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Abstract
Current 3D Multimodal Large Language Models
(3D MLLMs) leverage explicit 3D input, e.g., point
clouds, to understand the 3D world and enable spa-
tial reasoning. These explicit 3D data are usually
obtained through reconstruction or additional depth
sensors, affecting the model’s scalability and de-
ployment. In this work, we take a different stance
and introduce Vi3D-LLaMA, a powerful MLLM
operating without point cloud or depth data. Par-
ticularly, the proposed Vi3D-LLaMA directly per-
forms 3D spatial reasoning with RGB video se-
quences. The core idea of this work is to empower
the video MLLM with the capability of 3D under-
standing from two aspects: (1) 3D-Aware Geomet-
ric Encoding: Camera parameters and a frustum-
based 3D position encoder are used to transform
video representations into 3D-aware tokens, en-
abling implicit modeling of 3D structures with
RGB frames. (2) Fine-Grained Semantic Enhance-
ment: High-resolution (HR) images are progres-
sively incorporated into the video representation
through a lightweight HR adapter, facilitating video
tokens with semantic details. We conduct extensive
experiments and demonstrate that Vi3D-LLaMA,
using only RGB data, can achieve comparable re-
sults with state-of-the-art 3D-MLLM-based meth-
ods. Additionally, we benchmark our method on
the new VSI-Bench, showing consistent improve-
ment over the video MLLM baseline.

1 Introduction
Recent advances in large language models (LLMs) [Achiam
et al., 2023; Touvron et al., 2023] have established the
paradigm of levering language as a universal interface for
building versatile intelligent assistants. This milestone has
paved the way for the emergence of Multimodal LLMs
(MLLMs), which extend these capabilities to tackle a wide
range of multi-modal tasks. While substantial progress has
been achieved in 2D MLLMs [Liu et al., 2023; Alayrac et

*Corresponding Author: Jiajun Deng and Yanyong Zhang.

3D representation

LLMVision 
encoder

2D MLLM

···

RGB-D Video Sequence 

(a) Previous reconstruction-then-understanding paradigm

(b) Our new paradigm to understand 3D space directly from videos

Recon.

Depth

RGB Video Sequence 

···

LLM

3D MLLM

Geometric video information: camera parameter

Semantic video information: high-resolution image

Text Query

Answer

Text Query

Answer

Figure 1: An illustration of the comparison between (a) previ-
ous reconstruction-then-understanding paradigm and (b) our new
paradigm to understand 3D space directly from videos. Given
an RGB video sequence and a text query, Vi3D-LLaMA proposes
a novel paradigm for 3D scene understanding by injecting both
geometry-aware and semantic video information into a 2D multi-
modal large language model (MLLM).

al., 2022; Li et al., 2023], 3D scene understanding remains
a critical frontier. Developing 3D MLLMs is essential for
enabling systems to perceive and reason about the physical
world in three dimensions, a capability crucial for applica-
tions such as autonomous driving [Ding et al., 2024] and in-
telligent robotics [Li et al., 2024].

Current 3D MLLMs [Hong et al., 2023; Chen et al., 2024b;
Zhu et al., 2024a; Deng et al., 2025] commonly rely on
3D geometric information, presented as point cloud or depth
data, to comprehend the 3D world and perform spatial rea-
soning. This paradigm, referred to as “reconstruction-then-
understanding” in Figure 1 (a), requires an additional depth
sensor or reconstruction preprocessing to obtain explicit 3D
data, which affects both the model’s scalability and deploy-
ment. On the other hand, due to the abundance of image and
video data on the Internet, MLLMs with RGB data have made
significant advances [Zhang et al., 2023; Liu et al., 2023;
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Cheng et al., 2024], resulting in a variety of powerful open-
source RGB-based MLLMs. However, these well-trained
models cannot directly operate on the point cloud data and
RGB-D images, so the previous 3D MLLM paradigm cannot
take advantage of internet-scale pre-trained MLLMs [Yang et
al., 2023; Wang et al., 2024]. These two facts motivate us to
explore an alternative way to design 3D MLLMs.

