Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Denoised Attention and Question-Augmented Representations for Knowledge
Tracing

Jiwei Deng!, Youheng Bai', Mingliang Hou'?*, Teng Guo', Zitao Liu' and Weiqi Luo'
!Guangdong Institute of Smart Education, Jinan University, Guangzhou, China
2TAL Education Group, Beijing, China
dengjiwei @stu.jnu.edu.cn, yhbai @stu2024.jnu.edu.cn, houmingliang @tal.com, {tengguo, liuzitao,
lwq} @jnu.edu.cn

Abstract

Knowledge tracing (KT) is an essential task in on-
line education systems. It aims to predict the fu-
ture performance of students based on their histor-
ical learning interaction data. Despite significant
advancements in attention-based KT models, they
still face some limitations: inaccurate input repre-
sentation and excessive student forgetting model-
ing. These limitations often lead to the attention
noise problem: the model assigns non-negligible
attention weight to some information that is cog-
nitively irrelevant in nature, thereby generating in-
terference signals. To address this problem, we
propose a novel KT model, i.e., DenoiseKT. De-
noiseKT effectively models the difficulty of the
questions and utilizes graph neural network to cap-
ture the complex relationship between questions,
thereby refining the representations of input fea-
tures. Additionally, the denoised attention mech-
anism introduces a weight factor to reduce the
model’s attention weight distribution on irrelevant
information. We extensively compare DenoiseKT
with 22 state-of-the-art KT models on 4 widely-
used public datasets. Experimental results show
that DenoiseKT can effectively solve the attention
noise problem and outperform other models. The
source code of DenoiseKT is available at https:
/lpykt.org.

1 Introduction

Knowledge tracing (KT) is an important task in online edu-
cation systems, which focuses on predicting students’ future
performance based on their past learning interactions. This
is accomplished by modeling students’ knowledge states as
they engage with learning platforms like massive open online
courses and intelligent tutoring systems [Piech et al., 2015;
Ghosh et al., 2020; Shen et al., 2021; Yin et al., 2023;
Gao et al., 2025b]. Effectively addressing the KT task can
help teachers better identify students who need further at-
tention or recommend personalized learning materials to stu-
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dents. This is crucial to promoting the development of per-
sonalized education [Li et al., 2020; Huang erf al., 2023].

Currently, mainstream KT models can be broadly di-
vided into two major categories: deep sequence KT mod-
els [Medsker et al., 2001] and attention-based KT mod-
els [Vaswani et al., 2017]. The former (e.g., DKT [Piech
et al., 2015], DKT-F [Nagatani et al., 2019], KQN [Lee
and Yeung, 2019]) utilizes auto-regressive architectures,
such as long short-term memory (LSTM) and gated recur-
rent unit (GRU), to capture students’ interaction informa-
tion at discrete timestamps, modeling temporal dependen-
cies through iterative updates of hidden states. The latter
(e.g., SAKT [Pandey and Karypis, 2019], SAINT [Choi et al.,
20201, AKT [Ghosh et al., 2020]) employs multi-head atten-
tion mechanisms to flexibly model long-term dependencies
in students’ historical interaction sequences, often resulting
in improved predictive accuracy. Compared to deep sequence
models, attention-based models not only capture long-range
dependencies more effectively but offer the advantage of par-
allel training. As a result, they have gradually become the
dominant KT architecture in recent years.
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Figure 1: An illustration of the attention noise.

Although attention-based KT models have shown promis-
ing results, they face the “attention noise” problem in prac-
tical applications: the model assigns non-negligible attention
weights to some information that is essentially cognitively ir-
relevant, thereby generating interference signals. As shown in
Figure 1, for the adjacent question, although their knowledge
components (KCs)! have no intersection, the attention mech-
anism may mistakenly overestimate the correlation between
them and assign them non-negligible attention weights, re-
sulting in some questions that do have cognitive connections

'A knowledge component (KC) is a generalization of everyday
terms like concept, principle, fact, or skill.
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being ignored.

