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Abstract

Silicosis is an irreversible lung disease caused by
silica dust exposure in industrial settings. Early de-
tection is crucial, but automatic diagnostic methods
are hindered by limited data availability. We pro-
pose SHIELD - a self-supervised, Silicosis-focused
Hierarchical Imaging framework for early occupa-
tional Lung disease Diagnosis. Our method lever-
ages a multi-resolution jigsaw puzzle pretext task
on CXR images to extract and preserve features for
lung region analysis. By employing a pyramidal
strategy to generate pretrained models at various
resolutions, followed by fine-tuning and a two-level
ensembling across diverse deep learning architec-
tures, SHIELD achieves enhanced diagnostic accu-
racy. We validate our approach on a publicly col-
lected CXR dataset of 3044 samples from public
health centers in India. SHIELD achieves 72% ac-
curacy, demonstrating up to 20% improvement over
baseline approaches. This work advances medical
image analysis and supports UN Sustainable De-
velopment Goal 3 by providing cost-effective early
screening in resource-limited settings.

1 Introduction

Pneumoconiosis is a chronic occupational lung disease char-
acterized by pulmonary interstitial fibrosis, resulting from
prolonged exposure to industrial dust particles. The condi-
tion develops through sustained inhalation of inorganic ma-
terials, including silica, coal, asbestos, beryllium, and cobalt,
primarily affecting workers in mining, construction, and man-
ufacturing sectors. The microscopic particles progressively
accumulate in lung tissue, causing irreversible scarring and
respiratory dysfunction. Silicosis, a severe form of Pneumo-
coniosis, is caused by prolonged inhalation of crystalline sil-
ica (S702) dust. This progressive and irreversible condition
predominantly affects workers in high-risk industries, includ-
ing stone carving, mining, construction, ceramics, glass man-
ufacturing, and sandblasting operations. The disease’s preva-
lence and severity make it a significant occupational health
concern, particularly in developing regions where workplace
safety measures may be limited. Global cases have risen by
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Figure 1: Visual representation of Silicosis progression and
diagnostic challenges in resource-constrained healthcare set-
tings. The disease’s radiological similarities with Tubercu-
losis often lead to misdiagnosis, particularly in high-volume
centers. SHIELD addresses this through Al-driven differen-
tial diagnosis, enabling accurate early detection and interven-
tion.

61.5% from 1990 to 2019 [Huang et al., 2023b], with approx-
imately 99% of pollution-related deaths occurring in devel-
oping countries [World Health Organization, 2021; Barnes et
al., 2019; Mandrioli et al., 2018]. In 2019 alone, China re-
ported 136,755 cases, India documented 11,670 cases, and
the United States recorded 10,014 cases [Momtazmanesh et
al., 2023], representing a public health challenge [Akhter et
al., 2023al.

The technical complexity of Silicosis diagnosis stems from
multiple challenges in medical image analysis. The disease’s
irreversible nature demands early detection [Davies, 1957,
Leung er al., 2012], requiring accurate identification of sub-
tle radiological patterns. However, these patterns often mimic
other respiratory conditions such as Tuberculosis [Cowie,
1994; Ehrlich et al., 2006; Ehrlich et al., 2021], creating a
complex pattern recognition problem. Traditional diagnos-
tic approaches face significant limitations in scaling to meet
the needs of millions of at-risk workers, particularly given
the shortage of specialist radiologists and the economic bur-
den of healthcare expenses, which push nearly 100 million
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people into poverty annually [Neelsen et al., 2022]. These
challenges necessitate automated, scalable solutions that can
maintain diagnostic accuracy while processing large volumes
of CXRs. Figure 1 illustrates this critical pathway from occu-
pational exposure to diagnosis, highlighting the key challenge
of distinguishing Silicosis from similar pulmonary conditions
such as Tuberculosis and demonstrating how Al-powered so-
lutions can support accurate, efficient diagnosis in resource-
constrained settings.

This technical challenge directly impacts multiple UN Sus-
tainable Development Goals (SDGs) and the “Leave No One
Behind” commitment, requiring innovative solutions that bal-
ance computational burden with practical deployment con-
straints. The development of accurate, automated diagnos-
tic systems could advance progress toward ensuring healthy
lives (SDG 3), decent work conditions (SDG 8), and reducing
inequalities (SDG 10), particularly in resource-constrained
settings where specialist medical expertise is limited. The
need for scalable, accurate, and accessible screening solu-
tions points toward Artificial Intelligence-based approaches,
specifically deep learning techniques that can learn complex
radiological patterns while maintaining robustness across di-
verse healthcare settings.

