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Abstract
Multimodal Large Language Models (MLLMs)
promise seamless integration of vision and lan-
guage understanding. However, despite their strong
performance, recent studies reveal that MLLMs of-
ten fail to effectively utilize visual information, fre-
quently relying on textual cues instead. This sur-
vey provides a comprehensive analysis of the vision
component in MLLMs, covering both application-
level and architectural aspects. We investigate criti-
cal challenges such as weak spatial reasoning, poor
fine-grained visual perception, and suboptimal fu-
sion of visual and textual modalities. Addition-
ally, we explore limitations in current vision en-
coders, benchmark inconsistencies, and their impli-
cations for downstream tasks. By synthesizing re-
cent advancements, we highlight key research op-
portunities to enhance visual understanding, im-
prove cross-modal alignment, and develop more ro-
bust and efficient MLLMs. Our observations em-
phasize the urgent need to elevate vision to an equal
footing with language, paving the path for more re-
liable and perceptually aware multimodal models.

1 Introduction
Large Vision Models (LVMs) and Large Language Models
(LLMs) have made remarkable progress, achieving human-
like performance across a wide range of complex tasks. Their
success has led to the development of Multimodal Large Lan-
guage Models (MLLMs), systems that seamlessly integrate
vision and language reasoning, leading to powerful models
such as GPT-4V [Achiam et al., 2023], LLaVA [Liu et al.,
2023], and InternVL [Chen et al., 2024e]. MLLMs are typi-
cally built on pretrained unimodal foundation models, lever-
aging well-performing LLMs like LLaMA [Touvron et al.,
2023] or Vicuna [Chiang et al., 2023]. Their architecture gen-
erally consists of a vision encoder, an adapter (or connector)
module, and an LLM, where the vision encoder and LLM
remain frozen while the adapter is trained to bridge the gap
between the two modalities. The image is processed by the
vision encoder, passed through the projection module, and
subsequently fused with language tokens before being fed
into the LLM for final predictions. While various training

paradigms and adapter strategies have been introduced to re-
fine this pipeline and enhance MLLM capabilities, evaluating
their true multimodal understanding remains a fundamental
challenge in light of different tasks and applications.

In this paper, we critically examine the vision compo-
nent of MLLMs from two key perspectives: application-level
performance and architectural design. Visual understand-
ing is essential for robust multimodal reasoning, yet current
MLLMs exhibit significant deficiencies. As illustrated in Fig-
ure 1, their performance varies across different application
categories. While these models excel in high-level reasoning
tasks, they often struggle with low-level vision tasks, such
as basic image classification, fine-grained object recognition,
and direct reliance on visual cues for decision-making. Mul-
tiple studies highlight that vision remains the weaker modal-
ity in MLLMs. We explore these shortcomings and discuss
existing benchmarks designed to evaluate visual understand-
ing. While various benchmarks have been introduced to as-
sess MLLM performance [Li and Lu, 2024], many fail to ef-
fectively evaluate individual model components, particularly
from a vision-centric perspective. Most current evaluations
prioritize high-level reasoning tasks while overlooking fun-
damental visual processing limitations.

From an architectural standpoint, effective representation
learning and the fusion of visual and textual information re-
main open challenges. Different vision encoders process vi-
sual information in varying ways, leading to inconsistencies
in multimodal alignment. We analyze the strengths and weak-
nesses of these encoders and their impact on MLLM perfor-
mance. Finally, we identify key challenges and research op-
portunities, offering insights into bridging the existing gaps
in visual understanding. By addressing these limitations, we
aim to contribute to the development of more reliable, per-
ceptually aware, and efficient MLLMs.

2 Rethinking Visual Understanding in
MLLMs

For humans, vision and language are fundamental to perceiv-
ing and interacting with the world. This dual understanding
has been replicated at scale in MLLMs, achieving impressive
language-based reasoning. However, visual representations
remain a major bottleneck in several aspects. At the appli-
cation level, as illustrated in Figure 1, we classify current
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Figure 1: Visual Understanding in Multimodal LLMs.

visual-based tasks into four key categories that encompass the
essential components of visual understanding in MLLMs.