To effectively model students’ forgetting behavior during
cognitive processes, current mainstream attention-based KT
models [Ghosh et al., 2020; Im et al., 2023; Yin et al., 2023;
Li et al., 2024c] often introduce a decay mechanism that
penalizes attention weights based on the temporal distance
between student interaction logs—the greater the distance,
the stronger the penalty—to simulate the effect of forgetting.
However, the decay mechanism, to some extent, introduces
noise into the attention. The decay mechanism included in
the model emphasizes immediate learning behaviors, which
may unintentionally lead to the neglect of learning materi-
als with long-term cognitive significance [Salthouse er al.,
2006]. This is similar to the theory of “irrelevant informa-
tion inhibition” in cognitive psychology, which holds that in
the cognitive process, individuals need to actively suppress
irrelevant information and focus on task-related signals [Mc-
Namara and McDaniel, 2004; Li et al., 2023]. In KT task, if
a model places too much emphasis on short-term learning be-
haviors while overlooking long-term cognitive development,
it may struggle to accurately reflect students’ evolving knowl-
edge states. This imbalance can make it difficult to recog-
nize students’ gradual cognitive progress, thereby reducing
the model’s predictive accuracy. In addition, inaccurate in-
put representation may also lead to attention noise problem.
In educational scenarios, student’s learning behaviors and the
relationships between them are very complex. If the input of
the model cannot accurately reflect these learning behaviors
and the relationships between them, the attention mechanism
cannot correctly focus on key information, resulting in atten-
tion noise.

To address the above attention noise problem, we present
a novel KT model, called DenoiseKT, which focuses on the
following two aspects. On the one hand, we enhance the rep-
resentation by using a graph neural network to capture the
complex relationships between questions, thereby obtaining
a refined initial embedding representations. In addition, we
also effectively model the difficulty of the questions. By com-
bining the refined initial embedding representation and the
modeling of the difficulty of the questions, we can finely en-
code the interaction sequence to reduce the interference of
irrelevant information on the model. On the other hand, we
refine the attention mechanism by introducing a weighting
factor that suppresses the allocation of attention to irrelevant
information. Through these two improvements, our model
can solve the problem of attention noise, thereby improving
the prediction performance of the model.

The main contributions of this paper are summarized as
follows:

* We present the first solution to the attention noise prob-
lem in attention-based KT models, emphasizing the im-
pact of irrelevant information on the distribution of at-
tention weights.

e We propose the question-enhanced Rasch module
(QERM) that can effectively capture the complex re-
lationship between questions and effectively model the
difficulty of questions, thereby making the feature rep-
resentation more refined.

* We propose a denoised attention mechanism that can ef-
fectively reduce the model’s attention weight allocation
to irrelevant information.

* We conduct comprehensive quantitative and qualita-
tive experiments to validate DenoiseKT on four pub-
lic datasets, demonstrating significant performance im-
provements over existing 22 KT models and its effec-
tiveness in alleviating the attention noise problem.

2 Related Work
2.1 Knowledge Tracing

KT aims to utilize historical learning interaction data from
students to predict their responses to future questions. Re-
cently, with the advancement of deep learning, this technol-
ogy has been widely applied to KT tasks. We classify exist-
ing methods into deep sequence models and attention-based
models based on the characteristics of KT models.

Deep sequence models employ auto-regressive architec-
tures to capture the chronological order of student interac-
tions. DKT [Piech er al., 2015] introduced LSTM layers to
assess students’ knowledge mastery over time, and KQN [Lee
and Yeung, 2019] built upon DKT by incorporating a skill en-
coder, which combines both student learning behaviors and
KCs representations to further refine the predictions made by
DKT. Models like DKVMN [Zhang et al., 2017] leveraged
memory modules for dynamic KT, and ATKT [Guo et al.,
2021] incorporated adversarial techniques to create pertur-
bations that enhance the generalization ability of the model.
Other extensions, such as DIMKT [Shen et al., 2022] utilized
multi-dimensional features to enhance predictions. However,
deep sequence models often struggle with vanishing gradients
and have a limited ability to capture long-range dependencies.

Attention-based models overcome many limitations of
deep sequence models by utilizing self-attention mechanisms
to capture long-term dependencies. SAKT [Pandey and
Karypis, 2019] employed a self-attention network to model
the relevance between KCs and students’ past interactions,
while SAINT [Choi et al., 2020] introduced an encoder-
decoder architecture to represent sequences of exercise and
response embeddings. AKT [Ghosh er al., 2020] imple-
mented three self-attention modules, using a monotonic at-
tention mechanism to explicitly model the phenomenon of
student forgetting over time, and hybrid approaches such
as SKVMN [Abdelrahman and Wang, 2019] and DTrans-
former [Yin et al., 2023] combined attention with additional
features to enhance accuracy. These attention-based mod-
els excel in parallelized training and long-range dependency
awareness, positioning them as the leading choice in modern
KT applications.

