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Abstract
To enhance the reliability and credibility of graph
neural networks (GNNs) and improve the trans-
parency of their decision logic, a new field of ex-
plainability of GNNs (XGNN) has emerged. How-
ever, two major limitations severely degrade the per-
formance and hinder the generalizability of existing
XGNN methods: they (a) fail to capture the com-
plete decision logic of GNNs across diverse distri-
butions in the entire dataset’s sample space, and (b)
impose strict prerequisites on edge properties and
GNN internal accessibility. To address these limita-
tions, we propose OPEN, a novel cOmprehensive
and Prerequisite-free Explainer for GNNs. OPEN,
as the first work in the literature, can infer and parti-
tion the entire dataset’s sample space into multiple
environments, each containing graphs that follow a
distinct distribution. OPEN further learns the deci-
sion logic of GNNs across different distributions by
sampling subgraphs from each environment and an-
alyzing their predictions, thus eliminating the need
for strict prerequisites. Experimental results demon-
strate that OPEN captures nearly complete decision
logic of GNNs, outperforms state-of-the-art meth-
ods in fidelity while maintaining similar efficiency,
and enhances robustness in real-world scenarios.

1 Introduction
Graph neural networks (GNNs), known for their capability
to learn complex relational patterns in graphs, have gained
significant attention and been widely applied in critical fields
such as finance [Zhang et al., 2022; Xu et al., 2024] and health-
care [Golmaei and Luo, 2021]. For example, in healthcare,
GNNs can utilize information from patients and others with
similar conditions to offer medical recommendations [Min et
al., 2024]. However, because users in these fields require reli-
able and accurate GNN predictions, the lack of transparency
in the decision logic of GNNs has raised significant concerns
about the credibility of GNN predictions. To address these
concerns, the field of explainability of GNNs (XGNN) has
emerged to enhance the transparency of the decision logic

∗Corresponding author

of GNNs and build up users’ trust in GNN predictions. Ex-
isting XGNN methods [Ying et al., 2019; Yuan et al., 2020;
Vu and Thai, 2020] typically perturb the input graph structures
to influence GNN predictions and extract the key subgraphs
(a.k.a., explanation subgraphs) that are most critical to support
these predictions. These subgraphs are expected to represent
the decision logic of GNNs to a certain extent, thereby effec-
tively enhancing the predictions’ reliability.

However, existing XGNN methods face two major limi-
tations in real-world scenarios. Limitation 1 (Incomplete
Decision Logic): Existing methods fail to capture the com-
plete decision logic of GNNs across diverse distributions in the
entire dataset’s sample space, which overall may consist of all
possible graph structures. These methods assume that the test-
ing dataset (testing samples in the entire dataset) follows the
same distribution as the training dataset (a.k.a., IID scenario)
and focus solely on extracting the decision logic of GNNs
in the training dataset. However, in real-world applications,
out-of-distribution (OOD) scenarios are more prevalent [Koch
et al., 2024; Koch et al., 2022], where the testing dataset’s
distribution differs from that of the training dataset. In such
cases, existing XGNN methods fail to provide reliable expla-
nations because they focus either on OOD explanations that
have different distributions from the training dataset or on the
IID scenario. This limitation raises the demand of a novel
comprehensive GNN explainer, which needs to capture the
complete decision logic of the target GNN across diverse dis-
tributions in the entire dataset’s sample space and thus can:
(1) generate reliable explanations in OOD scenarios, (2) help
identify flaws in GNN decision logic when prediction errors
occur, and (3) support GNN design improvements to mitigate
errors in OOD scenarios. Limitation 2 (Strict Prerequisites):
Existing XGNN methods rely on strict prerequisites to achieve
good performance, which can be divided into two aspects: (1)
Most methods require GNN internal accessibility to extract
the decision logic of GNNs. However, privacy protection laws
and regulations often restrict such access, making these meth-
ods impractical for privacy-sensitive applications [Miller et
al., 2020]; (2) Several recent methods [Wang and Shen, 2023;
Chen et al., 2024b] generate learnable edge weights and re-
quire GNNs to use these weights for weighted message prop-
agation. However, in critical fields like finance and health-
care, edge features (e.g., stock investment shares in finance
and co-occurrence frequency of medical services in health-
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care) are used to enhance data representation [Li et al., 2022;
Xiong et al., 2021; Zhu et al., 2023]. These edge features
differ from learnable edge weights in both semantics and data
formats, yet they share the same position in the input graph.
Thus, these XGNN methods impose a prerequisite on dataset
properties, requiring that datasets do not contain edge features.