Object and Attribute Understanding. This category in-
cludes tasks that require understanding object-attribute rela-
tionships, such as object detection, fine-grained classification,
geometric shape recognition, and pattern recognition. An
ideal MLLM should accurately distinguish visually similar
objects and recognize multi-object relations, yet these remain
significant challenges. Notably, MLLMs often confuse ob-
jects and their attributes, such as rigidly associating the color
yellow with a banana, even when visual cues suggest other-
wise. This over-reliance on learned correlations rather than
actual visual perception hinders generalization. Additionally,
a robust MLLM should be capable of detecting small objects
and their attributes with equal proficiency, leveraging both
image and text inputs effectively.

Scene and Spatial Understanding. Beyond object recog-
nition, scene understanding involves grasping the relation-
ships between objects and their environments. This in-
cludes scene recognition, spatial relationships, depth per-
ception, occlusion handling, and 3D reasoning. Effective
vision-language models must infer object positioning, recog-
nize depth cues, separate foreground from background, and
identify partially occluded objects. Furthermore, understand-
ing functional relationships and contextual dependencies is
crucial. However, MLLMs often struggle with fine-grained
spatial reasoning, such as distinguishing whether an object is
to the left or right of another. These limitations significantly
impact their ability to reason about real-world spatial rela-
tionships and understand basic composition by extension.

Higher-Level Reasoning. Unlike spatial relationships,
higher-level reasoning requires abstract, contextual, and
cross-modal understanding. This includes visual question
answering, visual commonsense reasoning, analogy and
metaphor interpretation, and causal inference. The ability
to explain events, infer logical relationships, and integrate
both literal and symbolic visual cues is an essential goal for
MLLM research. While current models perform compara-

tively well in these tasks, challenges persist in causal reason-
ing and commonsense inference, particularly in culturally di-
verse or context-dependent scenarios.

Human-Centric and Temporal Understanding. A criti-
cal aspect of multimodal intelligence is the ability to inter-
pret human behavior. This category includes facial emo-
tion recognition, human action recognition, pose estimation,
temporal reasoning, and visual storytelling. Understanding
moods, interactions, and evolving events over time is inher-
ently complex, as interpretations vary across individuals, cul-
tures, and social contexts. Moreover, MLLMs may inherit
cultural and social biases, further complicating their ability
to generalize across diverse scenarios.

Despite recent advancements, MLLMs continue to struggle
with both low-level and high-level visual reasoning. Chal-
lenges persist in fine-grained object recognition, occlusion
handling, attribute perception, depth estimation, and spatial
alignment, as well as higher-level functions such as causal
reasoning, emotional understanding, and social interactions.
Visual cues are crucial for these tasks, yet MLLMs frequently
overlook them, defaulting instead to language-based reason-
ing. Next, we examine these limitations in greater depth, with
a particular focus on low-level visual functions.

2.1 Visual Understanding at Different Levels
The role of vision in MLLMs is often overlooked due to an
implicit bias favoring prior knowledge from language, which
is frequently sufficient for generating accurate responses. A
study by [Chen et al., 2024a] evaluated MLLMs by isolating
the effects of language and vision in a limited data setting.
The study examined visual understanding from three perspec-
tives: visual processing, prior knowledge, and reasoning. An
intriguing observation was that removing any language com-
ponent significantly degrades performance, whereas remov-
ing the vision component still retains 75% of the model’s per-
formance. This finding highlights the current limitations of
visual processing in MLLMs, particularly in tasks involving
spatial understanding, object recognition, and fine-grained at-
tribute detection.
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Benchmark Focus Tasks

MME [Fu et al., 2023] Perception and Reasoning Coarse-grained and Fine-grained Perception, OCR, and
Visual Reasoning

MMStar [Chen et al., 2024d] Perception and Reasoning Coarse-grained and Fine-grained Perception, Instance
and Logical Reasoning, Mathematics, and Science