Particularly, in this work, we take a different stance on di-
rectly understanding 3D scenes with video sequences with-
out 3D reconstruction and explicit depth information, as in-
spired by human beings are able to imagine the 3D space
when watching videos. However, it is non-trivial to ap-
ply video MLLMs [Zhang et al., 2023; Cheng et al., 2024;
Maaz et al., 2024] for 3D understanding, especially for the
following two challenges: (1) Inadequate 3D geometric in-
formation. Although the 3D structure can be reconstructed
from video sequences [Schonberger and Frahm, 2016], the
video MLLMs are not optimized to recover the 3D geo-
metric information, but to capture the temporal coherence.
The concurrent work, such as Video 3D-LLM [Zheng et al.,
2024], alleviates this issue by additionally involving depth
input, leaving the method still relying on the extra depth sen-
sor. (2) Resolution gap. Video MLLMs typically operate
on low-resolution video frames (e.g., 224 × 224) to under-
stand actions [Ding et al., 2024]. However, it is supposed
that the frames have higher resolutions to keep semantic de-
tails for spatial modeling, especially for the small objects in
the 3D environment. Simply increasing the input resolution
can better preserve spatial information, but it significantly
raises computational costs, which is not appreciated consider-
ing that the LLM already costs a large computation overhead.

To address the challenges, we introduce Vi3D-LLaMA,
a novel MLLM that performs 3D scene understanding and
spatial reasoning by intelligently extracting and utilizing the
geometric and semantic knowledge embedded in video se-
quences (Figure 1 (b)). In contrast to prior approaches rely-
ing on cumbersome 3D data manipulation techniques [Hong
et al., 2023; Chen et al., 2024b; Deng et al., 2025; Huang
et al., 2023], Vi3D-LLaMA bridges 2D video understanding
and 3D scene comprehension by transforming 2D visual to-
kens into 3D-aware representations, therefore harnessing the
powerful capabilities of existing 2D MLLM.

Specifically, we propose a frame-wise 3D spatial tokenizer
that generates structured scene description tokens from video
input, which are optimized by integrating geometry-aware
spatial modeling with fine-grained semantic feature enrich-
ment, enabling the frozen large language model to achieve
holistic 3D spatial understanding. The spatial modeling com-
ponent establishes 3D geometric understanding through cam-
era parameter-guided projection and frustum-based positional
encoding, enabling precise spatial awareness without explicit
depth estimation. Building upon this spatial representation,
we strategically incorporate high-resolution visual features
through an efficient HR adapter. The module selectively
incorporates fine-grained HR features from pre-trained net-
works into transformer blocks, achieving detailed visual rep-
resentation while maintaining computational efficiency. This
dual-focus design allows our tokenizer to capture both accu-
rate spatial structure and rich semantic details.

We conduct extensive experiments on ScanQA [Azuma et
al., 2022], SQA3D [Ma et al., 2023], Scan2Cap [Chen et al.,
2021] and Nr3D [Achlioptas et al., 2020] datasets to validate
the capacities of Vi3D-LLaMA in understanding complex
and diverse 3D environments. Vi3D-LLaMA achieves com-
parable performance with the state-of-the-art 3D MLLMs
with point clouds or depth information. Notably, our method
shows emerging spatial reasoning capability through zero-
shot evaluation on the newly published visual-spatial intel-
ligence benchmark (VSI-Bench) [Yang et al., 2024].

In summary, we make three-fold contributions:
• We pioneer the design of Vi3D-LLaMA, a novel MLLM

that directly leverages information embedded in video
sequences to address a wide range of language-involved
3D understanding tasks.

• We develop a frame-wise 3D spatial tokenizer that pro-
duces structured scene-descriptive tokens optimized for
the frozen LLM, by fusing geometry-aware spatial mod-
eling with fine-grained semantic feature enrichment.

• Vi3D-LLaMA demonstrates superior performance
across a range of tasks, outperforming existing
methodologies in experiments involving the 3D Dense
Captioning, 3D Question Answering and VSI tasks.

2 Related Work
2.1 3D Scene-language Understanding
3D Scene-Language Understanding has emerged as a crucial
research direction, aiming to enable models to understand
and reason about complex 3D environments through natural
language instructions. Early approaches to 3D scene under-
standing leveraged explicit 3D data, such as point clouds, and
combined them with large language models (LLMs) to in-
terpret and act on spatial information [Huang et al., 2023;
Deng et al., 2025; Chen et al., 2024b]. One notable exam-
ple is LL3DA [Chen et al., 2024b], which directly extracts
features from the 3D point cloud scene and can handle both
visual prompts and textual instructions, offering diverse in-
teraction capabilities in 3D environments. Meanwhile, some
works have explored RGB-D based solutions, which use both
RGB images and depth data to extract 3D spatial representa-
tions. For example, LLaVA-3D [Zhu et al., 2024a] leverages
3D patches to enhance the spatial understanding of the 2D vi-
sual features by using additional depth data, bridging the gap
between 2D features and 3D space. This approach allows the
model to handle 3D reasoning tasks while maintaining the 2D
image-based capabilities for semantic understanding. Despite
their success, these 3D and RGB-D-based methods still face
challenges regarding scalability and data accessibility. Depth
sensors and 3D reconstruction often require specialized hard-
ware and can be costly and time-consuming to generate. To
address these issues, we directly converts video representa-
tions into 3D-aware representations, eliminating the need for
explicit 3D representation.

