. N3 denotes the
number of augmentation sales. After that, we apply a linear
transformation to embed this multi-value series as:

Es =
[
WỸ ||E0

s

]
(6)

where W ∈ Rd×(N3+1) is a learnable matrix and E0
s ∈ Rd×l

is the padding matrix. Finally, to inject inductive knowledge
of the product attributes, we add Ps to each position of Es.

Timestamp Tagging. To make the model better capture
temporal information in sales series and covariates, we utilize
a time-encoding strategy. Specifically, we apply sinusoidal
encoding as the local timestamp Sl ∈ Rd×(T+l) to model the
contextual dependencies of time and use aggregated embed-
dings of date features (i.e., week, month, year) as the global
stamp Sg ∈ Rd×(T+l) to encode date information. The em-
bedding and aggregation methods are the same as those in
static profile embedding. Then we tag the augmented sales
series and two kinds of covariates with these timestamps to
get model input as follows:

Ik = Ek + Sl + Sg (7)

where Ek ∈ {Es,Ep,Eb}.

3.3 Fluctuation Attention Module

Pandemic events will result in a chain of influences that may
cause irregular fluctuations in retail sales due to their huge un-
certainty. It is crucial to measure the degree of abnormal fluc-
tuation in time series as it can help guide the model to learn
more informative representations and achieve more robust
forecasting performance. To quantify the degree of abnormal-
ity in time series, we apply Association Discrepancy, a time
series anomaly criterion that estimates abnormality by com-
puting the distribution discrepancy between prior association
and series association. Specifically, prior association refers
to the inductive bias of adjacent concentration, which implies
that anomalies should primarily occur at adjacent time points
that are prone to having similar abnormal patterns. The series
association denotes that each time point can be characterized
by its associations with all the time points, presenting as a dis-
tribution of association weights along the time horizon. This
distribution offers an informative description of the temporal
context. To estimate two distributions, we devise the fluctua-
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tion attention function in the k-th block of the module as:

K,Q,V = W(k)H(k−1)
s

P(k) = Scale

([ 1√
2πσi

exp(−|j − i|2

2σ2
i

)
]
i,j∈{1,...,T+l}

)

S(k) = Softmax

(
QKT

√
d

)
O(k) = S(k)V

(8)

K,Q,V ∈ Rd×(T+l) corresponds to key, query, and value in
self-attention. H(k−1)

s is sales embeddings from block k − 1

and H
(0)
s denotes sales input Is. W(k) is a parameter matrix.

P(k) and S(k) denote the prior association distribution and
series association distribution, respectively. σi represents the
i-th value of the learnable variance parameter σ ∈ R(T+l)×1.
O(k) is the output of the function. Scale(·) refers to normal-
ization to transform the association weights to the discrete
distributions P(k). After the fluctuation attention function,
we reconstruct sales representations in the k-th block as:

H(k)
s = LayerNorm(O(k) + FFN(O(k))) (9)

where LayerNorm(·) denotes layer normalization and
FFN(·) represents feed-forward neural network. We adopt
KL divergence to measure association discrepancy as:

AssDis(P(k),S(k)) = KL(P(k)||S(k)) + KL(S(k)||P(k))
(10)

Previous work [Xu et al., 2021] shows that abnormal time
points will present smaller discrepancies than normal time
points, which makes the criterion inherently distinguishable.
In this study, we apply a multi-layer perceptron (MLP) to fur-
ther extract useful messages from discrepancies, making the
model pay more attention to time points that tend to have
irregular fluctuations during the pandemic. This fluctuation
knowledge can be computed in each layer k as:

Z
(k)
f = MLP(AssDis(P(k),S(k))) (11)

where Z(k)
f ∈ RT+l is the fluctuation instruction message. To

aggregate the hierarchy information in the deep neural net-
work, we concatenate the representations from each block as:

Zf = ||Kk=1Z
(k)
f (12)

where Zf ∈ RK×(T+l) is the aggregated representation of
fluctuation pattern and K is the number of stacked blocks.

