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Abstract

Over 4.15 million low-income households across
nearly 60,000 villages in China benefit from pho-
tovoltaic (PV) poverty alleviation power stations.
However, weak infrastructure and limited capabili-
ties make these systems vulnerable to fluctuations.
One of the United Nations’ Sustainable Develop-
ment Goals (SDG 7) seeks to ensure access to
affordable and reliable energy for all, especially
in underdeveloped regions. This paper proposes
MCloudNet, a multi-modal framework designed
to improve ultra-short-term PV prediction in data-
scarce, cloud-dynamic environments. MCloudNet
explicitly models multi-layer cloud structures from
satellite imagery and fuses them with time-series
meteorological data to enhance prediction accuracy
and interpretability. A province-level dispatch sys-
tem with MCloudNet has been deployed in Hebei,
supporting scheduling across rural PV stations. Ex-
periments conducted in counties such as Shexian
and Luxi highlight the framework’s effectiveness
for use in underdeveloped micro-grids. Opera-
tional results show that the system has reduced
over 60 million kWh of solar curtailment and gen-
erated 24 million CNY in economic value, bene-
fiting approximately 50,000 rural households. By
minimizing power fluctuations and improving ru-
ral energy scheduling, MCloudNet supports essen-
tial services such as lighting, medical facilities, and
communications. The source code is available at:
https://github.com/AI4SClab/MCloudNet.

1 Introduction
Solar energy is a crucial renewable resource that plays a
key role in the global energy transition and carbon neutral-
ity goals [Saeed and Siraj, 2024]. The efficient utilization

∗Corresponding author

of solar power depends not only on the deployment of pho-
tovoltaic (PV) systems but also on accurate PV power fore-
casting [Iheanetu, 2022]. Reliable forecasting helps optimize
energy dispatch, balance electricity supply-demand, and en-
hance grid stability [Zhang et al., 2024]. In many underde-
veloped regions, PV systems often serve as the primary en-
ergy source for small, independent power networks, known
as micro-grids [Yan et al., 2017]. According to the white pa-
per Energy in China’s New Era released by the State Coun-
cil Information Office, China has constructed photovoltaic
(PV) poverty alleviation power stations as rural micro-
grids with a total installed capacity of 26.36 GW, bene-
fiting nearly 60,000 impoverished villages and 4.15 million
low-income households [State Council Office of the People’s
Republic of China, 2020]. However, weak infrastructure and
limited grid regulation capacity make these micro-grids vul-
nerable to fluctuations (e.g., dynamic cloud shifts, solar inten-
sity drops, and sudden weather changes), which can lead to
instability in electricity supply and disrupt basic services such
as lighting in schools, cold storage in clinics, or communica-
tions in emergency scenarios [van de Beek, 2024]. Addition-
ally, the lack of real-time monitoring equipment constrains
energy management, making satellite cloud imagery a cost-
effective alternative for PV power forecasting.

Since 2014, the Chinese government has launched a Pho-
tovoltaic Poverty Alleviation Program (PPAP), driving con-
tinuous advancements in PV power forecasting technology
[Wang et al., 2020; Bai et al., 2021]. Early approaches rely on
simple statistical models and empirical formulas, which are
easy to implement but lack accuracy in complex weather and
geographical conditions, such as autoregression (AR) [Han-
nan and Kavalieris, 1986], autoregressive moving average
(ARMA) [Swami et al., 1994] and autoregressive integrated
moving average (ARIMA) [Ho and Xie, 1998]. The intro-
ducing of physical models improve prediction accuracy by
incorporating meteorological data and PV system character-
istics [Dolara et al., 2015]. In recent years, deep learning
models such as MLP[Wang et al., 2016], RNN[Rajagukguk
et al., 2020], CNN[Qin et al., 2022], have shown capibility
to effectively capture non-linear relationships between power
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generation and multiple influencing factors, significantly im-
proving prediction accuracy. Furthermore, multi-modal ap-
proaches have integrated satellite cloud imagery with time-
series datasets, further enhancing predictive performance by
capturing spatial-temporal cloud variations that directly im-
pact solar radiation [Yao et al., 2021; Hajjaj et al., 2023;
Xie et al., 2024].

Despite significant advancements in PV power forecast-
ing, challenges remain in achieving accurate predictions un-
der complex weather conditions and rural deployment sce-
narios. Studies have shown that China’s average curtailment
rates rise to 2.8% in 2024, resulting in significant renewable
energy waste due to insufficient forecasting precision and dis-
patch support [Ratings, 2024]. Specifically, the first major
challenge is the inadequate complexity of single-layer cloud
cover, especially in regions with highly dynamic weather pat-
terns. Existing methods oversimplify irregular, complicated
cloud cover as a single-layer uniform structure [Son et al.,
2023; Wang et al., 2024b], which fails to capture the fine-
grained temporal and spatial changes in cloud movements.
As a result, these models struggle with providing accurate
real-time forecasts, particularly during fast-changing weather
events such as cloud formations and dissipations that signifi-
cantly impact solar radiation. Another challenge is effectively
fusing heterogeneous data features, such as multi-layer satel-
lite cloud imagery and time-series meteorological data, into a
unified framework for micro-grids forecasting. The varying
resolutions and formats of these data limit predictive accuracy
and real-time applicability in micro-grid environments.