2.2 Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) [Liu et al.,
2023; Zhu et al., 2024b; Chen et al., 2024a]have gained sig-
nificant attention for their ability to process and understand
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Figure 2: Overview of the proposed approach. (a) The overall pipeline of our Vi3D-LLaMA, with video as input, begins with a frame-wise
3D spatial tokenizer that transforms video frame representations into 3D-aware tokens by leveraging off-the-shelf visual knowledge. These
3D-aware tokens are then processed by a Video Q-Former, which aggregates them into fixed-length 3D-aware video embeddings. Finally,
these video embeddings are projected as a prefix to textual instructions and fed into a frozen large language model (LLM) for downstream
tasks. (b) The detailed design of the frame-wise 3D spatial tokenizer. The video frames are input into a Vision Transformer (ViT) to extract
2D visual tokens, enhanced with fine-grained HR features via an HR-adapter. A frame-wise Q-Former and position embedding are applied
to obtain frame tokens. he discretized 3D meshgrid within the frustum space is transformed into 3D coordinates using camera parameters.
These 3D coordinates, along with the 2D visual features, are passed through a 3D position encoder to generate 3D-aware features. The frame
tokens, treated as queries, are updated through interaction with the 3D-aware features and output as 3D-aware tokens.

both text and visual inputs, allowing models to perform a
wide range of tasks such as image captioning, visual ques-
tion answering, and even multimodal dialogues. Building on
the success of LLMs like GPT series [Achiam et al., 2023],
LLaMA [Touvron et al., 2023] and etc. The integration
of temporal information has prompted the development of
video-based MLLMs [Zhang et al., 2023; Maaz et al., 2024;
Cheng et al., 2024; Lin et al., 2024], which extend the capa-
bilities of traditional MLLMs to handle video inputs. Video-
LLaMA [Zhang et al., 2023] is a notable example, which ex-
tends the LLaMA architecture to process video sequences and
perform video-based tasks. By leveraging large-scale video-
text datasets, these models enable tasks such as video caption-
ing and action recognition. However, despite their success,
these models still face limitations when it comes to under-
standing the 3D structure of scenes, as they rely on 2D rep-
resentations without leveraging the spatial depth inherent in
3D environments. To address these limitations, we propose
a novel approach that aims to directly convert video repre-
sentations into 3D-aware representations, allowing us to bet-
ter leverage pre-trained RGB-based foundation models. This
approach eliminates the need for depth or point cloud infor-
mation, enabling MLLMs to reason about and understand 3D
scenes more effectively through the use of video inputs alone.

3 Method
This section introduces Vi3D-LLaMA, a method for learning
3D-aware and semantically enriched video representations
from video inputs, which empowers MLLM with reasoning
and understanding capabilities in 3D space. In this section,
we begin with an overview of the Vi3D-LLaMA architec-

ture (Section 3.1) and delve into the details of its core com-
ponent—the frame-wise 3D spatial tokenizer (Section 3.2).
Then, in Section 3.3, we elaborate on the details of each mod-
ule in our Vi3D-LLaMA pipeline (Section 3.3).

3.1 Overall Framework

As shown in Figure 2 (a), the pipeline of our Vi3D-LLaMA
begins with a frame-wise 3D spatial tokenizer, which converts
each RGB frame into 3D-aware tokens by modeling the 3D
geometric prior and incorporating the semantic details. These
tokens are then processed by a Video Q-Former. The Video
Q-Former aggregates frame-wise 3D-aware tokens into fixed-
number feature embeddings. After that, the produced em-
beddings are projected as a prefix to textual instructions and
input into a frozen LLM to perform downstream tasks. The
key component, the frame-wise 3D spatial tokenizer (Figure
2 (b)), operates in several stages. First, video frames are
encoded into 2D visual tokens using a Vision Transformer
(ViT). These tokens are further enhanced into fine-grained,
high-resolution (HR) features through an HR-adapter. Frame-
wise Q-Former and position embeddings are then applied to
generate frame tokens. Simultaneously, the shared frustum
space across views is discretized into a 3D meshgrid, and its
coordinates are transformed into 3D world space via camera
parameters. The 2D visual features (reshaped from the frame
tokens) and the transformed 3D coordinates are processed
by a 3D position encoder to produce 3D position-aware fea-
tures. Finally, the frame tokens, acting as queries, interact
with these 3D position-aware features via a 3D-aware token
transformer, producing the final 3D-aware tokens.
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Figure 3: The HR-adapter between the transformer blocks in ViT.
The feature Vk from the k-th transformer and the HR features FRes
extracted from HR frames using a pre-trained HR feature extractor
(ResNet-101) are processed by the HR adapter. The adapter outputs
V̂k, which is then passed to the (k + 1)-th transformer.