Despite significant advancements in attention-based KT
models, they still face some limitations: inaccurate input rep-
resentation and excessive student forgetting modeling. These
limitations often lead to the attention noise problem, where
the model assigns non-negligible attention weight to some
information that is cognitively irrelevant in nature, thereby
generating interference signals.
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2.2 Attention Noise

Attention noise refers to the phenomenon that the model
based on the attention mechanism assigns non-negligible at-
tention weights to segments of the input sequence that are
either irrelevant or less important to the task at hand [Gao et
al., 2025al. As a result, the model fails to concentrate on the
most crucial information in the sequence, instead incorporat-
ing irrelevant information into the decision-making process,
which reduces the model’s ability to capture the key patterns
needed for accurate predictions or task execution, ultimately
leading to a decline in model performance.

Attention noise has been widely recognized as a key prob-
lem affecting model performance. In recent years, many stud-
ies have tried to solve this problem from different angles.
For example, [Zhao et al., 2019] indirectly alleviates atten-
tion noise by designing sparse attention patterns to focus on
relevant parts. [Ye et al., 2024] proposed a differential at-
tention mechanism to eliminate attention noise by calculating
the attention score as the difference between two independent
softmax attention maps.

However, these methods are not applicable to KT tasks,
as attention noise is influenced by the modeling of student
forgetting, often resulting in the noise being assigned more
weight than the relevant information.

3 The Framework of DenoiseKT

3.1 Problem Statement

Given an arbitrary question g,, KT’s objective is to predict
the probability of a student answering q. correctly based on
the student’s previous interaction data. More specifically, the
previous interaction sequence of each student is represented
as § = {< q1,C1,m1 >,< q2,C2,72 >, .., < q1,Ciy 7y >
}, where ¢; denotes the question answered by the student at
time ¢, C; represents the associated KC set to ¢; and r; is the
binary response indicating whether the student’s response to
the question is correct (r; = 1) or incorrect (r; = 0) . We would
like to estimate the probability of the student answering the
question ¢;41 correctly.

3.2 Framework Overview

DenoiseKT’s overall framework is depicted in Figure 2. In
this section, we provide a detailed introduction to DenoiseKT,
which consists of three components: (1) interaction represen-
tation module that uses graph-enhanced question representa-
tion and incorporates question difficulty into the representa-
tion; (2) denoised attention module that effectively solves the
problem of attention noise to better extract knowledge state
from students’ past learning history; (3) prediction module
that uses a two-layer fully connected network to make pre-
diction.

3.3 Interaction Representation Module

Effectively representing questions in interaction sequences is
crucial to the success of the KT model. However, there are of-
ten complex and multi-level relationships between questions,
making it difficult to comprehensively capture and model
them using traditional methods alone. These relationships are
not merely superficial adjacent connections (some questions

may involve the same KC, thereby forming direct associa-
tions). Furthermore, there may exist deeper high-order rela-
tionships. For example, while question 1 and question 2 share
acommon KC, and question 2 and question 3 also share a KC,
even though question 1 and question 3 lack direct KC con-
nections, there may still exist inherent connections between
them through this indirect chain of associations. Traditional
models typically only handle the direct associations of these
questions and struggle to capture more complex high-order
relationships, which have a significant impact on the repre-
sentation of questions.

To address the above problem, we utilize a graph convo-
lutional network (GCN) to capture high-order relationships
among questions to enhance question representations [Liu ez
al., 2024; Sun et al., 2023; Li et al., 2024a; Li et al., 2024b].

Given a set of questions @ and KCs C, we construct a
question-KC bipartite graph G = (V,U), where V = (QUC)
and U = {(¢,¢)|lq € Q,c € C} denote the sets of nodes and
edges, respectively. We then use GCN combined with the
question-KC bipartite graph to enhance question representa-
tions. The latent representation e,, of question g; is computed
as follows: . 0

W = AWOW + b

€q = ng) " Og,

where A is the adjacency matrix of G. W, € R%*"a is the
embedding matrix of question. o, is the original one-hot vec-
tor of x. W € R?*4 and b € R are learnable linear trans-
formation operations.