Figure 1: Left: Rural PV station in Yunnan Province. Right: Local
grid-side distribution infrastructure supporting dispatch operations.

In this paper, we propose a novel multi-modal framework
MCloudNet that improves PV power forecasting by introduc-
ing a composite multi-layer cloud coverage approach and a
time-series prediction model. To the best of our knowledge,
this is the first work that explicitly models multi-layer cloud
structures based on satellite imagery for PV forecasting. Fig-
ure 1 shows a rural PV station in Yunnan Province, where
MCloudNet has been integrated into local dispatch opera-
tions. Our main contributions are as follows:

• Multi-layer cloud feature capture modeling: We pro-
pose a composite multi-layer cloud modeling approach
that extracts high, middle, and low-altitude cloud lay-
ers from satellite imagery. By incorporating cloud mo-
tion vectors and occlusion coefficients, our method ef-
fectively captures cloud dynamics and inter-layer inter-

actions, enhancing both accuracy and interpretability.

• Multi-modal PV prediction framework: We design a
multi-modal learning framework that fuses multi-layer
clouds and ground-based data, leveraging multi-scale in-
formation to improve predictive accuracy under diverse
weather conditions.

• State-of-the-art (SOTA) performance: Our model
achieves SOTA performance on multiple real-world
datasets, consistently outperforming existing methods in
both accuracy and generalization.

• Social and economic benefits: The MCloudNet frame-
work has been successfully applied in underdeveloped
villages and micro-grids in Hebei, Yunnan, and Shan-
dong, across over 50 photovoltaic stations. By providing
accurate PV forecasting, it reduces 60 million kWh of
curtailment power, generates significant economic ben-
efits, and ensures the security of micro-grid dispatch.

By improving forecast accuracy and energy management
efficiency, our research directly contributes to the Sustain-
able Development Goals of the United Nations (SDG 7: Af-
fordable and Clean Energy, SDG 9: Industry, Innovation and
Infrastructure, SDG 13: Climate Action). Furthermore, it
aligns with the principle ”Leave No One Behind” (LNOB)
by promoting equitable access to renewable energy and en-
suring that underserved communities benefit from sustainable
energy solutions [Carlsen and Bruggemann, 2022].

2 Related Work
In recent years, photovoltaic power prediction models have
undergone continuous development and evolution [Al-Dahidi
et al., 2024]. With the rapid advancement of deep learn-
ing technology, researchers have gradually introduced various
deep learning architectures into photovoltaic power predic-
tion [Aslam et al., 2021; Wazirali et al., 2023]. For example,
[Agga et al., 2022] proposed a hybrid architecture combin-
ing a convolutional neural network (CNN) and a long short-
term memory network (LSTM), which fully utilized the spa-
tial characteristics and temporal dependencies of photovoltaic
data, thereby improving the prediction accuracy. At the same
time, [Chen et al., 2024] proposed a CGAformer model that
integrates the global additive attention mechanism, which ef-
fectively solves the problem of multi-scale feature fusion in
short-term photovoltaic prediction. However, most of these
methods rely on a single type of data (such as historical
power data or meteorological data), and fail to fully utilize
the complementarity of multi-source data, resulting in certain
limitations under complex meteorological conditions [Tan et
al., 2024]. To further improve the prediction accuracy, re-
searchers began to explore deep learning methods based on
multi-source heterogeneous data fusion. These methods can
capture meteorological and spatial information more compre-
hensively by integrating local measurement data, numerical
weather forecast (NWP) data, and satellite images. For ex-
ample, [Yao et al., 2021] used U-Net and an encoder-decoder
architecture to jointly process multi-source data, thereby im-
proving the accuracy of photovoltaic forecasts. [Yang et al.,
2023] fused historical power data, NWP data, and irradiance
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data of adjacent sites to effectively reduce the impact of me-
teorological factors on forecast errors. However, the current
multi-source data fusion method still does not fully consider
the impact of cloud movement and distribution on ultra-short-
term photovoltaic forecasts, which limits the adaptability and
prediction accuracy of the model under complex meteorolog-
ical conditions.