1.1 Related Work

While deep learning has revolutionized medical imaging
diagnosis [Mirbabaie et al., 2021; Alowais et al., 2023;
Gondocs and Dorfler, 2024; Eisemann er al., 2025], its appli-
cation to Pneumoconiosis detection in general faces unique
challenges. Earlier Computer-Aided Diagnosis (CAD) at-
tempts [Okumura er al., 2011; Zhu er al., 2014a; Zhu et
al., 2014b; Okumura et al., 2017; Pattichis et al., 2002;
Sundararajan er al., 2010; Yu et al., 2011] relied on limited
in-house datasets, a challenge that persists in recent research
as well. Current studies remain constrained by small sample
sizes, with datasets ranging from 700 to 1,760 samples [Yang
et al., 2021; Zhang et al., 2021], while similar limitations
appear in other works [Xu ef al., 2010; Wang et al., 2020;
Devnath et al., 2021; Wang et al., 2021]. Researchers [Yang
et al., 2021] developed a two-stage pipeline using UNet for
lung segmentation and ResNet34 for classification, validated
on 1,760 CXR images. [Zhang er al., 2021] introduced a
region-based approach, dividing CXRs into six subregions
for opacity detection and 4-class staging, tested on 1,216 sub-
jects. [Devnath et al., 2021] leveraged transfer learning with
CheXNet [Rajpurkar et al., 20171, combining multilevel fea-
tures with SVM configurations. [Wang et al., 2021] evaluated
InceptionV3 [Szegedy et al., 2015] on 1,881 samples, while
[Wang et al., 2020] proposed a cascaded framework using
CycleGAN for synthetic data generation.

These constraints stem from the complexity of radiolog-
ical annotation and privacy concerns [Akhter er al., 2023b;
Mushtaq er al., 2024].  Self-Supervised Learning (SSL)
has emerged as a promising solution [Huang er al., 2023a;
Haghighi et al., 2024; Manna et al., 2024; Azizi et al., 2021;
Zhou et al., 2019], offering the ability to leverage unlabeled
data for pretraining before fine-tuning on smaller datasets. To
overcome the challenge, we leverage SSL, a paradigm that
enhances model robustness while reducing dependence on la-

beled data. While [Zhang et al., 2021] demonstrated success
using sub-region-based classification aligned with ILO stan-
dards, we propose a novel SSL framework utilizing multi-
resolution jigsaw puzzle solving as a pretext task. Our ap-
proach preserves global anatomical context and spatial rela-
tionships critical for pneumoconiosis diagnosis, while elim-
inating the need for granular sub-region annotations. This
end-to-end learning strategy enables the model to learn hi-
erarchical features directly from the whole CXR, improving
both efficiency and diagnostic accuracy.

1.2 Research Contributions

Pneumoconiosis, a group of occupational lung diseases, par-
ticularly Silicosis, presents significant healthcare challenges
in industrial settings worldwide, necessitating innovative di-
agnostic approaches. The complete workflow for the pro-
posed work is shown in Fig.2. This multidisciplinary, col-
laborative approach to healthcare innovation and sustainable
development makes the following key contributions:

1. Scientific Innovation: We propose SHIELD, a Self-
supervised, Silicosis-focused Hierarchical Imaging
framework for early occupational Lung disease
Diagnosis, utilizing multi-resolution jigsaw puzzle
solving as a pretext task, combined with a two-level
ensemble strategy for pneumoconiosis detection. This
approach effectively addresses the small sample space
challenge while preserving crucial spatial relation-
ships in lung region analysis at different resolutions,
advancing the state-of-the-art in medical image analysis.

2. Experimental Validation and Societal Impact: Vali-
dated on 3, 000+ CXRs from Silicosis cases across mul-
tiple healthcare centers, the proposed SHIELD method
achieves 72% average accuracy across all classes, show-
ing a 2% improvement over the best baseline (SSL-
1024) and up to 20% improvement over traditional trans-
fer learning approaches. Our approach enables early
prediction, improving worker health outcomes and re-
ducing economic burden.

3. Multi-stakeholder Collaboration: Our research brings
together Al, medicine, and public health to develop an
Al-enabled diagnostic system through close collabora-
tion with healthcare professionals. Incorporating iter-
ative stakeholder feedback, we designed a GUI-based
tool tailored for public healthcare settings. Currently un-
dergoing user interface testing in clinical environments,
our approach ensures practical deployment in resource-
limited settings while addressing real-world implemen-
tation challenges.