Additionally, even for questions that cover the same KC,
there may be significant differences in difficulty. For instance,
two questions that both assess fraction addition: one is a sim-
ple addition with the same denominator, while the other in-
volves more complex operations with different denominators,
students’ performance on these two questions will demon-
strate a significant difference. If we judge students’ perfor-
mance solely based on whether they have mastered a certain
type of question, while ignoring the difficulty of the question,
the model may make incorrect inferences. Inspired by the
classic Rasch model [Rasch, 1993], which models individual
ability and item difficulty separately, we incorporate question
difficulty into the question representation. After obtaining the
latent representation e,, of question ¢;, we enhance it by in-
troducing a difficulty parameter to better capture the under-
lying properties of the question. More specifically, the ¢-th
representations of question and interaction are represented as
follows:

1 [Ctl
d,, = Wg-04;e, 7|C| g W. o,
tl =
e, =W, o,

Xt =€q, D dlh ©ec; Yt =€ D e,
where d,, represents the question ¢; difficulty. e, and e,,
denote the latent representations of KC set C; and student re-
sponse 7; on question g;. |Cy| is the total number of KCs as-
sociated with question ¢;. W, € R¥>"a, W, € R¥*" and
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Figure 2: The overview of the proposed DenoiseKT framework.

W, € Rdx2 represent the difficulty embedding matrix, the
KC embedding matrix, and the response embedding matrix.
@ and © represent the addition operators and element-wise
product respectively.

The above is a detailed overview of the QERM we pro-
posed. This module can not only characterize the complex
relationships between questions, but also reasonably model
the difficulty differences of questions so as to represent ques-
tions more accurately.

3.4 Denoised Attention Mechanism

In the research field of KT and educational measurement, stu-
dents’ cognitive behaviors are closely linked to the questions
they answer. When answering questions, students tend to fo-
cus on those questions that are most similar in content and
closest in time to the current question, and answer based on
this information. This process conforms to the laws of hu-
man cognition, because the human brain typically processes
information through associations, especially when confronted
with new problems, it automatically recalls similar situations
and experiences.

In real cognitive processes, the factors that have the most
significant impact on a student’s current cognitive behavior
are often those historical questions that are most relevant and
closest to the current question. However, existing attention-
based models KT models tend to assign non-negligible at-
tention scores to questions that are not closely related to the
current question, due to inaccurate input representations and
the decay mechanisms introduced to account for student for-
getting. These results in unnecessary interference and pre-
vents the model from focusing on truly relevant information.
These non-negligible irrelevant attention scores are referred
to as attention noise. This noise affects the model’s ability to
accurately track and analyze the student’s learning process,
thereby reducing the model’s overall effectiveness. To solve
the attention noise problem, we design a denoised attention
mechanism that multiplies the attention scores by weight fac-
tor. This enables the model to effectively focus on truly rele-

vant information. Specifically, the retrieved knowledge state
hi11 at the (¢ 4+ 1)-th timestamp is determined using the fol-
lowing formula:

Q=L(x¢11); K= L(x1,...,%); V=L(y1,.--,¥¢)

QK®
Va

where L(-), K7 and d denote the linear operation, the trans-
pose of K and the dimension of K respectively. BF is the
weight factor that is calculated based on the similarity and
distance between questions in the interaction history. Specif-
ically, each element of BF is computed as follows:

h; 1 = softmax(BF - )V

sim,;j = |Z - .7| . 1{q¢§¢h‘}

1 _’_ﬁsvm”’
bfiy = {1

where bf;; denotes the element at the (¢)-th row and (j)-th
column of BF. 1y,.~,.} means itis 1 when ¢; and g; share
the same KC, and 0 otherwise. [ is a hyperparameter greater
than O and less than 1.

3.5 Prediction Module

To predict the outcomes of students over questions, we em-
ploy a two-layer fully connected neural network following
the attention layers. The attention layers capture a compre-
hensive representation of the student’s behavioral sequence.
After passing through the feed-forward network in the at-
tention module, this representation, denoted as h;, func-
tions as a summary of the knowledge state. This is sub-
sequently merged with the contextualized embedding of the
current question x;;, creating the input for the prediction
layer. The prediction layer calculates the probability of a cor-
rect response I'; 11 using the following formulation:

fri1 =0(n(Wo-n(Wy - [hyy1:Xe01) + by) + b2))

simij 7’5 0

otherwise

)
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where o(-), n(-) denote Sigmoid and ReLU functions. Wy €
R¥*2d W, € R™4 b, € RY by € R? are learnable pa-
rameters.

We optimize the prediction function by minimizing the bi-
nary cross-entropy loss between the ground-truth response
r;+1 and the prediction probability ¥, as follows:

L=- Z(rt+1 logf't—i-l + (1 — rt+1) log(l — f't+1))

t

This predictive framework allows the model to incorpo-
rate information from both previous interactions and current
contexts, ensuring precise estimates of students’ knowledge
states and response probabilities.