3.2 Frame-wise 3D Spatial Tokenizer
In this section, we detail the design of the core component,
i.e., Frame-wise 3D Spatial Tokenzier, in our Vi3D-LLaMA.
This special tokenizer includes five components: a 3D Co-
ordinates Generator, a Frustum-based 3D Position Encoder,
a 3D-Aware Token Transformer, a ViT with an HR-Adapter,
and a Frame-wise Q-Former.
3D coordinates generator. To establish the correspondence
between 2D image views and 3D space, we start by discretiz-
ing the view frustum space into a meshgrid with dimensions
(W,H,D), inspired by [Liu et al., 2022; Hu et al., 2019].
This meshgrid serves as a shared sampling space across mul-
tiple views, each point in the frustum space is defined as:

fmj = (uj · dj , vj · dj , dj , 1)T , (1)

where (uj , vj) represents the pixel coordinates in the image
plane, and dj indicates the depth along the axis orthogonal to
the image plane. We can then project each frustum point fmj
of i-th view into 3D space as follows via the transformation
matrix Ki ∈ R4×4:

Ki = C⊤
i · Cp, (2)

P3d = {p3di,j | p3di,j = Ki · fmj }, (3)

where C⊤
i denotes the known transpose of the camera intrin-

sics, Cp denotes the camera poses. This process establishes
a one-to-one correspondence between the 2D image data and
the 3D spatial coordinates, enabling accurate representation
in the 3D perception coordinate system.
Frustum-based 3D position encoder. The purpose of the 3D
position encoder is to obtain 3D-aware features F3d, by asso-
ciating 2D visual features F2d with 3D position information
P3d. The process can be summarized as follows:

F3d = F2d ⋄ ψ(P3d), (4)

The 2D features F2d ∈ RT×W×H×D are obtained by re-
shaping the output tokens of the ViT. Specifically, given the
2D features F2d and 3D coordinates P3d, the P3d is first
fed into a multi-layer perception (MLP) network ψ(·) and
transformed to the 3D position embedding (PE) via PE3d =
ψ(P3d). The 3D PE PE3d is added with 2D features to ob-
tain the key value for the following transformer decoder. The
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Projector

Align

Figure 4: Illustration of the detailed architecture for patch feature
enhancer in (a) and cls feature enhancer in (b).

flattened 2D features are used as the value component for the
transformer decoder.
3D-aware token transformer. The 3D-aware token trans-
former is designed to convert frame representations into 3D-
aware video tokens. In this process, frame tokens generated
from the frame-based branch are treated as object queries. At
each decoder layer, these object queries interact with the 3D
position-aware features through a multi-head attention mech-
anism and a feed-forward network. Formally, the transforma-
tion at the l-th layer can be expressed as:

Ql+1 = MHA(Ql,F3d,F2d) +Ql, (5)

Ql+1 = FFN(Ql+1) +Ql+1, (6)

where Ql represents the object queries at the l-th layer,
F3d denotes the 3D position-aware features, MHA(·) refers
to the multi-head attention mechanism, and FFN(·) is the
feed-forward network. This process is iteratively performed
across the N transformer layers, allowing the frame tokens
to fuse effectively with the 3D position-aware features. The
final output is the frame-wise token that encompasses both
geometric and semantic information.
ViT with HR-adapter. Given a video with L frames, each
frame is processed by the ViT to produce visual features
at the k-th transformer layer, denoted as Vk = {vki }Li=1,
where vki ∈ RNv×Cv . Here, Nv is the patch number and
Cv is the dimension. To address the semantic ambiguity in-
herent in low-resolution visual features in MLLM’s input,
we enhance the video representations by incorporating high-
resolution (HR) features extracted from the raw video frames
using an HR-adapter module. As shown in Figure 3, for the k-
th transformer block, we first split visual tokens Vk into V k

cls

and V k
patch, which are then fed into the HR adapter module

for separate processing. This module consists of two com-
ponents: the PatchFeatureEnhancer for refining spatial de-
tails in patch tokens and the ClsFeatureEnhancer for enrich-
ing the global semantics of the cls token. Specifically, ViT
patch features V k

patch are reshaped into (HViT,WViT), where
Nv = HViT × WViT. The HR feature maps FRes, extracted
from T frames by pre-trained ResNet-101 [He et al., 2015],
are adjusted via bilinear interpolation to match the spatial di-
mensions. After that, we apply the projection on FRes to align
the channel dimensions, shown in Figure 4 (a). The resized
HR features are fused with V k

patch to enhance spatial details.
The above process is summarized as follows:

V̂ k
patch = V k

patch + Projector(Alignment(FRes)). (7)
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Here, Alignment denotes bilinear interpolation, Projector
aligns dimensions using 1 × 1 Conv2D, and V̂ k

patch denotes
the enhanced patch tokens. For the cls token in Figure 4
(b), global semantic information is extracted from FRes using
global pooling, linearly projected to the same dimensionality
as the ViT cls token, and fused with V k

cls :

V̂ k
cls = V k

cls + MLP(GlobalPool(FRes)). (8)

Here, GlobalPool extracts global features, MLP maps the
global features to V k

patch’s dimension, and V̂ k
cls represents the

enhanced cls token.
Frame-wise Q-Former. For the T frames of vision tokens
output by the ViT with HR-adapter, a Frame-wise Q-Former
is utilized to aggregate vision tokens from each individual
image frame. Temporal information is subsequently injected
into the aggregated tokens across different frames to capture
cross-frame dependencies. Finally, frame-level representa-
tions, referred to as frame tokens, are obtained. These frame
tokens are then fed into the 3D-aware Token Transformer to
generate the final 3D-aware frame tokens.

3.3 Details in Pipeline
Video Q-Former. The Video Q-Former, sharing the same ar-
chitecture as the Q-Former in BLIP-2 [Li et al., 2023], takes
3D-aware tokens generated by a frame-wise 3D spatial to-
kenizer as input. By introducing a fixed number of learn-
able query vectors (learnable queries) to extract key informa-
tion from the frame features, it ultimately produces 3D-aware
video embeddings. This module empowers the model to cap-
ture both spatial and semantic features across frames.
Linear and RoI projection. After obtaining the video
embeddings, we apply projection layers to project the
output video embeddings and the visual prompt into the
same dimension as the text embeddings of LLMs, respec-
tively. For the dense captioning task, we leverage pretrained
Mask3D [Schult et al., 2023] to extract the corresponding Re-
gion of Interest (ROI) features from the video frames. These
ROI features provide the model with a focused view of the
objects that need to be described, acting as a visual prompt.
The visual prompt helps identify the specific object or region
of interest within the video that requires captioning.
Large Language Model (LLM). Given the visual tokens, we
leverage captions of multiple tasks to fine-tune the pre-trained
video LLM to understand the 3D world space. The input to
the LLM is the concatenated muli-modal tokens including vi-
sual RoI tokens and the text embeddings, tokenized from text
prompts.Then, the pre-trained LLM receives the muli-modal
tokens to generate language in an auto-regressive way.

4 Experiments
4.1 Datasets and Metrics
Datasets. We train our Vi3D-LLaMA on the video frames
provided by the training set of ScanNet [Dai et al., 2017],
which includes 1,201 and 312 diverse and complex indoor
3D scenes for training and validation. The language annota-
tions used in this study are sourced from Scan2Cap [Chen et
al., 2021], Nr3D [Achlioptas et al., 2020], ScanQA [Azuma

et al., 2022], SQA3D [Ma et al., 2023], and the ScanNet
subset of 3D-LLM. This combination covers a variety of
tasks, including instance and scene descriptions, conversa-
tions and question answering. We also evaluate our approach
on a novel video-based visual-spatial intelligence benchmark
(VSI-Bench) [Yang et al., 2024], consisting of over 5,000
question-answer pairs, to validate the method’s spatial intel-
ligence. Note that we only utilize the Scannetv2 subset of
VSI-Bench for zero-shot evaluation.
Metrics. We adopt CiDEr (C), BLEU-4 (B-4), METEOR
(M), and Rouge-L (R) to evaluate the quality of the gener-
ated text response on ScanQA [Azuma et al., 2022]. Dif-
ferent from the setting of ScanQA, there is a definite answer
to situated question answering dataset SQA3D, therefore we
leverage extract match accuracy (EM) as well as the refined
version (EM-R) as the metric. For 3D Dense Captioning, we
use them@kIoU metric. Here,m ∈ (C, B-4, M, R), and the m
score of a caption is set to 0 if the IoU between the predicted
box and the object is less than the given threshold k. For
VSI-Bench, we use accuracy (ACC), based on exact match-
ing (with possible fuzzy matching), as the primary metric.