2 Methodology

Given a dataset D = (xi,v;)i = 1V of CXR images x; €
RZ*W and corresponding labels 3; € 0,..., K where K
represents distinct pathological conditions based classes in-
cluding Silicosis, Silico Tuberculosis (STB), Tuberculosis
(TB) and Normal, constituting a multiclass classification
problem. Our objective is to learn a deep neural network
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Figure 2: End-to-end workflow for SHIELD, from data col-
lection to deployment. The system integrates clinical exper-
tise with deep learning for automated Silicosis analysis.

f(x;0) : REXW — RK that maps input images to class
probabilities by minimizing the cross-entropy loss.

The limited availability of labeled medical data and the
complex nature of radiological patterns necessitate an ap-
proach that can effectively learn robust features from lim-
ited samples while maintaining diagnostic accuracy across di-
verse clinical settings. Our proposed diagnostic framework,
SHIELD, for early occupational Lung disease Diagnosis, con-
sists of two main components: (1) a pretext task utilizing
a multi-resolution jigsaw puzzle mechanism for SSL, and
(2) a downstream task leveraging the learned representations
for lung disease classification through a two-level ensemble
learning mechanism. The framework is designed to effec-
tively learn hierarchical features from CXRs, using different
spatial resolutions with enhanced representational learning
from SSL pretraining approach. The final classification is a
two-stage ensemble boosted prediction outcome, combining
the multi-resolution and weighted score fusion.

2.1 Pretext Task: Multi-Resolution Jigsaw
Learning

The pretext task is structured as an SSL problem where
we transform chest CXR images into jigsaw puzzles with
multiple-resolution settings. This approach lets the model
learn local and global context and information across differ-
ent resolutions.

Preliminary Step: Image Preprocessing and Segmenta-
tion: Given an input CXR image I € RZ*W we ap-
ply lung segmentation to isolate lung fields, removing back-
ground noise and normalizing the input space. This produces
a binary mask, M, which is multiplied with the original im-
age to generate segmented inputs for the pretext task. This
segmented representation serves as the foundation for subse-
quent multi-resolution analysis. To create the segmentation
mask, we employed the UNet [Ronneberger er al., 2015] ar-
chitecture as the segmentation model, which is trained and
validated on the Shenzhen and Montgomery datasets [Jaeger
et al., 2014] with ResNet50 [He et al., 2016] backbone, and
pretrained on the ImageNet [Krizhevsky er al., 2012] dataset.
The trained model is applied to Silicosis CXR samples, per-
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Figure 3: SHIELD: Illustrating deep-learning framework for
diagnosing Silicosis through a two-phase approach. The first
phase involves lung segmentation and self-supervised learn-
ing using a multi-resolution jigsaw puzzle strategy as the pre-
text task, while the second phase implements a downstream
task comprising fine-tuning and ensemble learning to achieve
accurate disease classification.

forming segmentation at three resolutions (1024, 512, 256),
enabling focused multi-resolution analysis.
Multi-Resolution Pyramid Generation: We generate a
pyramid of resolutions (1024 x 1024, 512 x 512, and 256 x
256) from the segmented lung image. Each resolution level L
isrepresented as I, = R(I, S1.), where L € {1024, 512, 256}
and R(-) is the resize operation and Sy, is the target size at
level L. This multi-resolution approach ensures that the model
learns features at different spatial scales, crucial for capturing
fine-grained details and global structural patterns.

Jigsaw Pattern Generation as Pretext Task: The self-
supervised jigsaw puzzle pretext task is particularly well-
suited for CXR analysis due to the inherent anatomical sym-
metry and structural relationships in thoracic imagery. By
decomposing CXRs into patches and learning their spatial
arrangements, the model learns critical anatomical relation-
ships, tissue patterns, and organ boundaries fundamental to
diagnostic interpretation. This pretext task is especially valu-
able as it enforces the model to understand both local fea-
tures (e.g., tissue textures, anatomical patterns) and global
structural relationships (e.g., cardiothoracic ratio, lung field
symmetry) without requiring expert annotations. Further-
more, the multi-resolution approach in our jigsaw framework
enables capturing features at varying scales, which is cru-
cial for detecting diffuse diseases (like interstitial patterns)
and localized abnormalities (such as nodules) in CXRs. The
pretext tasks encourage learning more representational fea-
tures based on the anatomical structure of the lungs. To
improve this, we performed the pretext task at three resolu-
tions. The resolution-specific pretraining ensures each model
develops unique and complementary feature extraction capa-
bilities, significantly enhancing the ensemble’s discriminative
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power. At each resolution level, we divide the image into a
grid of 3x3 patches. The patches are shuffled according to
a predefined permutation strategy P, creating a jigsaw puzzle
using J; = P(I1,3 x 3), where Jy, represents the shuffled
image at resolution L, the permutation P is selected from a
set of valid permutations that maintain sufficient complexity
while ensuring learning feasibility.