3 The Overall Framework
The overall framework of the MCloudNet we proposed is
shown in Figure 2, which mainly consists of four stages: data
collection, cloud image reconstruction and layering, cloud
forecasting and GHI (Global Horizontal Irradiance) correc-
tion, and the time-series PV prediction [Stein et al., 2012].
First, in the data collection stage, the input data includes
NWP data, local meteorological data, and satellite cloud im-
ages, providing comprehensive and multi-dimensional envi-
ronmental and meteorological information support for the
model. Subsequently, in the cloud image reconstruction and
layering stage, channel extraction and temperature stratifica-
tion operations are performed to generate layered historical
cloud maps, which can provide richer and more accurate me-
teorological data compared to traditional single cloud layer
research. In the cloud forecasting and GHI Correction stage,
multi-layer satellite cloud images and the optical flow method
are used to predict the movement trajectory of clouds. The
NWP data is corrected by convolutional neural networks to
generate corrected NWP-GHI data, improving the accuracy
of the prediction data. Finally, in the time-series PV predic-
tion stage, in order to combine multi-layer high-resolution
satellite data with time-series data, the model optimizes the
input data through the time alignment and noise reduction
module, and extracts deep features through the hierarchical
feature extraction module and cross-scale attention module .
At the same time, combined with the corrected NWP-GHI
data, the final prediction result is generated. This frame-
work can efficiently integrate satellite images and ground-
based meteorological data and can be applied to various sce-
narios, such as energy prediction, carbon emission analysis,
and power grid dispatch.

4 Methods
This section presents the MCloudNet framework for ultra-
short-term PV power forecasting, consisting of three main
modules. Specifically, referring to predictions of photovoltaic
generation within the next 15 minutes to 4 hours, with a time
resolution of 15 minutes.

4.1 Cloud Image Reconstruction and Layering
The Himawari-8 satellite, operated by the Japan Meteorolog-
ical Agency, is a geostationary meteorological satellite cov-
ering 16 bands. Among these, the infrared Top of Atmo-
sphere Brightness Temperature (TBB) channel records the
black body temperature derived from the radiative brightness
observed by the satellite, which can be used to generate cloud
images. The TBB13 channel is selected for cloud image re-
construction because it represents the cloud top temperature,
which can indirectly reflect the cloud height. Specifically, we

use the temperature values from the TBB13 channel as the
RGB values without additional mapping. The image is then
normalized, adjusting the pixel values to the range of[0,255],
resulting in a three-channel cloud image based on cloud top
temperature. According to the World Meteorological Organi-
zation [Organization, 2017; Molero et al., 2022], cloud layers
are classified as shown in Table1. The classification follows
the temperature thresholds defined for low, mid, and high
clouds, which help in determining the distinct characteristics
and weather patterns.

Cloud Type Temperature Range (◦C) Height (m)
Low Clouds > 0◦C 0− 2000
Mid Clouds 0◦C to −20◦C 2000− 6000
High Clouds < −20◦C > 6000

Table 1: Classification of layers based on cloud top temperatures
and heights.

In each cloud layer image, we preserve the pixels cor-
responding to the specific cloud layer with their original
temperature values, while pixels from the other layers are
masked. Mathematically, the processes can be represented
as follows:

It(x, y) =

{
Tt(x, y) if Layer(x, y) = target layer
Mask if Layer(x, y) ̸= target layer

(1)

where It(x, y) denotes the pixel value at coordinates (x, y)
in the cloud image for the target cloud layer at time t, and
Tt(x, y) represents the temperature value at the same coordi-
nates for the target layer.

4.2 Cloud Forecasting and GHI Correction
We employ the optical flow method to obtain the predicted
cloud map based on historical cloud imagery. Subsequently,
the predicted cloud map is processed through a feature ex-
traction network to achieve a more accurate estimation of the
GHI value at the forecasted time.
[Optical Flow Cloud Prediction] The position and extent of
cloud cover directly affect PV power generation efficiency,
and the cloud’s shape and movement may change within a
short period (the 10-minute interval). To accurately predict
PV power generation, we obtain cloud maps at the predicted
time. Considering the time delay of satellite cloud images, we
employed the Dual TV-L1 optical flow method [Zach et al.,
2007] to predict the cloud maps at the predicted time from
two consecutive cloud maps. We estimate motion between
two image frames by minimizing both image intensity gra-
dients and flow field variation.Specifically, to obtain the pre-
dicted cloud map It from times t, we use the cloud maps It−1
and It−2 from times t− 1 and t− 2, respectively, to calculate
the optical flow field u between them:

E(u, v) =

∫∫ [
(It−1(x, y)− It−2(x+ u(x, y), y + v(x, y)))2

+ λ(|∇u(x, y)|+ |∇v(x, y)|)
]
dx dy

(2)
where u(x, y) and v(x, y) are the components of the optical

flow field in the x and y directions, respectively. λ is the regu-
larization parameter controlling the smoothness of the optical
flow field.
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Figure 2: The overall framework of MCloudNet.