4.2 Implementation Details
We develop our Vi3D-LLaMA on Video-LLaMA-7B [Zhang
et al., 2023] and finetune the model with task-specific data.
Our proposed method is implemented in PyTorch trained us-
ing a single machine with 8 NVIDIA A100 GPUs. The input
video frames are resized and cropped to the spatial size of
224 × 224 for MLLM input and 640 × 480 for HR adapter
input. We uniformly sample T = 16 frames from the en-
tire video. We sample 16 points along the depth axis fol-
lowing the linear-increasing discretization (LID) [Reading et
al., 2021]. We set the region to [-5.0m, 5.0m] for the X and
Y axis, and [0m, 3.0m] for Z axis. The 3D coordinates in
3D world space are normalized to [0, 1]. We initialized the
MLLM with their official pretrained weights, freezing these
weights during training and only training the parameters of
ST-Adapters and our additional modules (3D position en-
coder, 3D token transformer, and HR-adapater module). The
3D token transformer contains N = 6 layers. We use AdamW
[Loshchilov and Hutter, 2019] as the optimizer and cosine an-
nealing scheduler [Loshchilov and Hutter, 2016] as the learn-
ing rate scheduler with an initial learning rate of 1e-4. We
train all models in a total of 20 epochs.

4.3 Comparison with SoTA Models
We compare the proposed Vi3D-LLaMA with other models
and present the results in Table 1. The models compared in
this table are divided into three groups: specialist models,
generalist models with 3D input, and generalist models with-
out 3D input. The specialist model is designed to address a
single kind of task. All of the specialist models in this ta-
ble are without LLMs. Generalist models with 3D input are
trained to perform multiple language-related 3D tasks based
on 3D representations. The last kind, generalist models with-
out 3D input, these models take RGB inputs and leverage ex-
isting LLMs or MLLMs for further training and adaptation.
3D Question Answering is the task that asks the model to
observe the visual information of the 3D scene and give a
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ScanQA (val) SQA3D (test) Scan2Cap (val) Nr3D (val)
Method Modality C↑ B-4↑ M↑ R↑ EM↑ EM-R↑ C@0.5↑ B-4@0.5↑ M@0.5↑ R@0.5↑ C@0.5↑ B-4@0.5↑ M@0.5↑ R@0.5↑
Specialist Models:
ScanQA[Azuma et al., 2022] PC 64.9 10.1 13.1 33.3 46.6 - - - - -
3D-VLP[Jin et al., 2023] PC 67.0 11.2 13.5 34.5 - - 54.9 32.3 24.8 51.5 - - - -
3D-VisTA[Zhu et al., 2023] PC 69.6 10.4 13.9 45.7 48.5 - 61.6 34.1 26.8 55.0 - - - -
Scan2Cap[Chen et al., 2021] PC - - - - 41.0 - 39.1 23.3 22.0 44.8 27.5 17.2 21.8 49.1
Vote2Cap-DETR [Chen et al., 2023] PC - - - - - - 61.8 34.5 26.2 54.4 43.8 26.7 25.4 54.4
Generalist Models with 3D Input:
Grounded 3D-LLM [Chen et al., 2024c] PC 72.7 13.4 - - - - 70.6 35.5 - - - - - -
LL3DA∗ [Chen et al., 2024b] PC 76.8 13.5 15.9 37.3 - - 65.2 36.8 26.0 55.1 51.2 28.8 25.9 56.6
3D-LLM[Hong et al., 2023] PC+RGB 69.4 12.0 14.5 35.7 - - - - - - - - - -
Scene-LLM [Fu et al., 2024]∗ PC+RGB 80.0 12.0 16.8 40.0 54.2 - - - - - - - - -
LEO [Huang et al., 2024] PC+RGB 101.4 13.2 20.0 49.2 50.0 52.4 72.4 38.2 27.9 58.1 - - - -
Video-3D LLM (MC) [Zheng et al., 2024] RGB+Depth 100.5 - 29.5 - 57.7 - 80.0 40.2 - - - - - -
LLaVA-3D [Zhu et al., 2024a] RGB+Depth 91.7 14.5 20.7 50.1 55.6 - 79.2 41.1 30.2 63.4 - - - -
Generalist Models w/o 3D Input:
Uni3DR2-LLM [Chu et al., 2024] RGB 70.3 12.2 14.9 36.3 - - - - - - - - - -
Vi3D-LLaMA (ours) RGB 81.1 14.7 20.3 48.1 55.0 55.9 71.4 39.3 31.6 56.2 50.2 29.9 29.8 59.5