We adapted multiple deep learning-based computer vision
models to solve the Jigsaw puzzle on the 3 x 3 puzzle pat-
tern and finetuned each model individually. The choice for
the models included ResNet18[He et al., 2016], VGG16[Liu
and Deng, 2015], AlexNet[Krizhevsky er al., 2012] and
DenseNet121[Huang et al., 2017], pretrained on the Ima-
geNet dataset. As mentioned above, the pretext task inputs
the segmented CXR. The pretext task results in a total of 12
models across three resolutions for 4 different deep models.

2.2 Downstream Task: Multi-Model Ensemble
Classification

In the downstream task, we leverage the rich hierarchical
representations learned during the jigsaw puzzle pretraining
phase (pretext task) to finetune the model for the specific task
of lung disease classification, where the encoder’s learned
understanding of anatomical structures and spatial relation-
ships are crucial for differentiating among various types of
Pneumoconiosis such as Silicosis, TB, and their combina-
tions (STB).

In our case, we performed the downstream task for classi-
fying a given CXR image using the pretrained models from
the pretext task at three resolutions by finetuning them at the
resolution of 224 x 224, which is the standard resolution to
train the deep learning based computer vision models, opti-
mizing the computational cost as wel. In the finetuning stage,
we rescaled the 224 x 224 to the multiscale pyramid level,
L, where L € {256, 512, 1024}, for all the four models.
Each model is initialized with weights learned from the pre-
text task and finetuned for the classification task for Silico-
sis, STB, TB, and normal. Meanwhile, we selected the best-
performing models across the three resolutions to generate
the ensemble-boosted results. Thus, it paves the way for the
first level of ensemble learning to improve classification re-
sults. The models differ in their architectural details to ensure
diversity in feature extraction represented as modely 24 - Op-
timized for high-resolution features, models,2 - balanced for
mid-resolution features and modelass - specialized for low-
resolution features at a resolution of 1024 x 1024, 512 x 512
and 256 x 256, respectively. This is followed by the adaptive
weighted score fusion of the prediction scores generated by
the models across the three resolutions for optimizing ensem-
ble results. The weighted score fusion is followed using the
equation 1.

Final Pred = axModelyg24+ 8+ Models12+v* Modelssg

ey
where «, (3, and -y are learnable parameters to tune the equa-
tion 1 for the contribution of each model to the final predic-
tion outcome. The two-level ensemble strategy encompasses
the strengths of multi-solution and adaptive weighted score
fusion. The complete pipeline of the proposed classification

<filename>P0001488SI.jpeg</filename><path>Z:Images\P0001488SI.jpeg<
size><width>2961</width><height>3567</height><depth>1</depth></size
><segmented>0</segmented><object><name>Hilar Vascular
prominence</name><pose>Unspecified</pose><truncated> 0</truncated>
<difficult>0 </difficult><bndbox><xmin>1935</xmin><ymin>857</ymin>

<xmax>2231</xmax><ymax>1650</ymax></bndbox> XML Format

1935 857 2231 1650 Text
Hilar Vascular prominence  Format

EXAMINATION: CHEST (PA) Report
INDICATION: (PA)

TECHNIQUE: Chest (PA)

FINDINGS: There is no pleural effusion, pleural thickening or consolidation.
There is fibrosis in the Right upper and left upper zones. There are calcified
nodules in the right mid-zone and bilateral lower zones. There is nodular
opacity in the bilateral lungs. The cardiomediastinal silhouette is normal.
There is no cavity. There is a right hilar calcified lymph node. Bronchiectasis
and Ground glass opacity are absent. Bones and diaphragm are normal.
Impression: Silicosis.

Figure 4: Showcases the annotation output of the collected
dataset in XML, text, and the corresponding report.

approach is shown in Fig. 3. This comprehensive method-
ology enables robust feature learning and accurate classifica-
tion of CXR images into one of the aforementioned classes,
leveraging both self-supervised and ensemble learning ap-
proaches.