MMRel [Nie et al., 2024] Spatial and Temporal Understanding Spatial, Action, and Comparative Reasoning
CVBench [Tong et al., 2024a] Spatial Understanding Object Counting, Depth Order, and Relative Distance
BLINK [Fu et al., 2024] Visual Perception Diverse Visual Prompting, Visual Commonsense, Per-

ception beyond Recognition
CompBench [Kil et al., 2024] Relative Comparison Visual Attribute, Existence, State, Emotion, Temporal,

Spatial, Quantity, Quality
Q-Bench+ [Zhang et al., 2024d] Low-level Visual Perception and Un-

derstanding
Perception, Description, Image Quality (Single and Pair-
wise)

MagnifierBench [Li et al., 2023] Spatial Relations in High-Resolution
Images

Object Localization, Counting, and Color

V* Bench [Wu and Xie, 2024] Visual Grounding on High-Resolution
Images

Attribute Recognition and Spatial Reasoning

P2GB [Chen et al., 2024b] Comprehensive Image Understanding
in High-Resolution Images

Text-Rich Visual Reasoning and Image Understanding

AesBench [Huang et al., 2024] Image Aesthetics Perception Visual Perception, Empathy, Assessment, Interpretation
UNIAA [Zhou and others, 2024] Image Aesthetics Perception Content and Theme, Composition, Color, Light, Focus,

and Sentiment

BlindTest [Rahmanzadehgervi
et al., 2024]

Geometric Perspective Simple Tasks based on Common Geometric Primitives

CRPE [Wang et al., 2024b] Relation Comprehension Existence, Subject, Predicate, and Object

Table 1: Benchmarks for visual understanding focusing on different visual capabilities with their associated tasks.

MLLMs are Blind (Spatial Understanding). MLLMs
have demonstrated a notable reliance on textual priors, often
producing consistent outputs even in the absence of visual in-
put [Chen et al., 2024a]. This suggests that their decisions are
frequently uninfluenced by visual data. A study by [Tong et
al., 2024b] found that MLLMs perform poorly on basic visual
patterns such as orientation, counting, and positional context,
attributing these failures to weak visual representations. Fur-
ther, models capable of multimodal generation have exhib-
ited blindness to low-level visual features, as demonstrated
by [Zheng et al., 2024]. This blindness is largely due to vi-
sion encoders losing finer details during encoding.

Additionally, [Rahmanzadehgervi et al., 2024] character-
ized MLLMs as effectively “blind” after they failed simple
low-level visual tasks such as counting intersecting lines or
circles—tasks trivial for humans with minimal world knowl-
edge. The study suggested that late fusion of visual in-
put might be responsible for this poor performance, as the
models do not sufficiently integrate visual information. A
more comprehensive spatial reasoning study by [Wang et al.,
2024a] compared MLLMs with unimodal LLM counterparts
using vision-only, text-only, and vision-text-based inputs on
maze and map navigation tasks. Surprisingly, the models per-
formed better with text descriptions alone than with text com-
bined with visual inputs. Adding noisy or mismatched images
further did not significantly alter their performance, reinforc-
ing the argument that visual information plays a minimal role
in decision-making.

Looking Deeper (Fine-Grained Recognition). MLLMs
have struggled with even basic vision tasks, such as image

classification, in both closed and open-world settings [Zhang
et al., 2024b]. While encoded visual information may ex-
ist within the model, it often cannot be effectively decoded
for classification tasks. Fine-tuning with additional fine-
grained class samples has been shown to improve perfor-
mance, but the baseline remains weak. A similar trend was
observed in fine-grained object recognition, where [Chand-
hok et al., 2024] identified vision encoders as the primary
source of failure. The study noted that visual information
loss during encoding results in poor spatial understanding,
though some of these shortcomings can be partially miti-
gated using language priors. Further, MLLMs consistently
struggle with vision-dependent queries, rarely outperform-
ing unimodal LLMs when spatial reasoning is required. Re-
cently, Fine-grained Language-informed Image Representa-
tions (FLAIR) [Xiao et al., 2024] was introduced to enhance
fine-grained alignment between text and images by learning
localized image embeddings alongside global vision-text rep-
resentations. However, its training was conducted on rela-
tively smaller datasets, limiting its scalability.