Table 1: Performance comparison among state-of-the-art methods. “Specialist Model” means this model can be utilized to perform 3D
question answering and 3D dense captioning. “Generalist models with 3D input” indicates leveraging 3D representations to perform multiple
language-related 3D tasks. We add a “*” to indicate further fine-tuned on each dataset before evaluation. ‘PC” means point cloud and “RGB”
means multi-view images. “Depth” means extra depth input. Please note that LEO [Huang et al., 2024]’s results on ScanQA is marked with
a gray color and not compared to other methods, since it is in a different setting that accesses the ground truth object related to the question.
The best result is highlighted in bold font, while the remaining top-2 entries for each metric are marked with an underline.

Method Rel.Dist. Rel.Dir. Router PlanAppr. Order
Random∗ 25.0 36.1 28.3 25.0
Freqency∗ 25.1 47.9 28.4 25.2
Video-LLaMA [Zhang et al., 2023] 29.8 35.5 32.1 39.1
Vi3D-LLaMA 33.2 (+4.4)40.1 (+4.6) 33.0 (+0.9) 44.2 (+3.1)

Table 2: Evaluation on a subset of VSI-Bench for multiple-choice
answers. Rel.Dist. denotes relative distance, Rel.Dir. denotes rel-
ative direction, and Appr. denotes appearance. ∗ indicates results
reported in [Yang et al., 2024].

precise response to the user’s question involving some part of
the scene. We conduct the comparison between our Vi3D-
LLaMA and other methods on both the conventional 3D
question-answering dataset ScanQA [Azuma et al., 2022]
and the situated question-answering dataset SQA3D[Ma et
al., 2023]. As shown in Table 1, our method ranks among
the top three in terms of CiDEr, BLEU-4, METEOR, and
Rouge-L score. Remarkably, compared to LL3DA [Chen
et al., 2024b] which only uses point cloud as input and is
finetuned, our Vi3D-LLaMA achieves 4.3% CiDEr, 1.2%
BLEU-4, 4.4% METEOR, and 10.8% Rouge-L improve-
ment. This indicates that learning 3D-aware representations
from only RGB inputs can achieve or even surpass the perfor-
mance of 3D inputs. When compared to the strongest com-
petitor LLaVA-3D, which takes RGB and extra depth as in-
put, our Vi3D-LLaMA achieves 0.2% BLEU-4 and compa-
rable performance on other metrics on ScanQA. On SQA3D,
our Vi3D-LLaMA reports comparable extract match accuracy
as that of LLaVA-3D (55.0% V.S. 55.6%).
3D Dense Captioning demands the model to describe the
object and its spatial relationship to the surrounding in-
stances within the scene. In this experiment, we follow the
common practice of using the predicted mask proposals of
Mask3D [Schult et al., 2023]. The proposal features are en-
coded as the visual prompt. Results in the table show that our

Vi3D-LLaMA also achieves remarkable performance in gen-
erating instance-level descriptions on both the Scan2Cap and
NR3D datasets. For example, for 3D input model LL3DA,
our Vi3D-LLaMA achieves 6.2% CiDEr and 2.5% BLEU-
4, 5.6% METEOR, and 1.1% Rouge-L improvements on
Scan2Cap. For the strongest competitor, LLaVA-3D, Vi3D-
LLaMA achieves a 1.4% improvement on METEOR, while
performing slightly worse on other metrics, which can be at-
tributed to the fact that we did not utilize additional depth
information. This experiment further validates the effective-
ness and scalability of the proposed Vi3D-LLaMA.

4.4 Analysis of Visual-Spatial Intelligence
To validate the model’s Visual-Spatial Intelligence capabili-
ties, we conduct the zero-shot evaluation on a subset of VSI-
Bench, focusing on multiple-choice answer (MCA) tasks
such as Relative Distance, Relative Direction, Appearance
Order, and Route Planning. As shown in the Table 2,
we compare the performance of our method against ”Ran-
dom Choose,” ”Frequency Choose,” and our strong baseline,
Video-LLaMA. The most naive approach for selecting an-
swers in multiple-choice questions is based on random guess-
ing or frequency, as shown in the first two rows of the table.
For Video-LLaMA, after fine-tuning on the ScanNet dataset,
its overall performance surpasses the chance-level methods.
Building upon this baseline, our method learns 3D-aware rep-
resentations from video streams, resulting in significant im-
provements across all four Visual-Spatial Intelligence tasks.
For example, we find that learning 3D-aware representation
from video sequence improves the MLLM (Video-LLaMA)’s
relative distance accuracy by 4.6%.