3 Experimental Setup

Dataset: To develop SHIELD, we retrospectively collected
a comprehensive CXR dataset [Akhter er al., 2025], specif-
ically curated for deep learning-based Pneumoconiosis diag-
nosis. The dataset comprises 3,044 high-resolution frontal
chest radiographs collected from stone workers across mul-
tiple Primary health care centers in the Sirohi district in Ra-
jasthan, India. Each grayscale image, with an average resolu-
tion of 3567 x 2898 pixels, was acquired using standard radi-
ological protocols and stored in JPEG format. The data col-
lection spanned three years, ensuring temporal diversity and
real-world clinical variability. The dataset encompasses four
distinct diagnostic categories: Silicosis (a progressive fibrotic
lung disease), Silicotuberculosis (STB, a complex combina-
tion of silicosis and Tuberculosis), Tuberculosis (TB), and
normal cases. Each image was annotated through a rigor-
ous multi-stage process involving experienced radiologists,
with inter-annotator agreement maintained above 0.85 (Co-
hen’s kappa). To ensure annotation quality, we employed
a consensus-based approach where disagreements were re-
solved through panel discussions.

Representative samples from the collected dataset are il-
lustrated in Fig. 5 for each of the classes. The class distribu-
tion and train-test split protocol are detailed in Table 1, main-
taining stratification across diagnostic categories to prevent
class imbalance issues during model training. This carefully
curated dataset forms the foundation of SHIELD, Al-based
diagnostic framework aimed at enabling early, efficient, and
cost-effective screening of occupational lung diseases.
Dataset Compilation: To annotate and label the collected
dataset, we teamed up with a group of expert radiologists who
performed the data labelling and annotation. The dataset an-
notation was conducted through a structured process involv-
ing five board-certified radiologists. To maintain annotation
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Set Silicosis STB TB Normal Total
Train 738 529 525 337 2129
Test 319 227 225 144 915

Total 1057 752 750 481 3044

Table 1: Classwise distribution of the compiled CXR dataset
for Silicosis, used to assess the proposed SHIELD algorithm.

Figure 5: Illustrates the samples of (A) Silicosis, (B) TB, (C)
STB and (D) Normal.

consistency, we implemented: 1. Systematic task distribution
among radiologists, 2. Initial training sessions led by senior
experts and 3. Quality control through 20% case review. The
dataset encompasses both local and global labels, structured
in XML and text formats. Local findings include nodules,
consolidation, ground glass opacity, and pleural effusion,
while global categories comprise Silicosis, STB, TB, and nor-
mal cases. To generate the segmentation masks and findings
(local labels), we used Sketchbook [Ske, 2025]and Labellmg
[Tzutalin, 2015] software, respectively. The annotation pro-
cess incorporated several key improvements, including stan-
dardized annotation protocols through the Labellmg toolbox,
a hierarchical review system to reduce inter-observer vari-
ability, and comprehensive documentation of image quality
issues. The project faced technical challenges related to vari-
able image quality in digitized radiographs, chemical artifacts
and storage-related degradation, and the complexity of multi-
label, multi-class annotation requirements. This systematic
approach to annotation created a solid foundation for devel-
oping deep learning models specifically focused on chest ra-
diograph analysis, with particular emphasis on Silicosis and
TB detection. The sample annotation in XML and text, along
with the report, is provided in Fig.4.

Evaluation Metrics: To assess the performance of the pro-
posed model for classifying the given CXRs for the four
aforementioned classes, we used the Area Under the Receiver
Operating Characteristic (AUROC). We report the AUC (one
vs rest) values to compare the performance across the pro-
posed approach and baseline models (Table 2). We also report
the class-wise accuracy for each class in Table 3.
Implementation Details: The proposed approach, along
with the baseline, is implemented using the Pytorch frame-
work [Paszke et al., 2019]. The pretrained models are down-
loaded from the official website of Pytorch!. We used the
OpenCV library images to resize the images to 1024, 512, and
256 resolutions. The models are trained on NVIDIA V100-
DGXS GPUs for 70 epochs for pretext and downstream tasks
using the cross-entropy loss function. We fixed the batch size
of 16 across all the tasks, including the segmentation and
Adam [Kingma and Ba, 2015] as the optimizer. We used
the learning rates of le-4, le-5, and le-4 for segmentation,
pretext, and downstream tasks, respectively.