Other Tasks and Vulnerabilities. MLLMs exhibit further
limitations in various vision-centric tasks. A study by [Zhai
et al., 2023b] examined catastrophic forgetting in MLLMs,
specifically analyzing whether vision encoders retain their
standalone classification abilities after integration into mul-
timodal architectures. The results indicated that MLLMs
failed to maintain the same classification performance as
their pretrained vision encoders, suggesting that multimodal
alignment may degrade visual capabilities. Additionally, in-
context learning (ICL) has been analyzed in multimodal set-
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tings, where textual information was found to be far more
significant than visual input [Chen et al., 2023]. This aligns
with previous findings that removing or corrupting images
has minimal impact on model performance.

These visual vulnerabilities have also been exploited for
adversarial attacks and jailbreaking of MLLMs. A study
by [Li et al., 2024c] found that visual inputs can act as align-
ment backdoors, increasing multimodal attack surfaces. Fur-
thermore, weak vision models have been linked to hallucina-
tions in MLLMs, as highlighted by [Bai et al., 2024]. This
phenomenon arises from information loss during visual en-
coding, where weak perception leads to incorrect visual in-
ferences. Additionally, poor alignment between weak vision
encoders and powerful language models can exacerbate hal-
lucinations, further reducing multimodal reliability.

From losing fine-grained information during encoding to
ineffective integration and suboptimal decoding of visual in-
formation, every step contributes to vision modality lagging
and needs to be addressed.

2.2 Benchmarks for Visual Understanding
A variety of benchmarks have been proposed to evaluate
MLLMs across multiple capabilities. However, many of these
fail to effectively assess the visual competence of these mod-
els. For instance, Massive Multi-discipline Multimodal Un-
derstanding and Reasoning (MMMU) [Yue et al., 2024] and
MathVista [Lu et al., 2024] benchmarks exhibited less than
a 5% performance gap between multimodal and language-
only settings [Tong et al., 2024a], indicating that textual cues
alone are often sufficient for solving benchmark tasks. This
suggests that these benchmarks do not sufficiently rely on
visual input and thus fail to measure true vision-language
integration. In response, CV-Bench was introduced as a
vision-centric benchmark, specifically targeting spatial rela-
tionships, object counting, depth ordering, and relative dis-
tance. This benchmark curates samples from existing datasets
to provide a more fine-tuned evaluation of visual-spatial rea-
soning in MLLMs.

Other notable benchmarks include MLLM Evaluation
(MME) [Fu et al., 2023], which evaluates coarse-grained
and fine-grained perception, Optical Character Recognition
(OCR) capabilities, and visual reasoning. It found that top-
performing MLLMs struggle with object perception, instruc-
tion following, and reasoning, often exhibiting hallucinations.
Additionally, [Tong et al., 2024b] proposed Multimodal Vi-
sual Patterns (MMVP), leveraging Contrastive Language-
Image Pre-training (CLIP) embeddings [Radford et al., 2021]
to create blind pairs. Pairs that include images that are vi-
sually different but appear similar in the CLIP embedding
space. This exposed MLLMs’ weaknesses in evaluating nine
fundamental visual patterns, including orientation, counting,
positional context, and color understanding.

Furthermore, [Chen et al., 2024d] observed that visual con-
tent is often unnecessary for answering multimodal queries
correctly. They also identified unintentional data leak-
age in training datasets, allowing models to answer image-
dependent questions correctly without actually processing vi-
sual content. To mitigate this, they proposed MMStar, a
benchmark that explicitly ensures visual dependency while

Large Language 
Model (LLM)

Transformer 
Decoder

Vision 
Encoder

Adapter/
Connection 

Module

Describe the given
image?

Describe the given
image?

Linear Projection

The image has a cat being playful. There is a cat with big black eyes and
white-orange fur.

Figure 2: Generic architecture overview of MLLMs. Left: MLLMs
with a separate vision encoder and adapter like LLaVA; Right:
MLLMs without a separate vision encoder like Fuyu.

minimizing data leakage. These benchmarks highlight the
limitations of current evaluation frameworks and emphasize
the need for more vision-centric assessments. A summary of
key benchmarks is provided in Table 1.