4 Experiment

To evaluate the performance of our proposed DenoiseKT
framework, we conduct extensive experiments to address the
following research questions:

¢ RQ1: Can DenoiseKT outperform existing KT models
in terms of prediction performance?

* RQ2: How does each component of DenoiseKT con-
tribute to its overall effectiveness?

* RQ3: Can DenoiseKT effectively solve the attention
noise problem?

4.1 Datasets

In this paper, we evaluated the performance of our model on
four widely used publicly available datasets.

o ASSISTments2009 (ASSIST2009)%: This dataset is
collected from the ASSISTment online tutoring plat-
form during the 2009-2010 school year and focuses on
math exercises. It has been a standard benchmark for
KT methods over the past decade. The dataset includes
346,860 interactions, 4,217 students, 17,737 questions,
and 123 KCs, with the maximum number of KCs in a
single question being 4.

« NeurIPS2020 Education Challenge (NIPS34)%: This
dataset is provided by NeurIPS 2020 Education Chal-
lenge. It contains students’ responses to mathematics
questions from Eedi. The dataset includes data from
Task 3 and Task 4, with 1,399,470 interactions, 4,918
students, 948 questions, 57 KCs, and the maximum
number of KCs in a single question is 2.

» XES3G5M*: This large-scale dataset derived from a
Chinese online mathematics learning platform, docu-
menting the learning performance of third-grade stu-
dents in mathematics. The dataset contains 5,549,635
interactions involving 18,066 students across 7,652 math
questions. It includes rich auxiliary information,such as
865 KCs with hierarchical relationships, question types,

“https://sites.google.com/site/assistmentsdata/home/2009-2010-
assistment-data/skill-builder-data-2009-2010

3https://eedi.com/projects/neurips-education-challenge

*https://github.com/aided/XES3G5M

textual content and analysis, as well as timestamps of
student responses. In terms of the number of KCs and
the richness of contextual information, this dataset is
currently the largest in the mathematics domain.

» EdNet’: This dataset is collected over two years by
Santa, an Al tutoring service with over 780,000 users
in Korea. Given the large volume, we randomly select
a subset of student records for model evaluation. The
dataset includes 597,042 interactions, 4,999 students,
11,901 questions, and 188 KCs, with each question as-
sociated with up to 7 KCs.

To ensure reproducibility in our experiments, we rigor-
ously follow the data pre-processing steps suggested in [Liu
et al., 2022b]. We filter out student sequences that are shorter
than 3 interactions. Data statistics are summarized in Table 1.

Dataset # of interactions  # of students # questions  # of KCs
ASSIST2009 346,860 4,217 17,737 123
NIPS34 1,399,470 4918 948 57
XES3G5M 5,549,635 18,066 7,652 865
EdNet 597,042 4,999 11,901 188

Table 1: Data statistics of 4 widely used datasets.

4.2 Baselines

To assess the performance of DenoiseKT, we compared it
with 22 state-of-the-art KT models as follows: DKT [Piech
et al., 2015], DKT+ [Yeung and Yeung, 2018], DKT-
F [Nagatani et al., 2019], KQN [Lee and Yeung, 2019],
DKVMN [Zhang et al., 20171, ATKT [Guo et al., 2021],
GKT [Nakagawa et al., 2019], SAKT [Pandey and Karypis,
2019], SAINT [Choi et al., 2020], AKT [Ghosh er al., 2020],
SKVMN [Abdelrahman and Wang, 2019], HawkesKT [Wang
et al., 2021], Deep-IRT [Yeung, 2019], DIMKT [Shen et
al., 2022], qDKT [Sonkar et al., 2020], AT-DKT [Liu et
al., 2023], simpleKT [Liu et al., 2022al, QIKT [Chen et al.,
2023], RKT [Pandey and Srivastava, 2020], FoLiBiKT [Im et
al., 2023], DTransformer [Yin et al., 20231, extraKT [Li et
al., 2024c].

It is important to note that the baseline models selected
in this paper are mostly derived from articles published in
top venues on AI/ML or education. Furthermore, when
comparing these baseline models, the implementations were
based on the authors’ publicly available code and repro-
duced following the configuration settings in pyKT [Liu et
al., 2022b]. All methods underwent optimal hyperparame-
ter tuning using Weights&Bias®, ensuring the fairness of the
comparison results. Moreover, the hyper-parameter tuning
tool Weights&Biases utilizes Bayesian search to automati-
cally identify the optimal parameter combinations. For each
model, the tool explores approximately hundreds of combi-
nations during the tuning process. This automated approach
ensures that all methods achieve optimal parameters on each
dataset.