"https://pytorch.org/

Approach Classes DenseNet121 ResNet18 VGG16 AlexNet
STB 0.75 0.79 0.72 0.70
TB 0.69 0.66 0.63 0.60

Transfer Learning Normal 0.70 0.65 0.68 0.65
Silicosis 0.72 0.63 0.65 0.61
Average 0.71 0.68 0.67 0.64
STB 0.84 0.85 0.80 0.79
TB 0.82 0.85 0.79 0.81

SSL (256) Normal 0.86 0.85 0.82 0.82
Silicosis 0.81 0.83 0.79 0.80
Average 0.83 0.84 0.80 0.80
STB 0.87 0.87 0.84 0.81
TB 0.84 0.87 0.81 0.81

SSL (512) Normal 0.87 0.87 0.85 0.85
Silicosis 0.83 0.84 0.82 0.82
Average 0.85 0.86 0.85 0.61
STB 0.89 0.89 0.86 0.83
TB 0.87 0.88 0.83 0.82

SSL (1024) Normal 0.89 0.88 0.87 0.88
Silicosis 0.83 0.86 0.83 0.84
Average 0.85 0.87 0.84 0.84
STB 0.92
TB 0.91

Proposed Normal 0.93
Silicosis 0.89
Average 0.91

Table 2: Tllustrates comparing the baseline approaches and
SHIELD. The bold results are the best results obtained with
the proposed two-level weighted scores fusion. The evalua-
tion metric used AUC score (one vs rest).

4 Results and Discussion

To assess the performance of the proposed approach, we con-
ducted the experiments on the collected dataset on Silico-
sis. To train the model, we resize the given CXR images to
a resolution of 224 x 224, which is an ideal and common
image resolution to train deep learning models, preserving
the image quality and computational complexity, making it a
practical choice for many computer vision applications. We
compared the proposed approach with the traditional super-
vised learning based finetuning approach, encompassing the
transfer learning technique. The transfer learning (TL) based
finetuning is treated as the baseline for our experimentation.
With the proposed approach, we first fine-tune the models ob-
tained in the pretext task. The finetuning is performed at all
three resolutions, on the samples with compiled dataset for
four-class classification. The four classes are Silicosis, STB,
TB, and normal. The results are reported using AUC score
(one vs rest) and classwise accuracy. The obtained results
are higher than the baseline approaches, highlighted in bold
in Table 2 and 3. TL uses knowledge from large datasets;
however, it may struggle with domain mismatch in medical
imaging, while SSL learns directly from unlabeled medical
data, often yielding better generalization and robustness on
small, domain-specific datasets. Our comprehensive experi-
mental evaluation demonstrates the efficacy of the proposed
SSL framework compared to conventional transfer learning
methodologies across multiple quantitative metrics and ar-
chitectural configurations. This section presents an in-depth
analysis of the classification performance, architectural com-
parisons, failure modes, and interpretability aspects.

Classification Performance Metrics: As shown in Table
3, the class-wise accuracy analysis reveals a consistent per-
formance gradient with increasing SSL feature dimensional-
ity. The baseline transfer learning implementations exhibited
moderate performance characteristics, with DenseNet121 and
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Approach Classes DenseNet121 ResNet18 VGG16 AlexNet
STB 0.52 0.55 0.53 0.51
TB 0.61 0.59 0.52 0.50

Transfer Learning Normal 0.65 0.60 0.59 0.53
Silicosis 0.53 0.58 0.52 0.55
Average 0.57 0.57 0.54 0.52
STB 0.54 0.48 0.51 0.61
TB 0.65 0.64 0.59 0.62

SSL (256) Normal 0.67 0.64 0.62 0.57
Silicosis 0.54 0.64 0.60 0.59
Average 0.60 0.60 0.58 0.59
STB 0.60 0.57 0.52 0.62
TB 0.70 0.70 0.62 0.63

SSL (512) Normal 0.68 0.70 0.64 0.62
Silicosis 0.62 0.63 0.61 0.58
Average 0.65 0.65 0.59 0.61
STB 0.70 0.64 0.54 0.62
TB 0.72 0.80 0.67 0.70

SSL (1024) Normal 0.69 0.72 0.65 0.67
Silicosis 0.66 0.85 0.64 0.60
Average 0.69 0.70 0.62 0.64
STB 0.65
TB 0.81

Proposed Normal 0.74
Silicosis 0.67
Average 0.72

Table 3: Comparing baseline approach with SHIELD in terms
of class-wise accuracy. The bold values represent the best
results obtained with the proposed two-level weighted scores
fusion.