3.4 Parallel Attention Stream Module
In this subsection, we design a parallel attention stream mod-
ule that consists of a pandemic attention stream (PAS) and a
business attention stream (BAS) to learn the latent relation-
ship between sales and two kinds of covariates, respectively.
To achieve this, we employ a two-stage attention mechanism
in both submodules. In the first stage, we apply sales repre-
sentations as queries to distill sales-related covariate knowl-
edge. Particularly, we use the multi-head attention strategy,

which allows the model to jointly learn from different latent
subspaces. For each type of covariate, this cross-attention
mechanism in the m-th layer can be formulated as:

Qs,h = W
(m)
s,h Is

Kc,h,Vc,h = W
(m)
c,h H(m−1)

c ,W
(m)
c,h H(m−1)

c

O(m)
c,h = Softmax(

Qs,hKT
c,h√

d/H
)Vc,h

O(m)
c = ||Hh=1O

(m)
c,h

(13)

where H
(m−1)
c denotes covariate representations output from

layer m− 1. W(m)
c,h ,W

(m)
s,h ∈ R(d/H)×d are learnable matri-

ces for covariate embeddings and sales embeddings, respec-
tively. H is the number of heads. After the cross-attention
function, we further stack a self-attention layer to learn con-
text dependency within the series of covariates as:

Kc,Qc,Vc = W(m)O(m)
c

Õ(m)
c = Softmax(

QsKT
s√

d
)Vc

H(m)
c = LayerNorm(Õ(m)

c + FFN(Õ(m)
c ))

(14)

where H
(m)
c is the reconstruction output of the covariates

from the m-th layer. Both streams have M identical blocks.

3.5 Rectification Decoder
In this module, we propose a rectification decoding strategy,
which injects the fluctuation knowledge learned from asso-
ciation discrepancy into decoded representations for predic-
tion. Specifically, the outputs from PAS, BAS, and FAM
are aggregated and then fed into a vanilla transformer de-
coder [Vaswani et al., 2017] for the decoding process:

Hagg = H(K)
s +H(M)

p +H
(M)
b

Hdec = Transformerdecoder(Hagg)
(15)

where Hdec ∈ Rd×(T+l). To reflect fluctuation patterns in
sales, we apply an MLP to learn scale factors called rectifi-
cation coefficients (Rcoef ) from Zf . Rcoef ∈ RT+l can be
viewed as unnormalized attention scores to reweigh the de-
coded embeddings Edec as:

Rcoef = MLP(Zf )

Hrec = Hdec ⊙ Rcoef
(16)

where Hrec ∈ Rd×(T+l) is the rectified output and ⊙ denotes
dot product operator. Finally, the rectified output will be for-
warded to a feed-forward network and predict future sales:

Ŷ = FFN(Hrec[T + 1 : T + l]) (17)

3.6 Optimization Strategy
In the training process, we take the mean square error as the
objective function to guide parameter learning:

L =
1

l

l∑
k=1

(yT+k − ŷT+k)
2 + λ||Θ||2 (18)
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Coffee Bean Croissant Hot Cups Cold Cups

ACC ↑ MAE ↓ RMSE ↓ ACC ↑ MAE ↓ RMSE ↓ ACC ↑ MAE ↓ RMSE ↓ ACC ↑ MAE ↓ RMSE ↓
ARIMA 53.17% 2.04 4.02 47.48% 3.02 5.71 50.15% 58.16 75.41 48.39% 62.73 90.71
Prophet 61.25% 1.49 2.21 53.08% 2.55 4.42 54.75% 40.43 59.87 58.19% 48.53 74.26
LSTNet 77.09% 0.77 1.51 59.98% 2.00 3.84 50.70% 51.02 74.57 69.25% 41.23 68.82

MQ-RNN 72.08% 0.83 1.20 60.55% 3.25 4.17 67.99% 33.30 51.64 69.56% 40.88 65.31
TCN 77.47% 0.99 1.32 72.28% 1.61 2.50 78.20% 23.17 35.04 74.70% 33.32 51.20

TrendSpotter 80.11% 0.88 1.24 73.07% 1.58 2.46 79.14% 22.73 33.45 75.48% 31.93 47.52
Informer 81.63% 0.84 1.20 69.65% 1.76 2.83 78.02% 22.82 38.50 75.82% 32.46 52.70

FEDformer 84.97% 0.64 1.03 71.18% 1.66 2.40 78.43% 22.39 33.50 76.45% 31.63 46.39
InParformer 83.75% 0.70 1.11 73.63% 1.45 2.22 79.09% 22.78 33.27 77.16% 30.65 43.41

PCAN 87.32% 0.59 1.01 76.51% 1.31 1.72 84.03% 19.38 27.38 81.22% 27.35 38.88

Table 1: The forecasting performance comparison between PCAN and state-of-the-art baselines. The best result is bold.