Shttps://github.com/riiid/ednet
®https://wandb.ai/site/
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Model AUC ACC
ASSIST2009 NIPS34 XES3G5M EdNet ASSIST2009 NIPS34 XES3G5M EdNet

DKT 0.7541 £0.0011  0.7689 £ 0.0002  0.7852 £ 0.0006 0.6133 £0.0006 0.7244 £ 0.0014 0.7032 + 0.0004 0.8173 +0.0002  0.6462 + 0.0028
DKT+ 0.7547 £0.0017  0.7696 + 0.0002  0.7861 4 0.0002  0.6189 £ 0.0012  0.7248 £ 0.0009  0.7039 4 0.0004  0.8178 £ 0.0001  0.6571 £ 0.0019
DKT-F - 0.7733 £0.0003  0.7940 £ 0.0006 0.6168 £ 0.0019 - 0.7076 £ 0.0002  0.8209 £ 0.0003  0.6402 £ 0.0021
KQN 0.7477 £0.0011  0.7684 + 0.0003  0.7793 4 0.0006  0.6111 & 0.0022  0.7228 £ 0.0009  0.7028 4+ 0.0001  0.8152 £ 0.0002  0.6422 + 0.0043
DKVMN 0.7473 £0.0006  0.7673 £ 0.0004  0.7792 4 0.0004  0.6158 £ 0.0022  0.7199 £ 0.0010  0.7016 & 0.0005  0.8155 & 0.0001  0.6444 £ 0.0030
ATKT 0.7470 £ 0.0008  0.7665 + 0.0001  0.7783 4 0.0004  0.6065 £ 0.0003  0.7208 £ 0.0009 0.7013 4 0.0002  0.8145 £ 0.0002  0.6369 + 0.0009
GKT 0.7424 £0.0021  0.7689 £ 0.0024  0.7727 4 0.0006  0.6223 £ 0.0017  0.7153 £0.0032  0.7014 4 0.0028  0.8135 £ 0.0004  0.6625 + 0.0064
SAKT 0.7246 £ 0.0017  0.7517 £0.0005 0.7693 £ 0.0008 0.6072 £ 0.0018 0.7063 £ 0.0018 0.6879 £ 0.0004 0.8124 +0.0002  0.6391 + 0.0041
SAINT 0.6958 £ 0.0023  0.7873 £ 0.0007  0.8074 4 0.0007 0.6614 £ 0.0019  0.6936 £ 0.0034  0.7180 4 0.0006  0.8177 £ 0.0006  0.6522 + 0.0024
AKT 0.7853 £0.0017 0.8033 £0.0003 0.8207 £0.0008 0.6721 £0.0022  0.7392 £ 0.0021 0.7323 £ 0.0005 0.8273 & 0.0007 0.6655 % 0.0042
SKVMN 0.7332 £0.0009  0.7513 £ 0.0005 0.7514 4+ 0.0005 0.6182 £0.0114  0.7156 £ 0.0012  0.6885 4= 0.0005 0.8075 £ 0.0003  0.6555 £ 0.0152
HawkesKT  0.7224 £ 0.0006 0.7767 £ 0.0010  0.7921 £ 0.0007 0.6837 £0.0016 0.7046 £ 0.0008 0.7110 £ 0.0007 0.8188 = 0.0003  0.6917 £ 0.0013
Deep-IRT 0.7465 £ 0.0006  0.7672 + 0.0006  0.7785 4 0.0005 0.6173 & 0.0008 0.7195 £ 0.0004  0.7014 4 0.0008  0.8150 £ 0.0002  0.6457 + 0.0033
DIMKT 0.7717 £0.0011  0.8030 £ 0.0002  0.8220 4 0.0002  0.6748 £ 0.0030  0.7354 £ 0.0019  0.7312 + 0.0005 0.8291 £ 0.0006  0.6699 + 0.0038
qDKT 0.7016 £ 0.0049  0.7995 + 0.0008  0.8225 4 0.0002  0.6987 £ 0.0010  0.6787 £ 0.0039  0.7299 & 0.0007  0.8301 £ 0.0000 0.6922 + 0.0004
AT-DKT 0.7555 £0.0005 0.7816 £ 0.0002  0.7932 4 0.0004  0.6249 £ 0.0020  0.7250 £ 0.0007  0.7146 4+ 0.0002  0.8198 £ 0.0004  0.6512 £ 0.0039
simpleKT 0.7744 £0.0018 0.8035 £ 0.0000 0.8163 £ 0.0006 0.6599 £ 0.0027 0.7320 £ 0.0012  0.7328 + 0.0001  0.8246 + 0.0005 0.6557 % 0.0029
QIKT 0.7878 £ 0.0024  0.8044 +0.0005  0.8222 4 0.0006  0.7271 £ 0.0012  0.7381 £ 0.0014  0.7333 4 0.0005  0.8300 £ 0.0005 0.7082 + 0.0016
RKT 0.7628 £ 0.0070  0.7966 £ 0.0011  0.8224 £ 0.0007  0.7226 £ 0.0005 0.7289 £ 0.0062 0.7264 + 0.0010  0.8294 + 0.0004  0.7045 + 0.0022
FoLiBiKT 0.7838 £0.0013  0.8033 +0.0002  0.8214 4 0.0007  0.6747 £ 0.0036 0.7393 + 0.0010 0.7323 4+ 0.0001  0.8271 £ 0.0006  0.6676 + 0.0028
DTransformer  0.7725 £ 0.0025 0.7944 £ 0.0003  0.8144 £ 0.0006 0.6736 £ 0.0028 0.7295 £ 0.0017  0.7295 + 0.0007  0.8248 + 0.0004  0.6665 + 0.0017
extraKT 0.7824 £0.0013  0.8045 + 0.0003  0.8200 4 0.0008  0.6730 & 0.0025 0.7355 £ 0.0017  0.7340 & 0.0004  0.8263 & 0.0010 0.6668 + 0.0016
DenoiseKT ~ 0.7898 + 0.0013  0.8046 & 0.0002  0.8282 £ 0.0004 0.7353 + 0.0012  0.7427 & 0.0007  0.7330 & 0.0007  0.8319 £ 0.0003  0.7131 + 0.0020