ResNet18 achieving comparable mean accuracies of 0.57
across classes, while VGG16 and AlexNet demonstrated
marginally reduced performance at 0.54 and 0.52, respec-
tively. The initial SSL-256 configuration showed measur-
able improvements over the baseline, with mean accuracies
ranging from 0.58 to 0.60 across architectural variants, as de-
tailed in Table 1. This performance enhancement became
more pronounced with SSL-512, where both DenseNet121
and ResNet18 achieved mean accuracies of 0.65. The most
substantial performance gains were observed with SSL-1024,
where ResNet18 demonstrated particularly strong classifica-
tion capabilities for TB (0.80) and Silicosis (0.85). Our
proposed fusion methodology further elevated these results,
achieving a superior overall mean accuracy of 0.72. As evi-
denced in Table 1, notable performance peaks were observed
in TB detection (0.81), followed by Normal (0.74), Silicosis
identification (0.67), and STB (0.65). This represents a sig-
nificant performance gain of approximately 15% compared to
the baseline transfer learning models.

ROC Analysis and AUC Metrics: The Area Under the
Curve (AUC) metrics, presented in Table 2, provide addi-
tional validation of our methodology’s discriminative capa-
bilities. The baseline transfer learning approaches demon-
strated moderate performance with AUC scores ranging from
0.64 to 0.71. The SSL variants showed systematic improve-
ments, with SSL-256 achieving mean AUC scores between
0.80 and 0.84 across architectural configurations.

SSL-512 further enhanced performance with mean AUC
scores reaching 0.85-0.86 for DenseNet121 and ResNetl18.
The SSL-1024 variant maintained this elevated performance
level, with individual class AUC scores peaking at 0.89 for
specific categories. The proposed fusion approach achieved
optimal performance with a mean AUC score of 0.91, demon-
strating better discriminative capability across all classes
(0.92, 0.91, 0.93, and 0.89 for respective classes).

True: STB
Pred: TB

True: TB True: STB || True: Silicosis
Pred: Silicosis | Pred: Silicosis Pred: TB

L0

7

True: STB | True: Silicosis | True: Normal True: TB
Pred: STB | Pred: Silicosis | Pred: Normal Pred: TB

.

Figure 6: Images of misclassified and correctly classified
samples.

Confusion Matrix and Error Analysis: The confusion ma-
trices illustrated in Table. 4 provide crucial insights into clas-
sification behaviour and error modes across different method-
ological approaches. The transfer learning baseline exhibited
significant inter-class confusion, particularly between TB and
Silicosis, with elevated misclassification rates. The SSL vari-
ants demonstrated progressive reduction in these misclassifi-
cation patterns. The SSL-512 configuration showed marked
improvement in correct classifications, particularly for Silico-
sis (192 correct predictions) and TB (158 correct predictions).
The SSL-1024 variant further enhanced this performance pro-
file, achieving 219 correct Silicosis predictions and 180 cor-
rect TB predictions. The proposed fusion approach achieved
maximal correct classifications across all categories, with par-
ticular strength in Silicosis detection (224 correct predictions)
and TB identification (182 correct predictions).

Failure Case Analysis: Table 4 shows several failure cases
through the confusion matrices. The most prominent chal-
lenge involves distinguishing between TB and Silicosis in
cases where radiographic patterns show overlapping charac-
teristics. Analysis of false positives indicates that the model
occasionally misinterprets diffuse nodular patterns character-
istic of Silicosis as TB, particularly in cases with extensive bi-
lateral involvement. As shown in the misclassification exam-
ples in Figure 6 (top row), another significant failure mode in-
volves the misclassification of STB cases, where the presence
of both silicotic and tuberculous changes creates complex ra-
diographic patterns. The model demonstrated increased un-
certainty in cases where the temporal progression of the dis-
ease resulted in architectural distortion, making it difficult to
distinguish primary pathology from secondary complications.
GradCAM Visualization and Interpretability: The Grad-
CAM ([Selvaraju er al., 2017] visualization analysis pre-
sented in Figure 7 provides crucial insights into the model’s
decision-making process and attention mechanisms. For Sili-
cosis cases (top two rows), the activation maps focus on char-
acteristic nodular patterns in upper lung zones, particularly
emphasising bilateral symmetrical distribution patterns. In
STB cases (middle two rows), the visualization reveals dual
activation patterns focusing on both nodular opacities and
areas of consolidation. This learning aligns with the com-
plex radiographic manifestations of combined silicosis and
TB. TB cases (bottom two rows) show distinct activation pat-
terns emphasizing areas of infiltrates, cavitary lesions, and
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(a) Transfer Learning (b) SSL-256 (c) SSL-512 (d) SSL-1024 (e) Proposed
True/Pred | STB _ TB _ Nor _Sil STB TB  Nor Sil STB. TB  Nor il STB. TB  Nor Sil STB TB  Nor Sil
STB s 4 32 32 23 4 30 32 36 38 25 28 @5 35 25 22 @8 35 24 20
TB 40 137 25 23 35 146 24 20 30 158 20 17 25 180 12 8 20 182 13 10
Nor 20 15 o4 15 18 2 97 17 15 0 98 21 12 8 104 20 10 8 107 19
sil 55 48 47 169 51 45 45 178 46 40 4 192 40 25 35 219 38 2 35 24