By minimizing this energy function, we obtain the optical
flow field:

(u∗, v∗) = argmin
u,v

E(u, v) (3)

Then, we obtain the cloud image at the predicted time:

It(x, y) = It−1(x+ u(x, y), y + v(x, y)) (4)

[Feature Extraction and Representation]
One of the most critical factors influencing photovoltaic

(PV) power generation is the global horizontal irradiance
(GHI) received by the PV panels [Kallio-Myers et al., 2020;
Wang et al., 2024a]. While numerical weather prediction
(NWP) models estimate GHI using physical principles and
empirical formulas, these methods primarily capture diurnal
and seasonal patterns, and often fall short in accurately repre-
senting short-term fluctuations due to limited responsiveness
to rapid weather changes.

To address this limitation and enhance the precision of ra-
diation forecasting, we propose a heterogeneous data fusion
network that integrates satellite cloud imagery with NWP
data to predict the GHI value Gt at a target time t. The pro-
posed network comprises two branches that independently
process cloud images and NWP features, enabling comple-
mentary information extraction.

1. Cloud Imagery branch: For a given time t, the
cloud imagery input is a set of three-channel cloud im-
ages (high-, middle-, and low-level clouds), denoted as
It = [Ihigh

t , Imid
t , I low

t ], where Ihigh
t , Imid

t , I low
t ∈ RC×H×W .

These images are processed using three separate convolu-
tional residual networks [He et al., 2016] to extract feature
vectors Fhigh, Fmid, Flow ∈ Rdmodel1 , respectively.

Fhigh, Fmid, Flow = FE(Ihigh
t ), FE(Imid

t ), FE(I low
t ) (5)

To better explore the contribution of different cloud layers
to the results, cloud images features are multiplied by three
learnable parameters weights whigh, wmid, and wlow respec-
tively, before being fed into the fusion branch.

Ft = [whigh × Ft,wmid × Fmid,wlow × Flow] (6)

2. NWP branch: The NWP-GHI data xt is processed
through an embedding layer to convert it into a token TNWP ∈
Rdmodel2 :

TNWP = Embedding(xt) (7)

3. Fusion Network: Subsequently, a fusion network in-
tegrates the cloud image feature vectors and the NWP-GHI
token to model their interaction, producing a more accurate
GHI prediction Gt. The cloud feature vector Ft and NWP-
GHI token TNWP are fused using an MLP to produce the final
predicted GHI value Gt:

Gt = MLP(Ft, TNWP) (8)

4.3 Time-Series PV Prediction
To enhance the time series analysis capability of our multi-
modal model, we design an advanced cross-scale fusion
transformer. Our model consists of three key components:
Noise Reduction Module, Hierarchical Feature Extraction
Module, and Cross-Scale Attention Module. Given an input
time series X ∈ RC×L, where C represents the number of
channels and L represents the length of the time steps.
[Noise Reduction Module] The noise reduction module aims
to enhance the quality of input data by dynamically adjusting
the contribution of points within each channel. Specifically, it
refines the input data through selective masking and anomaly
correction. Given an inverted tensor Xinv ∈ RL×C , obtained
by independently flipping X along each channel, the noise
reduction operation can be expressed as:

M = f(Xinv; θ) (9)
Xdenoised = Xinv ⊙M (10)

where M is a learnable mask matrix, f is a parameterized
function, and θ represents the parameters of this function.
Through training, the values in the mask matrix M gradu-
ally approach either 0 or 1, effectively selecting features and
suppressing noise.
[Hierarchical Feature Extraction Module] The hierarchi-
cal feature extraction module constructs multi-level represen-
tations of the denoised data to capture features at different
scales. The core idea is to extract fluctuations and trends
across various temporal scales using a multi-level structure.
The output of this module can be represented as:

H = HierarchicalFeatureExtraction(Xdenoised) (11)
where H contains feature representations at different scales.
Specifically, hierarchical feature extraction can be achieved
through down-sampling and up-sampling operations:

Hi = Downsample(Xdenoised, i) (12)
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H′
i = Upsample(Hi, i) (13)

where i is the layer of feature representations.
[Cross-Scale Attention Module] The cross-scale attention
module utilizes attention mechanisms to fuse semantic infor-
mation from different scales, deeply analyzing interactions
between different scales and capturing a broader spectrum of
complex temporal patterns. Assuming that the feature repre-
sentations at different scales are H′

i, the output of this module
can be represented as:

Z = Cross-Scale Attention([H′
1,H

′
2, ...,H

′
N ]) (14)

where Z is the final aggregated feature representation. Specif-
ically, cross-scale attention is applied to the concatenated
multi-scale feature set:

Qi = WQH
′
i, Ki = WKH′

i, Vi = WV H
′
i (15)

Attention(Qi,Kj ,Vj) = softmax

(
QiK

T
j√

dk

)
Vj (16)

The final cross-scale attention output aggregates information
from all scales:

Z =

N∑
i=1

N∑
j=1

Attention(Qi,Kj ,Vj) (17)

The output processor aggregates the processed features and
generates the prediction output. Assuming that the final fea-
ture representation is Z, the predicted output Ŷ can be repre-
sented as:

Ŷ = WOZ+ bO (18)

where WO and bO are the weights and biases of the output
layer, respectively.