Table 2: Performance comparisons in terms of AUC and ACC on four datasets. The best performance is highlighted in bold, and the second-

best performance is underlined.

4.3 Experimental Setting

In order to fairly evaluate the performance of KT models, all
models are trained and evaluated on student interaction se-
quences of fixed length 200. For each dataset, we use 20% of
all student sequences for the test set, and perform standard 5-
fold cross validation on the rest 80% of all student sequences.
We use the Adam optimizer to train our model. The maxi-
mum of the training epochs is set to 200, and we choose to
use early stopping when the performance is not improved af-
ter 10 epochs. The embedding dimension, the hidden state
dimension, the two dimension of the feed-forward neural net-
work layers are set to [64, 128], the learning rate, random
seed, dropout rate and hyper-parameter 3 are set to [le-3, 2e-
3, le-4], [42, 3407], [0.1, 0.2, 0.3, 0.4, 0.5] and [0.01, O.1,
0.3, 0.5, 0.7, 0.9, 0.99] respectively, the number of blocks
and attention heads are set to [1, 2, 4] and [4, 8]. Our model
is implemented in PyTorch [Imambi et al., 2021] and trained
on a cluster of Linux servers with the NVIDIA RTX 3090
GPU device. Aligned with previous work [Liu et al., 2022b;
Ghosh et al., 2020; Liu et al., 2022al, we use area under
the curve (AUC) as the main evaluation metric and accuracy
(ACC) as the secondary evaluation metric.

4.4 Results

Overall Performance (RQ1)

Table 2 shows the overall performance of all models in the
four datasets. We calculate the mean and standard deviation
of the AUC and ACC across 5 folds. According to Table 2,
we have the following observations: (1) on the main evalu-
ation metrics, our proposed model DenoiseKT outperforms
all state-of-the-art models. Compared to the second-best per-
forming model, the DenoiseKT model performs 0.20% better
on ASSIST2009, 0.01% better on NIPS34, 0.57% better on
XES3G5M, and 0.82% better on EdNet. On the secondary
evaluation metrics, our proposed model DenoiseKT outper-
forms almost all baselines (except QIKT and extraKT on

the NIPS34 dataset) , with scores of 0.7427 (ASSIST2009),
0.7330 (NIPS34), 0.8319 (XES3G5M), and 0.7131 (EdNet).
These results indicate the effectiveness of DenoiseKT; (2)
compared to all attention-based KT models, i.e., SAKT,
SAINT, AKT and simpleKT, our model has the best perfor-
mance on all four datasets. This indicates our denoised atten-
tion mechanism and QERM allow attention-based KT models
to effectively deal with the attention noise problem that im-
proves the predictive performance.