3 Dissecting MLLMs: Vision Encoders,
Representation, and Fusion

We have discussed the challenges MLLMs face with visual
understanding, categorizing them into four key areas. At the
architectural level (see Figure 2), two critical components
contribute to these issues: the vision encoder and the fusion
mechanism. The vision encoder determines how images are
processed and encoded into visual representations, while the
fusion mechanism dictates how this encoded visual informa-
tion is integrated with textual inputs. In this section, we ex-
amine both components in depth.

3.1 Exploring the Vision Encoders in MLLMs
Vision encoders are expected to play an equal role alongside
language models in MLLMs. However, they often underper-
form, exhibiting issues such as information loss and weak vi-
sual semantic reasoning. Most MLLMs use pretrained vision
transformers (ViTs) [Dosovitskiy et al., 2021] as vision en-
coders, particularly ViTs from Contrastive Language-Image
Pre-training (CLIP) models, which have become the de facto
choice. However, as we discuss in this section, CLIP-based
encoders introduce their own set of challenges, prompting ex-
ploration into alternative encoders.

CLIP—the Preferred Vision Encoder. CLIP [Radford et
al., 2021] employs a contrastive learning objective to align vi-
sion and language encoders in a shared representation space.
Its ability to effectively align these modalities has made
CLIP’s vision encoder a popular choice for MLLMs. Sev-
eral MLLMs use variations of CLIP’s ViT, such as ViT-G
from EVA-CLIP [Sun et al., 2023], which strengthens the
vision backbone, and SigLIP [Zhai et al., 2023a], which in-
corporates a sigmoid-based loss to improve zero-shot capa-
bilities. These encoders, trained to align with text, enable
MLLMs to share a representation space with LLMs, facilitat-
ing multimodal learning. However, compared to commonly
used LLMs such as LLaMA (which ranges from 7 to 65 bil-
lion parameters), ViTs are significantly smaller, with ViT-G
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having only around 1 billion parameters.
Recent studies have identified a modality gap within CLIP,

which impacts its effectiveness in certain tasks. While this
gap [Liang et al., 2022] helps preserve performance in zero-
shot recognition, it also contributes to poor fine-grained at-
tribute recognition. Research by [Schrodi and others, 2024]
attributes this gap to information imbalance, as text captions
contain less information than images. The study further high-
lights that reducing the modality gap is not always beneficial,
emphasizing the need for a balanced trade-off between tex-
tual and visual information.

Beyond CLIP—Alternative Vision Encoders. Several
studies have explored alternative vision encoders beyond
CLIP [Jiang et al., 2023]. These encoders can be super-
vised (like CLIP) or self-supervised (such as DINO [Oquab
et al., 2024]). More recently, [Fan et al., 2025] explored the
scalability of self-supervised learning (SSL) models such as
DINO. They found that SSL not only performs well on vi-
sual tasks when compared with language-supervised models
like CLIP but can match the latter’s performance when scaled.
The gains are evident across a diverse set of Visual Question
Answering (VQA) tasks involving general knowledge, world
knowledge, OCR, chart understanding, and vision-centric
datasets. These SSL models were scaled in both model size
and training data volume, affirming the potential of using
such models as vision encoders in MLLMs to enhance overall
performance. Different encoder architectures have also been
explored, including convolution-based, generative, and self-
supervised encoders, as well as hybrid models. For instance,
ConvNeXT [Liu et al., 2022], a convolution-based encoder,
has been used with approximately 198 million parameters.

Research by [Wang et al., 2023] examined the science be-
hind selecting an effective visual tokenizer or encoder, finding
that self-supervised encoders offer better fine-grained percep-
tion, whereas supervised encoders excel in semantic under-
standing. This suggests a necessary trade-off between the two
approaches to optimize vision encoders for MLLMs. Another
study [Shi et al., 2024] demonstrated that unfreezing the vi-
sion encoder can significantly improve MLLM performance,
particularly for high-resolution image comprehension. How-
ever, this approach comes with a high computational cost.
Unfreezing the encoder allows for better alignment of the vi-
sion modality with the LLM, but the trade-off in efficiency
must be carefully considered.