Product Category Unit

Coffee Bean raw material kg
Croissant food pcs
Hot Cups cups and lids pcs
Cold Cups cups and lids pcs

Table 2: The details of four products. pcs denotes unit pieces and kg
represents unit kilogram.

where ŷT+k is sales forecast value at the time point T + k,
and yT+k is the ground truth label in the corresponding po-
sition. λ is the regularization parameter to restrict the com-
plexity of the deep network. We use Adam [Bello et al., 2017]
optimizer, with the learning rate initialized to 10−4 and adap-
tively decreased during the optimization process. Our model
is implemented in PyTorch [Paszke et al., 2019] and trained
on an NVIDIA Tesla V100 32GB GPU.

4 Experiments
4.1 Experimental Setups
Dataset We conduct experiments on four real-world retail
food datasets from the SF Express intelligent supply chain
system, which serves a world-leading food retailer. The data
are collected from the retailer’s 898 offline stores in Shanghai
from 01/09/2019 to 01/05/2022. During this period, the city
is under the influence of the COVID-19 pandemic. The four
products including Coffee Bean, Croissant, Hot Cups, and
Cold Cups are among the top ten best-selling products for the
retailer. We present detailed information about products in
Table 2. The datasets also contain product attributes (e.g.,
product type and store location), pandemic features (e.g.,
daily number of infection cases), and business features (e.g.,
daily promotion type) provided by the retailer. We split the
data into the train set (01/09/2019-30/04/2021), the validation
set (01/05/2021-31/08/2021), and the test set (01/09/2021-
01/05/2022), respectively.

Baselines To validate the effectiveness of PCAN, We com-
pare it against the following baselines: (1) Statistical mod-
els: ARIMA [Box et al., 2015] and Prophet [Taylor and

Letham, 2018]. (2) RNN-based models: LSTNet [Lai et
al., 2018] and MQ-RNN [Gasthaus et al., 2019]. (3) CNN-
based models: TCN [Hewage et al., 2020] and TrendSpot-
ter [Ryali et al., 2023]. (4) Transformer-based models: In-
former [Zhou et al., 2021a], FEDformer [Zhou et al., 2022],
and InParformer [Cao et al., 2023].

Implementation details We set the length of historical ob-
servation T to 30 days (a month) and the prediction window
l to 7 days. The dimension of feature embedding d is set to
512. We choose 8 as the number of heads in the multi-head at-
tention mechanism. The numbers of stacked attention blocks
in the parallel attention stream module, fluctuation attention
module, and rectification decoder are all set to 6 in implemen-
tation. During training, the maximum epoch is set to 5, with
a batch size of 128. We adopt batch normalization [Ioffe and
Szegedy, 2015] with epsilon 0.01. we have released the code
in https://github.com/Coco-Hut/PCAN

Evaluation metrics. We employ Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE), which are two
common time series forecasting metrics [Zhou et al., 2021b].
Moreover, we use a metric utilized in the SF supply chain
system called Accuracy (ACC). This metric is formulated as:

ACC = 1− wMAPE = 1−
∑n

i=1 |yt − ŷt|∑n
i=1 yt

(19)

where n is the prediction horizon, yt and ŷt are target and
forecast sales at time step t, respectively. wMAPE refers to
the Weighted Mean Absolute Percentage Error.

4.2 Performance Comparison
The overall results of different approaches are summarized in
Table 1. Obviously, PCAN consistently outperforms all the
baselines in all metrics across four product datasets, which
validates its effectiveness for sales forecasting during the pan-
demic. ARIMA and Prophet perform poorly. This is be-
cause their predictions are constrained to be linear functions
of past observation, and they fail to leverage multiple pan-
demic features. The RNN-based models (LSTNet and MQ-
RNN) and CNN-based models (TCN and TrendSpotter) yield
a significant improvement over these two statistical models.
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Figure 2: A case study of irregular fluctuation patterns in sales series. We report the real average sales of Croissant and prediction results
from PCAN and online model LightGBM during the period of the COVID-19 pandemic in Shanghai (09/2021-03/2022).

Model ACC ↑ MAE ↓ RMSE ↓
PCAN w/o SA 85.31% 0.63 1.07
PCAN w/o PAS 82.69% 0.74 1.20
PCAN w/o BAS 82.42% 0.75 1.17
PCAN w/o FAM 81.85% 0.77 1.28
PCAN w/o Rec 83.48% 0.71 1.18

PCAN 87.32% 0.59 1.01

Table 3: Ablation Analysis. PCAN w/o SA and PCAN w/o SA re-
move the series augmentation strategy and rectification mechanism,
respectively. PCAN w/o PAS and PCAN w/o BAS remove the cross-
attention mechanism in two streams, respectively. PCAN w/o FAM
replaces fluctuation attention with vanilla self-attention.