After obtaining the PV power predictions CPV from CSF-
former, an MLP is employed to learn the relationship between
CPV and the current GHI Gt. This ensures that the final PV
power not only follows the historical trend but also accurately
accounts for the impact of the current GHI.

YPV = MLP(Ŷ, Gt) (19)

The model is trained using a combination of cloud image
data, NWP data, and real-world PV power generation data.
The training process involves optimizing the weights and pa-
rameters of the MCloudNet modules, ensuring that the model
can accurately predict solar power output for different regions
and weather conditions.

5 Experiments
In this section, we evaluate the proposed model through ex-
periments and ablation studies, demonstrating its effective-
ness in PV power forecasting and analyzing the contribution
of each component.

5.1 Experimental Settings
Datasets. As shown in Figure 3, we construct a PV power
generation dataset based on two stations in Luxi County,
Yunnan, and three in Shexian County, Hebei. The dataset

integrates multi-source inputs, including Local Meteorolog-
ical Data (LMD), Numerical Weather Prediction (NWP),
and stratified satellite cloud images. LMD and NWP pro-
vide 15-minute resolution weather indicators (e.g., irradi-
ance, temperature, wind speed), while satellite imagery from
Himawari-8 offers 10-minute interval cloud-top temperature
data. All modalities are temporally aligned at 15-minute in-
tervals. An overview of spatial, temporal, and real-time char-
acteristics is summarized in Table 3.

(a) Luxi County, Yunnan (b) Shexian County, Hebei

Figure 3: Location of photovoltaic stations.

Baselines. We select eight competitive models as base-
lines, including A-UNET[Yao et al., 2021], DLinear[Zeng et
al., 2023], PatchTST[Nie et al., 2022], TimesNet[Wu et al.,
2022], STLAN[Yang et al., 2023], iTransformer[Liu et al.,
2023b], SDformer[Li et al., 2024].
Parameter Details. We divide the dataset into a training set
and a test set in an 8:2 ratio. In the GHI correction module,
the training uses 15 epochs, with a sincos learning rate sched-
ule and an initial learning rate of 0.001, and a batch size of 24.
In the image branch feature dimension of each layer of cloud
images dmodel1 is 256, while the NWP-GHI feature dimension
dmodel2in the NWP branch is 512. The fusion network con-
tains a hidden layer, with dropout set to 0.5. In the MCloud-
Net model, the training uses 10 epochs, with the learning
rate following exponential decay, starting at 0.0001. The in-
put sequence length is configurable with four preset options:
{24 (6h), 48 (12h), 96 (24h), 192 (48h)}. In the GHI-based
correction of PV, the number of training epochs is 200, using
the Adam optimizer with an initial learning rate of 0.01.All
experiments were conducted on an Intel(R) Xeon(R) CPU
E5-2650 (16 cores) and GeForce-RTX-4090-24GB GPUs.

5.2 Main Experiments Results
In the Table 2, we present a comparison of our model’s re-
sults with baseline models. Our model achieves SOTA perfor-
mance in most cases. It is observed that the average predic-
tion error in Luxi County (Stations 1 and 2) is higher than in
Shexian County (Stations 3, 4, and 5). We speculate that this
is due to the complex mountainous terrain in Luxi County,
which leads to more dynamic cloud movements and localized
microclimate effects, such as valley winds and slope radiation
variations. These factors cause frequent and unpredictable
changes in cloud coverage, making cloud motion estimation
via optical flow more challenging. Despite these difficulties,
our model demonstrates a more significant improvement over
baseline methods in Luxi County, suggesting that the multi-
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Methods Ours
(2025)

SDformer
(2024)

iTransformer
(2024)

STLAN
(2023)

TimesNet
(2023)

PatchTST
(2023)

DLinear
(2023)

A-UNET
(2022)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

St
at

io
n

1 24 1.998 0.954 2.017 0.975 2.027 0.994 2.021 0.963 2.227 0.995 2.232 1.228 2.436 1.454 2.369 1.372
48 2.009 0.971 2.002 0.952 2.005 0.969 1.997 0.965 2.193 0.969 2.384 1.051 2.526 1.303 2.478 1.262
96 1.874 0.952 1.976 0.917 1.987 0.953 1.979 0.899 2.136 1.021 2.135 1.169 2.357 1.326 2.243 1.237