Although the AUC improvements shown in Table 2 may
appear modest, with increases of less than 1% on some
datasets, these gains are significant, especially when evalu-
ated with a context window size of 200. Recent benchmark-
ing studies have highlighted that many reported advance-
ments in KT models are unreliable, often stemming from
flawed evaluation methods, with overall prediction perfor-
mance having improved by only 3.5% since 2015. In contrast,
our study strictly adhered to the rigorous evaluation proto-
col proposed by pyKT [Liu et al., 2022b] and conducted an
exhaustive hyper-parameter search for all baseline models to
ensure reliable and meaningful comparisons.

Ablation Study (RQ2)

In order to verify the effectiveness of each design compo-
nent in the DenoiseKT model, we constructed three variants
of the DenoiseKT model for ablation experiments, as shown
in Figures 3 and 4. Specifically, for variant DenoiseKT w/o
QERM, we removed the QERM in the question representa-
tion part, that is to say we no longer use GCN to capture the
complex relationship between questions to enhance question
representation and also cancel the effective modeling of prob-
lem difficulty. We use the standard method commonly used
in KT research to represent the question. For variant De-
noiseKT w/o BF, we removed the weight factor BF used to
solve the noise problem in the denoised attention mechanism.
For variant DenoiseKT w/o QERM & BF, we removed both
the QERM and the weight factor BF.
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Figure 3: Comparison of AUC values for DenoiseKT and its variants across datasets.
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Figure 4: Comparison of ACC values for DenoiseKT and its variants across datasets.

It can be observed that compared with the complete De-
noiseKT model, all other ablation variants perform worse on
the four datasets. Specifically, (1) the variant without QERM
(DenoiseKT w/o QERM) had different degrees of perfor-
mance degradation on all datasets, among which the per-
formance of ASSIST2009 was the most obvious, with AUC
down by 1.3%. This emphasizes the importance of capturing
the complex relationship between problems and effectively
modeling the difficulty of problems; (2) the variant without
BF (DenoiseKT w/o BF) also leads to a decrease in perfor-
mance, which shows that reducing the generation of atten-
tion noise is crucial for accurate prediction; (3) compared
with other variants, the variant without QERM and BF (De-
noiseKT w/o QERM & BF) shows the worst results.

Overall, the absence of any component will lead to a de-
crease in model performance, which shows that each module
in the DenoiseKT model plays an important role in the KT
task.

Visualization (RQ3)

To intuitively demonstrate the difference between regular dot-
product attention and denoised attention, we visualize the at-
tention scores of both regular dot-product attention and de-
noised attention, as shown in Figure 5. From Figure 5, we
have the following observations: our denoised attention can
capture the information of similar problems well, while reg-
ular dot product attention cannot capture the information of
similar problems well. For example, when predicting the
9th question, denoised attention focuses on information from
questions 4, 3, 2, and 1, while regular dot-product attention
emphasizes information from questions 8, 7, 6 and 5. This

demonstrates that our model can efficiently tackle the issue
of attention noise.

Dot-Product Attention Denoised Attention

80 -> [26] 0 0 1.0
0n1l->[26] w1 x1 08
¥ 2->[26] %2 %2 :
A 3->[26] £3 £3

a4->1261 g4 c4 .l 0-6
-5->[60,54]§5 .gs 0.4
§6->160,52]0 6 06 '
B7->160,53137 37 0.2
038 ->[60,54]9'8 O3 [ |

89 ->[26] 9 9 0.0

0123456789
Question Index

Figure 5: Visualization of both dot-product attention and denoised
attention. The question index represents questions answered by a
specific student, and index O represents the first question.

5 Conclusion

This paper presents DenoiseKT, a KT model designed to ad-
dress attention noise by introducing two key components: a
QERM for refined question representation, and a denoised
attention mechanism to suppress irrelevant signals. Experi-
ments on four public datasets confirm that both components
contribute to improved prediction accuracy. Beyond perfor-
mance gains, DenoiseKT offers a generalizable and cogni-
tively grounded framework for calibrating attention in educa-
tional modeling, paving the way for more interpretable and
reliable KT systems.
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