This strongly demonstrates the necessity of deep models for
sales forecasting and shows the effectiveness of deep sequen-
tial networks in extracting temporal patterns from input data.
Among all baselines, transformer-based approaches (i.e., In-
former, FEDformer, and InParformer) prove to be the most
competitive. This is because the attention mechanism can ef-
fectively learn latent relationships between complex covari-
ates and target sales and capture long-term patterns without
decay. Notably, compared to InParformer, the state-of-the-art
attention-based method, PCAN consistently achieves an im-
provement of over 2.8% in terms of ACC on four product
datasets. Moreover, our model yields 9.0% (1.11 → 1.01)
RMSE reduction in Coffee Bean, 22.5% (2.22 → 1.72) in
Croissant, 17.7% (33.27 → 27.38) in Hot Cups and 10.4%
(43.41 → 38.88) in Cold Cups. We attribute these significant
and stable improvements to our specific designs. Through
the parallel attention module, we can adaptively learn rep-
resentations of sales-related pandemic features and business
features. With fluctuation attention and rectification mecha-
nisms, PCAN can effectively detect potential irregular fluctu-
ations in the time series and make more accurate predictions.

4.3 Ablation Analysis
In this subsection, we verify the effectiveness of modules and
techniques designed in our framework through an ablation
analysis. We conduct this experiment on the Coffee Bean
dataset. The experimental results are presented in Table 3.
We observe that PCAN outperforms all variants across 3 met-
rics, demonstrating the effectiveness of each module (tech-
nique). PCAN w/o SA suffers a drop of 2.01% in ACC com-
pared to PCAN. This proves that augmented multi-value sales
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Figure 3: A case study of the influence of the pandemic on retail
sales. Cases denotes the number of new COVID-19 cases each day.

input can better represent trends in sales series. We also find a
significant performance degradation when replacing the PAS
or BAS with vanilla self-attention blocks. For instance, PAS
brings about a 4.6% improvement in ACC and a decrease of
about 0.15 in MAE. This highlights the effectiveness of our
cross-attention mechanism, which utilizes sale embeddings
as queries to learn sales-related covariate knowledge. Addi-
tionally, we find that PCAN w/o FAM performs poorly among
several variants. The full model outperforms it by an ACC
difference of 5.47%. This indicates that it is crucial to learn
contextual dependency in sales series with multi-layer atten-
tion blocks. Furthermore, the fluctuation knowledge learned
from the association discrepancy can also enhance model per-
formance. To further evaluate the rectification process, we
remove the Rcoef and the scaling operation. This results in a
drop of 3.84% in ACC and a 0.17 higher RMSE value. This
observation further validates the effectiveness of our Rcoef in
capturing fluctuations in sales series.

4.4 Case Study
To analyze the performance of PCAN more intuitively, we
conduct an empirical case study in this subsection. We com-
pare our method with the online model (i.e. LightGBM [Ke
et al., 2017]) deployed in the SF Express international sup-
ply chain system to further illustrate its effectiveness in the
real-world industry environment.

Case #1. In the first case, we consider all food retail stores
in Shanghai from 09/2021 to 03/2022. Figure 2 shows the tar-
get average sale of Croissant in these stores and the predicted
results of PCAN and the online model. We find that prod-
uct sales fluctuate frequently and sharply under the impact of
the pandemic. The online model fails to capture the irregular
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Figure 4: Performance comparison of PCAN and the online model
when Shanghai is under lockdown due to the pandemic.