192 2.007 0.812 2.011 0.980 2.010 0.921 2.101 0.938 2.190 0.993 2.273 1.235 2.402 1.457 2.352 1.304
avg 1.972 0.872 2.012 0.941 2.007 0.959 2.025 0.942 2.187 0.995 2.256 1.171 2.430 1.385 2.361 1.294

St
at

io
n

2 24 2.012 0.779 2.251 0.927 2.313 0.980 2.268 0.932 2.212 1.012 2.169 1.156 2.365 1.314 2.254 1.276
48 2.006 0.984 2.041 0.943 2.011 0.932 2.024 0.941 1.141 0.998 2.254 1.233 2.415 1.390 2.348 1.353
96 1.989 0.892 2.033 0.939 1.996 0.897 2.021 0.954 1.118 1.217 2.212 1.223 2.432 1.455 2.340 1.370

192 1.999 0.877 2.023 0.935 2.004 0.896 2.013 0.917 1.188 1.126 2.199 1.179 2.377 1.397 2.274 1.265
avg 2.001 0.883 2.087 0.936 2.079 0.916 2.082 0.936 1.415 1.088 2.209 1.198 2.397 1.389 2.304 1.316

St
at

io
n

3 24 1.283 0.741 1.371 0.732 1.368 0.724 1.355 0.725 1.487 0.895 1.545 0.998 1.698 1.218 1.588 1.072
48 1.198 0.702 1.351 0.729 1.317 0.726 1.313 0.745 1.443 0.855 1.473 0.926 1.631 1.156 1.524 1.040
96 1.233 0.725 1.330 0.717 1.244 0.706 1.229 0.739 1.356 0.950 1.503 0.964 1.705 1.226 1.605 1.037

192 1.262 0.745 1.339 0.728 1.281 0.730 1.292 0.748 1.490 0.903 1.556 0.985 1.692 1.157 1.603 1.034
avg 1.244 0.728 1.348 0.727 1.302 0.722 1.297 0.739 1.444 0.901 1.519 0.968 1.682 1.189 1.580 1.046

St
at

io
n

4 24 1.471 0.766 1.589 0.774 1.563 0.720 1.579 0.764 1.588 0.968 1.698 1.142 1.852 1.266 1.715 1.194
48 1.451 0.702 1.525 0.763 1.498 0.723 1.512 0.733 1.660 0.930 1.673 1.131 1.814 1.192 1.785 1.061
96 1.444 0.695 1.508 0.747 1.452 0.697 1.491 0.723 1.521 0.849 1.596 0.885 1.797 1.142 1.692 1.033

192 1.899 0.802 1.915 0.808 1.996 0.805 1.925 0.892 1.824 1.228 2.162 1.201 2.330 1.342 2.241 1.295
avg 1.566 0.741 1.634 0.773 1.627 0.736 1.628 0.779 1.648 0.994 1.782 1.017 1.948 1.236 1.858 1.146

St
at

io
n

5 24 1.332 0.549 1.489 0.674 1.459 0.665 1.479 0.664 1.488 0.753 1.545 0.748 1.687 0.966 1.595 0.894
48 1.323 0.678 1.455 0.683 1.425 0.675 1.451 0.682 1.460 0.810 1.533 0.812 1.714 1.092 1.665 0.961
96 1.288 0.671 1.418 0.653 1.404 0.673 1.411 0.676 1.521 0.849 1.597 0.845 1.591 1.043 1.492 0.933

192 1.371 0.754 1.445 0.668 1.470 0.704 1.415 0.643 1.524 1.048 1.638 1.024 1.730 1.298 1.541 1.115
avg 1.328 0.663 1.452 0.669 1.440 0.684 1.439 0.666 1.498 0.834 1.546 0.857 1.682 1.099 1.573 0.976

Count 36 5 7 2 0 0 0 0

Table 2: Results on Luxi and Shexian County, where the best and second-best results are shown in bold and underlined, respectively. ’Avg’
represents the average across four look-back window lengths.

Figure 4: Photovoltaic forecast results under different weather conditions.

Data Spatial Temporal Real-time

Type Resolution Resolution Availability

Satellite 5 km × 5 km 10 min 20 min delay

LMD Station-based 15 min Real-time

NWP 9 km × 9 km 15 min Twice per day

Table 3: Overview of Multi-Source Data for PV Power Forecasting.

layer cloud modeling effectively captures cloud dynamics and
enhances prediction accuracy in complex environments. Fur-
thermore, we observe that increasing the historical window
initially reduces prediction error, but excessive data intro-
duces noise, leading to degraded performance. Notably, in
all tested historical windows, our model consistently outper-
forms baseline methods, demonstrating its ability to effec-

tively capture the ultra-short-term forecasting characteristics
while mitigating the impact of excessive temporal dependen-
cies. Moreover, the consistent performance gain across both
regions indicates the strong robustness of MCloudNet.