Table 4: Confusion matrices comparing the classification performance of different approaches. (Nor:Normal and Sil: Silicosis).

Tuberculosis

Figure 7: The visualization demonstrates how the proposed
deep learning framework identifies key regions in CXRs for
Silicosis diagnosis through GradCAM activation mapping.
The model effectively focuses on relevant lung areas across
all four diagnostic categories, validating its feature detection
capabilities.

upper lobe predominance. The model pays particular atten-
tion to pulmonary TB’s asymmetric distributions and pleural
involvement characteristics.

S Case Study with Real World Impact

Our research implementation directly supports multiple
United Nations Sustainable Development Goals while em-
bodying the UN’s “Leave No One Behind” principle through
technology-enabled healthcare access in marginalized indus-
trial communities. We developed our initial model using
a comprehensive dataset from an aspirational district un-
der India’s Aspirational Districts Programme (ADP)2, com-
prising 3,044 high-resolution CXRs (average size 3567 X
2898) collected over three years. To rigorously validate the
model’s real-world impact, we conducted extensive testing
using a completely independent dataset collected from four
geographically dispersed PHCs, strategically chosen to rep-
resent diverse healthcare settings distinct from our training
region of the collected dataset.

Supporting the UN’s “Leave No One Behind” agenda, we
developed an intuitive GUI-based diagnostic tool (Fig. 8)
specifically designed for and currently being tested by health-
care professionals - the intended end-users without technical
expertise in Al or computer systems. This real-world clini-
cal validation involves doctors, nurses, and healthcare work-
ers actively using the system in their daily patient care rou-
tines across multiple healthcare centres. The ongoing testing
process emphasizes practical utility in clinical settings, with
continuous feedback from healthcare professionals shaping
the tool’s refinement. This user-centric approach ensures the
system’s seamless integration into existing healthcare work-
flows while maintaining diagnostic accuracy in resource-
constrained environments. The current phase of rigorous clin-
ical testing by actual end-users represents a crucial step to-

*https://vajiramandravi.com/aspirational-district-programme/

ward developing a practically viable solution that can be ef-
fectively deployed across diverse healthcare settings, demon-
strating how technological innovation can be made accessible
and useful for frontline healthcare delivery.

SHIELD: Silicosis Detection Tool

Upload: oy Browse

the OXR image selected

Run

Run complete

Prediction : Normal
Score: [0.9490071]

A
s\

Developed at IIT Jodhpur

Figure 8: GUI of SHIELD for Silicosis diagnosis. The GUI
provides the prediction with class-specific scores across four
categories: Silicosis, STB, TB, and Normal.

6 Conclusion

We introduce SHIELD, a novel self-supervised, multi-
resolution jigsaw puzzle mechanism that simultaneously
learns features at three distinct scales (1024 x 1024, 512 x
512, and 256 x 256), enabling the model to capture both fine-
grained pathological patterns and global anatomical struc-
tures in CXRs for diagnosing Silicosis. Unlike conventional
single-resolution approaches, the proposed method preserves
crucial diagnostic information across scales, vital for detect-
ing diffuse diseases (requiring global context) and localized
abnormalities (requiring fine detail) in CXRs. The jigsaw
puzzle design incorporates domain-specific constraints based
on thoracic anatomy, ensuring that the patch arrangements
preserve meaningful anatomical relationships. This anatomi-
cally informed approach guides the model to learn clinically
relevant features during the self-supervised phase, resulting in
more robust and interpretable representations for downstream
diagnostic tasks. The proposed two-stage ensemble pipeline
leverages the complementary strengths of different spatial
resolutions. The first stage processes resolution-specific fea-
tures through specialized models, while the second stage em-
ploys an adaptive weighted score fusion to combine these
multi-scale predictions optimally. This hierarchical structure
significantly improves the model’s ability to differentiate be-
tween visually similar conditions, such as silicosis and TB,
which present distinct patterns at different spatial scales.
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