Several studies highlight that traditional vision en-
coders lack effective pixel-level and object-level under-
standing [Zhang et al., 2024a]. To address this, OMG-
LLaVA [Zhang et al., 2024a] introduced a novel multimodal
model, leveraging a universal perception model, OMG-
Seg [Li et al., 2024b]. Similarly, Libra [Xu et al., 2024]
proposed an ideal vision system, arguing that an effective
vision encoder should be somewhat independent from the
LLM to enhance visual understanding and cross-modal in-
teraction. The choice of an optimal vision encoder depends
on the specific end task. For example, MLLMs designed for
text-rich environments would benefit more from vision en-
coders specialized in OCR recognition and panoptic segmen-
tation. However, specialized MLLMs can be computationally

expensive, making efficient adaptation crucial.

Mixture-of-Encoders—Combining Different Vision Mod-
els. An alternative strategy to enhance vision encoding is
to combine multiple encoders, as different encoders capture
distinct relationships more effectively. Using a mixture-of-
encoders within a mixture-of-experts framework [Shi et al.,
2024; He and others, 2024] allows for richer, globally and
locally aware image embeddings. This approach can im-
prove vision-language alignment by integrating both fine-
grained object relations and coarse-level semantic under-
standing, contributing to a more unified multimodal model.

The Incorporating Visual Experts (IVE) framework [He
and others, 2024] demonstrated the effectiveness of using
multiple task-specific vision encoders, each specializing in
semantics, low-level visual features, and document-related
information. More recently, EAGLE [Shi et al., 2024] in-
troduced a hybrid encoder approach, leveraging: CLIP for
image-text matching, ConvNeXT for image classification,
EVA for object detection, Pix2Struct for text recognition,
SAM for image segmentation, and DINO for self-supervised
feature learning.

However, integrating multiple encoders poses challenges,
as they may generate conflicting representations, leading to
inconsistent predictions and redundant feature fusion. De-
spite their advantages, mixture-of-encoders approaches come
at a high computational cost and introduce complex feature
fusion challenges.

3.2 Visual Representation and Input Tokens
Encoded visual tokens play a crucial role in MLLM perfor-
mance. The resolution of images and the number of visual
tokens significantly impact the efficiency and accuracy of the
model [McKinzie et al., 2024]. Handling multiple resolutions
increases computational overhead due to the larger number of
tokens, making efficient token management essential.

To address this, DeepStack [Meng and others, 2024] re-
structures visual tokens into a stacked architecture, where
each layer is directly connected to corresponding LLM lay-
ers. This approach reduces computational overhead, enabling
more effective handling of high-resolution images. Similarly,
OtterHD [Li et al., 2023] moves away from fixed-resolution
MLLMs, enabling models to process images at various reso-
lutions dynamically. More recently, LLaVA-OneVision [Li et
al., 2024a] introduced the AnyRes strategy, allowing process-
ing of both high-resolution images and video frames, striking
a balance between performance and computational cost.

Another approach to improving visual token formulation
is augmenting tokens with extra perceptual information. Per-
ception tokens were introduced in [Bigverdi et al., 2024],
supplementing standard tokens with depth maps, bounding
box coordinates, and spatial information. These additional to-
kens, derived from an encoder-decoder auxiliary model, sig-
nificantly enhance spatial reasoning tasks. However, such
models require fine-tuning to interpret perception tokens ef-
fectively, increasing training complexity.

A persistent challenge with visual tokens is their higher
computational footprint compared to text tokens. Pruning
strategies have been explored to reduce unnecessary visual to-
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Figure 3: Possible research opportunities framed as research questions for MLLMs from a vision perspective.

kens, but determining the most relevant tokens remains data-
dependent. Instead of pruning tokens directly, [Zhang et al.,
2024c] proposed a structural pruning approach, where inac-
tive attention heads and redundant transformer layers are se-
lectively removed. This method focuses on optimizing model
architecture rather than filtering data tokens, ensuring more
effective use of computational resources.