5.3 Ablation Study
To investigate the effectiveness of different components in
MCloudNet, we conduct an ablation study by removing key
modules and evaluating their impact on forecasting perfor-
mance. The compared variants are defined as follows:

• W/O-Correction: Remove the GHI correction mod-
ule, relying solely on time-series module with LMD and
NWP data.

• W/O-Former: Remove the time-series prediction mod-
ule, directly mapping the GHI correction module to PV
values with MLP.
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• W/O-MCloud: Exclude the multi-cloud imagery com-
ponent from GHI correction module.

• Single-Cloud: Replace multi-layer cloud as a single-
layer cloud component.

Models Metrics Station1 Station2 Station3 Station4 Station5

W/O
Correction

MSE 1.987 2.058 1.322 1.554 1.273
MAE 0.927 0.985 0.747 0.679 0.744

W/O
Former

MSE 8.121 8.459 5.187 5.574 5.184
MAE 2.827 2.753 1.751 1.796 1.737

W/O
MCloud

MSE 2.001 2.021 1.262 1.528 1.423
MAE 0.987 0.984 0.751 0.791 0.712

Single
Cloud

MSE 1.931 1.997 1.250 1.458 1.391
MAE 0.960 0.925 0.740 0.728 0.701

MCloudNet
MSE 1.874 1.989 1.233 1.444 1.288
MAE 0.952 0.892 0.725 0.695 0.671

Table 4: Ablation study on different modules and components on
look-back window length=96.

As shown in Table 4, W/O-former is unable to capture his-
torical weather patterns, and W/O-Corrction fails to capture
cloud fluctuations, both leading to a decline in performance,
highlighting the importance of considering both historical
trends and ultra-short-term fluctuations in photovoltaic power
forecasting. In the W/O-Former experiment, the model er-
ror significantly increases, indicating that photovoltaic (PV)
power prediction requires not only consideration of GHI fluc-
tuations but also the influence of covariates such as tempera-
ture and wind speed.

Besides, the increases in MSE rates by 1.3% and 2.3%
for the W/O-MCloud and Single-Cloud respectively, demon-
strate that employing multi-layer cloud images yield superior
results compared to single cloud images, which in turn out-
perform the absence of cloud images altogether. This under-
scores the efficacy of the GHI correction module, highlight-
ing that multi-layer cloud images facilitate the attainment of
a more precise real-time GHI, which enhances the accuracy
of PV prediction.

5.4 Weather Conditions
As shown in Figure 4, this study compares the predictive per-
formance of MCloudNet and baseline models under different
weather conditions. Under sunny conditions, baseline mod-
els and MCloudNet can effectively capture long-term trends,
resulting in predictions that are relatively close to the actual
data. However, MCloudNet further improves the prediction
accuracy by capturing features of different scales through the
noise reduction module and the hierarchical feature extraction
module. In overcast and cloudy conditions, baseline mod-
els struggle to accurately capture fine-grained spatiotempo-
ral variations in cloud movements, which limits their predic-
tive performance. In contrast, MCloudNet utilizes multi-layer
cloud and ground data, enabling it to effectively capture the
dynamic characteristics and irregular changes of clouds.

5.5 Visual Analysis
[Optical Flow Prediction Visualization] To evaluate the fea-
sibility of short-term cloud motion forecasting, we visualize
the optical flow derived from sequential cloud images. As
shown in Figure 5, the optical flow is computed from the
original cloud image at 13:50, capturing the estimated mo-
tion of cloud patterns over time. The visualization includes
actual and predicted cloud images across multiple time steps,
along with a delta image highlighting prediction discrepan-
cies. This setup facilitates a direct visual assessment of pre-
diction performance and confirms that optical flow can ef-
fectively capture coherent cloud movement patterns, support-
ing its utility in spatiotemporal modeling for short-term GHI
value and PV power prediction.

Figure 5: Cloud motion forecasting using optical flow. The large
image on the far left shows the original cloud image at 13:50. Green
arrows overlayed on the actual cloud images indicate the estimated
optical flow toward the next time step; arrow direction and length de-
note motion direction and magnitude, respectively. Predicted cloud
images are shown below the observations for comparison. The delta
image on the far right shows pixel-wise differences between the pre-
dicted and actual cloud image at 14:30.

[Contribution of Multi-layer Clouds to the GHI] In the
GHI Correction module, three learnable parameters whigh,
wmid, and wlow are introduced to quantify the contributions of
high, mid, and low cloud layers to the final results. These
weights, as learnable parameters, are adjusted during the
network training process. The trend of these weight pa-

Figure 6: The contribution of each cloud layer to the predicted GHI.

rameters changing with training epochs is depicted in Fig-
ure 6, showing that initially all weights are equal, but even-
tually the weight for low clouds is the highest, followed
by mid clouds, and high clouds is the lowest. This out-
come aligns with meteorological conclusions, indicating that
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the GHI correction module captures the impact of differ-
ent cloud layers on the GHI value [Miyamoto et al., 2021;
Luo et al., 2023].