4.5 Ablation Study
Effect of each module in frame-wise 3D spatial tokenizer.
Table 3 reports the effect of key modules in the frame-
wise 3D spatial tokenizer. Method (a) represents the base-
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3D spatial tokenizer ScanQA Scan2Cap
Frustum-based 3D PE HR-adapter C↑ B-4↑ C↑ B-4↑

(a) 60.2 10.5 32.7 16.7
(b) ✓ 74.2 14.5 64.8 30.7
(c) ✓ 73.1 13.3 36.2 17.9
(d) ✓ ✓ 81.1 14.7 67.3 39.3

Table 3: Ablation study of modules in the frame-wise 3D spatial
tokenizer. The models are compared in terms of CiDEr and BLEU-4
on ScanQA [Azuma et al., 2022] and Scan2Cap [Chen et al., 2021].
Our default setting is highlighted with light blue.

line model without the Frustum-based 3D Position Encoding
(PE) and HR-adapter modules. Method (b) incorporates the
Frustum-based 3D PE module into the baseline. This addition
significantly improves performance, with gains of 14.0% in
CiDEr and 4.2% in BLEU-4 on ScanQA, resulting in scores
of 74.2% and 14.5%, respectively. For Scan2Cap, the module
increases CiDEr by 32.1% and BLEU-4 by 14.0%, achieving
scores of 64.8% and 30.7%. These results indicate that encod-
ing 3D spatial relationships through Frustum-based 3D PE is
highly effective in improving the model’s understanding of
3D environments. Method (c) extends the baseline by incor-
porating the HR-adapter module, which progressively refines
visual tokens using high-resolution images. This improves
CiDEr by 13.1% and BLEU-4 by 2.8% on ScanQA, reaching
scores of 73.1% and 13.3. On Scan2Cap, CiDEr improves
by 3.5% and BLEU-4 by 1.2%. Although the HR-adapter of-
fers a more modest improvement compared to Frustum-based
3D PE, it still contributes to better semantic understanding.
Method (d) integrates both modules—Frustum-based 3D PE
and HR-adapter—in a unified manner, representing our com-
plete Vi3D-LLaMA framework. This configuration achieves
the highest performance across all metrics. Compared to the
baseline, the full model gains 20.9% in CiDEr and 4.2%
in BLEU-4 on ScanQA, and 34.6% in CiDEr and 22.6%
in BLEU-4 on Scan2Cap, demonstrating the complementary
benefits of the two modules.

4.6 Qualitative Results
Figure 5 demonstrates Vi3D-LLaMA’s capabilities across di-
verse 3D scene understanding tasks, showcasing its adapt-
ability to handle both spatial reasoning and semantic under-
standing challenges. Through the 3D Dense Captioning task,
Vi3D-LLaMA showcases its ability to understand the seman-
tic meaning of the scene. It can accurately provide a detailed
description of the rectangular bed against the wall. Addi-
tionally, the Relative Distance and Relative Direction tasks
highlight Vi3D-LLaMA’s spatial reasoning capabilities. It
can precisely locate the bed as the closest object to the radi-
ator, and determine the position of the table in relation to the
user’s perspective, demonstrating a nuanced understanding of
the 3D layout.

5 Conclusion
In this work, we present Vi3D-LLaMA, a novel video-based
Multimodal Large Language Model (MLLM) designed to un-

Figure 5: Visualization of Vi3D-LLaMA’s response on various
tasks. We provide several visualization results on various 3D vision
and language tasks including 3D dense captioning on Scan2Cap and
relative distance / direction on VSI-Bench. The video data is from
ScanNetv2. Best to zoom in.

derstand and reason about 3D scenes without relying on ex-
plicit 3D representations, such as point clouds or depth inputs.
The core innovation of Vi3D-LLaMA lies in its 3D spatial to-
kenizer, which significantly enhances the spatial awareness
and semantic expressiveness of the video MLLM by inte-
grating geometric encoding and fine-grained semantic enrich-
ment. Vi3D-LLaMA demonstrates outstanding performance
in tasks such as 3D dense captioning and question answer-
ing while requiring only RGB video inputs. By addressing
the limitations of the video MLLM in 3D spatial reasoning,
Vi3D-LLaMA bridges the gap between 2D perception and 3D
understanding, offering an efficient and versatile solution for
advancing 3D scene comprehension.
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