4 Challenges and Research Opportunities
Despite recent advancements, MLLMs continue to face sig-
nificant challenges in visual understanding, both from an
application-based and architectural perspective. The former
includes tasks spanning from low-level recognition to high-
level reasoning, while the latter concerns the limitations of
vision encoders and their alignment with LLMs. Even though
vision encoders are powerful, their full capabilities are often
not retained fully when integrated with LLMs. Weak vision
encoders, suboptimal cross-modal alignment, and poor fusion
strategies collectively hinder the model’s ability to effectively
process and utilize visual information.

It is evident that even state-of-the-art MLLMs exhibit sub-
stantial gaps in visual perception, leaving room for improve-
ment. To advance the field, we highlight seven key research
questions, illustrated in Figure 3, that present future opportu-
nities for enhancing MLLMs.

RQ1: Do We Need a Separate Vision Encoder? Most
MLLMs employ a separate vision encoder with a connec-
tor module that projects visual features into an LLM’s rep-
resentation space (see Figure 2). However, is this architec-
tural separation necessary? Models like Fuyu [Bavishi et
al., 2023] have explored a single-decoder approach, demon-
strating that multimodal fusion can be achieved without re-
lying on a multi-stage, multi-encoder setup. While such ap-

proaches still need further scaling and benchmarking, they
offer a potential path toward unified multimodal processing.
A unified encoder-decoder architecture could ensure that vi-
sion and language modalities are treated equally, potentially
improving fine-grained visual recognition. An alternative ap-
proach to unifying vision and text was proposed in LaViT [Jin
et al., 2024a], where a visual tokenizer translates image to-
kens into an LLM-understandable format, treating them like
a foreign language. This framework dynamically adjusts to-
ken length based on sparsity and interdependence between
image patches, ensuring more efficient processing. However,
the impact of such tokenization strategies on complex vision-
language reasoning tasks remains an open question.

RQ2: Are the Visual Representations Weak, or is Their
Utilization Lacking? While MLLMs are often criticized
for lacking visual understanding, is the problem truly with
their visual representations? Studies have shown that well-
trained vision and language encoders exhibit high semantic
similarity [Maniparambil et al., 2024]. This suggests that
rather than being inherently weak, visual representations may
not be optimally utilized or aligned. A key issue is that cur-
rent architectures attempt to translate visual context into the
language space, rather than fully integrating both modali-
ties. Exploring new visual representation strategies tailored
for LLMs could help enhance visual comprehension. For ex-
ample, [Zhong et al., 2024] proposed the visual table, a hier-
archical text-based representation of semantic scene elements
designed to improve visual reasoning. While effective, gener-
ating such representations introduces computational overhead
and requires information-rich structured data. Scalability for
such approaches is an open challenge.

RQ3: How Can We Better Align Vision With Itself and
With the Language Modality? Alignment issues persist at
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multiple levels within MLLMs. One major challenge is cog-
nitive misalignment, where ambiguous visual representations
prevent LLMs from accurately interpreting images. As ex-
plored by [Zhao et al., 2024], introducing rich and structured
representations can help mitigate this misalignment, although
such methods often require labeled supervision. At the same
time, perceptual misalignment within vision encoders can
negatively affect multimodal fusion. A study by [Sundaram
et al., 2024] demonstrated that leveraging human perception
knowledge can enhance visual representations, making them
more general-purpose. However, effectively integrating such
representations with LLMs remains an open challenge.

RQ4: What is the Optimal Strategy for Selecting the Best
Vision Encoder? Rather than dismissing a vision encoder
as inherently weak, selecting the right encoder for the task
is key to building robust multimodal models. Among vari-
ous pretrained encoders, the AC policy [Yang et al., 2024]
was proposed as a method for selecting an optimal vision en-
coder by leveraging CLIP as a reference model. It demon-
strated a weak correlation with OCR-based tasks but a strong
link between cross-modal alignment and overall model per-
formance. This suggests that a data-driven approach for se-
lecting or adapting encoders, rather than relying on fixed ar-
chitectures, could significantly enhance MLLM performance.
Additionally, research into combining multiple encoders or
dynamically adjusting them based on the task remains an area
of opportunity.