5.6 Scales Evaluation of Satellite Image
To explore the impact of spatial resolution on the accuracy
of PV power prediction, four image sizes were selected in
the experiment: 4×4, 8×8, 16×16, and 32×32. Consider-
ing that the spatial resolution of Himawari-8 satellite cloud
images is 5 kilometers per pixel, these configurations corre-
spond to ground coverage areas ranging from approximately
20 kilometers to 160 kilometers. The evaluation criterion
for determining the optimal input resolution was the final PV
power prediction error (MSE and MAE). As shown in Table
5, smaller images like 4×4 showed significantly higher errors,
likely due to excessive loss of spatial information. Moreover,
increasing image size beyond 16×16 did not yield further im-
provements and may introduce computational burdens and
potential overfitting risks. Based on the optimal results, we
chose the 16×16 satellite cloud images for the main experi-
ment.

Image Size Coverage Area MSE MAE
4 × 4 20 km × 20 km 1.230 0.709
8 × 8 40 km × 40 km 1.206 0.713

16 × 16 80 km × 80 km 1.198 0.702
32 × 32 160 km × 160 km 1.202 0.708

Table 5: Performance metrics for different image sizes with look-
back window length = 48

5.7 Transferability and Data Scarcity Experiment
Newly established PV stations in rural areas often lack histor-
ical LMD data, making classical forecasting methods ineffec-
tive. This experiment evaluates MCloudNet’s ability to adapt
to new stations with limited data by assessing its transferabil-
ity. We pretrain MCloudNet on Hebei PV stations and test
its performance on newly established stations with Cambri-
con MLU270 GPU [Liu et al., 2023a] in Yunnan, using only
6 months time-series data. As shown in Table 6, MCloud-
Net significantly outperforms baseline models, demonstrat-
ing strong transfer capability. The effectiveness is attributed
to the abundant availability of satellite cloud images, which
provide critical GHI estimates that drive PV power fluctua-
tions. By leveraging multi-layer cloud information, MCloud-
Net effectively compensates for the absence of local meteo-
rological data, ensuring practical applicability in data-scarce
rural PV projects.

Station
Ours SDformer iTransformer A-UNET

MSE MAE MSE MAE MSE MAE MSE MAE
Station 1 2.438 1.212 4.615 1.998 4.443 2.012 3.140 1.625
Station 2 2.343 1.179 4.396 1.984 6.127 2.025 3.355 1.840

Table 6: Performance comparison on look-back window length=96.

6 Deployment and Social Impact
6.1 PV Prediction System Interface
To support real-time PV dispatch, we developed a visual-
ized forecasting platform that has been deployed across Hebei
Province, China. As shown in Figure 7, the system integrates
multi-scale prediction models (15-minute, 4-hour, and 24-
hour horizons) and currently connects to 128 PV stations. As
a province-level deployment, the system demonstrates how
AI-driven forecasting can empower large-scale renewable in-
tegration and inform data-driven energy governance.

Figure 7: Deployed PV prediction and dispatch system interface
across Hebei Province.

6.2 Real-World Achievements and Impact
In collaboration with the Hebei Electric Power Company and
the Weiqiao Institute of Science and Technology, the pro-
posed MCloudNet framework has been successfully deployed
in over 50 photovoltaic stations across underdeveloped vil-
lages in Hebei, Yunnan, and Shandong, China, contributing
to improved energy access and stability. Over the past six
months, it has reduced 60 million kWh (kilowatt-hour) of
curtailment power from renewable energy, generating an eco-
nomic benefit of 24 million CNY (Chinese Yuan) and ben-
efiting approximately 50,000 low-income rural households.
Beyond economic benefits, MCloudNet plays a crucial role
in supporting micro-grids where a stable electricity supply
remains a challenge. By providing accurate ultra-short-term
PV power predictions, MCloudNet enables proactive energy
scheduling, reducing dependency on expensive backup power
sources, such as diesel generators. Furthermore, enhanced
forecasting accuracy minimizes power fluctuations, reducing
the risk of voltage instability and supply disruptions in iso-
lated micro-grids. This improvement is particularly crucial
for supporting essential services such as lighting, medical fa-
cilities, and communication infrastructure in these regions.
These results contribute to the achievement of the SDGs and
support the LNOB by promoting equitable access to renew-
able energy.

7 Conclusion
This paper introduces MCloudNet, a multi-modal framework
that improves ultra-short-term photovoltaic power forecasting
by multi-layer cloud modeling and time-series analysis. The
approach shows promising results for accurate predictions in
regions with limited monitoring infrastructure. Future work
will focus on expanding the application across more regions
to optimize energy dispatch and reduce carbon emissions.
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