fluctuation of sales and even shows the opposite trend from
the ground truth when sales fluctuate intensely. In contrast,
our PCAN reacts to abnormal fluctuations quickly and out-
puts accurate prediction results for a long period of time.
Case #2. In the second case, we select an offline retail store
and present how the pandemic information influences product
sales. We choose Croissant as the target product. In Figure 3,
we plot ground truth sales, predicted sales of two models,
and the daily number of new COVID-19 cases in the area
around the store from 20/09/2022 to 30/09/2022. We find
that when new cases increased sharply on September 24th,
2022, the sale of the product saw a drastic downward trend
the next day. When new cases remained at a low level, the
sales started to recover. The above observation indicates that
the epidemic information has a significant impact on product
sales. Moreover, we note that PCAN accurately predicts this
sudden decline in sales and the subsequent recovery trend.
The prediction of PCAN nearly matches the real sales during
this period, while the results from the current online model
show an apparent gap between target sales.
Case #3. In the third case, we compare the prediction re-
sults of PCAN and the online model in April 2022, during
which Shanghai was under lockdown due to the COVID-19
pandemic. We consider all offline shops in Shanghai and re-
port the average ACC of two models on four products. As
shown in Figure 4, our model significantly outperforms the
online model in terms of ACC. PCAN enhances the accuracy
of Coffee Bean prediction from 83.92% to 86.13%. The per-
formance improvements are more considerable in Croissant,
which increases from 67.47% to 75.91%. Furthermore, our
model demonstrates much better predictive capability for Hot
Cups and Cold Cups. PCAN can achieve an ACC of over
80% on these two products, while the existing online model
LightGBM can only achieve an ACC of no more than 70%.
This case strongly validates the superior performance of our
proposed method in the context of the pandemic.

5 Related Work
5.1 Statistical Time Series Forecasting
Time-series forecasting is an active research area that covers
various fields such as e-commerce [Yu et al., 2023], trans-
portation, and climate [Zhang et al., 2021]. Statistical mod-
els have been the most classic solutions for this problem.

ARIMA [Box et al., 2015] takes different ideas from au-
toregression (AR), moving averages (MA), and differencing
(I) and combines them to find patterns and trends in tem-
poral data. Prophet [Taylor and Letham, 2018] is a pow-
erful time series forecasting framework based on an addi-
tive model that fits trends, seasonal effects, and holiday ef-
fects. Although these methods are widely utilized in real-
world applications [Nigam and Shukla, 2021; Li et al., 2024a;
Wang et al., 2024], most of them suffer from the strong ap-
proximation of linearity [Cui et al., 2021]. Besides, they fail
to consider product features and other covariates, which are
crucial for accurate sales prediction.

5.2 Learning-based Time Series Forecasting
In recent years, machine learning models have emerged as
powerful tools in time series forecasting due to their flexible
nonlinear modeling capacity [Masini et al., 2023]. Among
them, boosting regression trees such as XGBoost [Chen and
Guestrin, 2016] and LightGBM [Ke et al., 2017] are widely
used in industry for product sales prediction [Liang et al.,
2019]. However, these methods require handcrafted features,
which can be labor-intensive. Recurrent neural networks
(RNNs) such as GRU and LSTM can automatically capture
temporal information in sequence data, which makes them
suitable for time series prediction [Zhang et al., 2021]. LST-
Net [Lai et al., 2018] designs a novel Reccurent-skip module
to capture long-term dependence patterns and make the opti-
mization easier. MQ-RNN [Gasthaus et al., 2019] combines
quantile regression with LSTM and achieves great success in
the Amazon e-commerce platform [Yu et al., 2024]. Lately,
transformer-based models have been applied to time series
prediction due to their outstanding sequential modeling ca-
pacity. Informer [Zhou et al., 2021a] devises a sparse self-
attention mechanism to support the long sequence forecast-
ing task. FEDformer [Zhou et al., 2022] introduces the sea-
sonal trend decomposition method into the transformer to bet-
ter capture the global view of time series. [Cao et al., 2023]
proposes interactive parallel attention to learn long-range de-
pendencies in both frequency and time domains, achieving
superior performance. However, the above models cannot ef-
fectively capture complex sales patterns during the pandemic.

6 Conclusion
In this work, we introduce PCAN, a pandemic-compatible at-
tentive network for retail sales forecasting. To achieve this,
we propose a fluctuation attention module based on associa-
tion discrepancy in sales series to capture irregular fluctuation
trends. Additionally, we develop a parallel attention mod-
ule that learns intricate temporal relationships between two
types of covariates and target sales series in a decoupled man-
ner. Furthermore, we devise a rectification decoding strategy,
which predicts the volatility of sales with fluctuation patterns
and heterogeneous information learned from the aforemen-
tioned modules. We conduct extensive experiments on four
real-world food datasets from the SF Express supply chain
system. The results demonstrate the superior performance
of PCAN compared to state-of-the-art baselines. The model
has been deployed as a fundamental component in the supply
chain system to serve a world-leading food retailer.
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