RQ5: Can Modified Pretraining Tasks Improve Visual
Understanding? Modifying pretraining objectives could
help improve visual representations and alignment within
MLLMs. Lyrics [Lu et al., 2023] introduced multi-task pre-
training, incorporating objectives like image-text contrastive
learning, image-grounded captioning, and masked spatial
prediction. This framework aimed to align both fine-grained
and coarse-grained visual features with text, enhancing mul-
timodal reasoning. A novel task, Pixel Value Prediction
(PVP) [Gou et al., 2024], was proposed to predict RGB val-
ues at specific image coordinates. Adapting the vision en-
coder with PVP during training has been empirically shown
to improve perception capabilities. The integration of vision-
centric or alignment-specific pretraining remains a promis-
ing direction for improving MLLMs’ fine-grained recogni-
tion and spatial reasoning abilities.

RQ6: How Can We Develop Efficient Yet Vision-Powerful
MLLMs? Scalability and efficiency are crucial for practi-
cal deployment, like scaling SSL models [Fan et al., 2025].
On the other hand, scaling vision encoders might seem like
a natural solution, but it is not always the most efficient ap-
proach. Instead, better token selection strategies can help bal-
ance computational cost and performance. Efficient MLLM
architectures were explored in [Jin et al., 2024b], emphasiz-
ing the need for lightweight, generalizable models that main-
tain high visual fidelity. One such model, EVLM [Chen et
al., 2024c], employed a mixture-of-experts mechanism and
hierarchical visual feature modeling to achieve improved vi-
sual comprehension while maintaining efficiency. Develop-
ing lightweight yet visually powerful MLLMs remains an ac-
tive area of research.

RQ7: How Can We Make MLLMs More Robust and Re-
liable While Mitigating Hallucinations and Biases? The
dominance of language in MLLMs can lead to over-reliance
on text priors, introducing biases and hallucinations that com-
promise model robustness. We have already discussed how
hallucinations can emerge from visual shortcomings in these
models. These shortcomings can also leave the model vul-
nerable to jailbreaks [Wang and others, 2024]. A key re-
search direction is designing methods to systematically an-
alyze and mitigate such biases. One approach is to conduct a
trustworthiness analysis, systematically evaluating how each
component of an MLLM contributes to bias and hallucination
risks [Liu and others, 2024; Mittal et al., 2024a]. A deeper in-
vestigation into error attribution within multimodal architec-
tures could enable targeted improvements, leading to more
reliable and fair multimodal AI systems. The models as well
as datasets [Mittal et al., 2024b] also need to be systemati-
cally reviewed for ethical considerations.

Despite noted shortcomings discussed above, empirical in-
vestigation of MLLMs remains limited, offering a promising
direction for future research.

5 Conclusion
Multimodal Large Language Models (MLLMs) have sig-
nificantly advanced in recent years, demonstrating strong
performance in high-level reasoning tasks. However, they
continue to struggle with low-level and fine-grained visual
tasks. Benchmarks consistently highlight their shortcomings
in visual-spatial reasoning, text-rich image comprehension,
fine-grained object recognition, and basic geometric and clas-
sification tasks. While CLIP-based vision encoders remain
the preferred choice for many MLLMs, research has explored
a variety of alternative encoders to enhance visual under-
standing. This includes Mixture of Experts (MoE) mecha-
nisms, which allow multiple task-specific vision encoders to
be utilized within a single model.

Despite these advancements, the interaction between
vision-encoded tokens and textual representations remains
a critical bottleneck. The connector module, which facil-
itates this interaction, has been frequently identified as a
source of weak alignment, contributing to poor visual ca-
pabilities and information loss. Recent works have pro-
posed solutions such as hierarchical feature representations,
transformer-based projection layers, and optimized fusion
strategies to address these challenges. However, visual under-
standing in MLLMs remains an open problem, with lingering
issues such as hallucinations, misalignment, and susceptibil-
ity to jailbreak attacks.

Despite ongoing research efforts, there is still a pressing
need to bridge the gap between vision and language modali-
ties. Addressing these challenges will be essential in building
more reliable, perceptually aware, and robust MLLMs that
can truly integrate and understand multimodal information.
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