To address the abovementioned two major limitations
in existing XGNN methods, we propose OPEN, a novel
cOmprehensive and Prerequisite-free Explainer for graph
Neural networks. Specifically, we propose the Non-Parametric
Analysis Framework (NPAF), which infers the entire dataset’s
sample space from the training dataset samples and partitions
this space into multiple environments. In addition, we propose
the Graph Variational Generator (GVAG), which determines
the sampling probabilities of graph structures by generating
a large number of subgraphs in each environment during the
training stage and analyzing their predictions. This enables
GVAG to uncover the decision logic of the GNNs across a
wide range of distributions in the sample space. To further
enhance this uncovering process, GVAG incorporates node
embeddings from other environments to actively construct
OOD data. Compared to existing methods, OPEN can cap-
ture nearly complete decision logic of the GNNs, effectively
addressing Limitation 1. Moreover, GVAG learns the cor-
relations between embeddings and structure sampling prob-
abilities, and directly samples explanation subgraphs from
the sample space without accessing GNN internals or using
edge weights, thereby eliminating the prerequisites required
by existing methods and overcoming Limitation 2.

We summarize our main contributions as follows: (1) We
identify two major limitations in XGNN: (a) its inability to
capture the complete decision logic, and (b) the strict prerequi-
sites imposed on target GNNs and datasets. These limitations
significantly impact XGNN research, highlighting the need
for effective solutions; (2) We propose OPEN, a framework
that infers and partitions the sample space of the entire dataset,
enabling the exploration of the decision logic of GNNs across
diverse distributions. In addition, OPEN learns the decision
logic by sampling a large number of subgraphs and analyzing
their predictions. This approach not only captures a more com-
prehensive decision logic than existing methods, but also re-
moves the required strict prerequisites; and (3) Comprehensive
experimental results demonstrate that OPEN not only effec-
tively extracts explanation subgraphs in prerequisite-free sce-
narios where most existing methods are inapplicable, but also
outperforms state-of-the-art (SOTA) methods in prerequisite-
satisfied scenarios. OPEN efficiently generates reliable and
accurate explanations across various distributions, showcasing
its adaptability to real-world applications.

2 Related Work
XGNN. The XGNN methods are initially inspired by com-
puter vision techniques like Grad-CAM [Pope et al., 2019],
and some methods also benefit from the explanatory power
of GNN attention mechanisms [Veličković et al., 2018]. The
introduction of GNNExplainer [Ying et al., 2019] marked
a shift towards perturbing graph structures to weight mes-
sage propagation along edges and extracting explanation sub-
graphs based on changes in GNN outputs, as demonstrated

(a) Covariate (b) FIIF (c) PIIF (d) Non-assumption

Figure 1: SCMs, where grey and white nodes indicate observable
and unobservable variables, respectively. Gc represents a subgraph
with a specific meaning and is used to determine label variables Y
of the input graph G. Gs represents the part of G influenced by
environmental variables E. M denotes the target GNN.

by later advancements [Qiu et al., 2024; Chen et al., 2024b;
Chen et al., 2024a]. However, most existing methods rely
on strict prerequisites to enable graph structure perturbation,
which often restricts their practicality in real-world scenarios.
Techniques like PGExplainer [Luo et al., 2020] enhance the
understanding of how node embeddings correlate with node
presence in explanation subgraphs, facilitating explanations
post-learning without the need for fitting new instances [Zhang
et al., 2023]. Nevertheless, these methods focus on learning
the decision logic in the training dataset and thus fail to mine
the complete decision logic of target GNNs, which causes
them to provide unrelated explanations when the distribution
of the input graph is different from that of the training dataset.

OOD Scenarios in XGNN. In the XGNN field, cri-
tiques [Chen et al., 2023; Chen et al., 2024b; Fang et al.,
2024a; Kubo and Difallah, 2024; Fang et al., 2024b] note
that traditional methods generate OOD explanations, arguing
that these explanations fail to accurately reflect the decision
logic of GNNs. To address this issue, they propose generating
explanations that align with the training dataset’s distribution.
However, this further aggravates the performance degrada-
tion of these methods in OOD scenarios. Some argue that an
XGNN method only needs to be faithful to the decision logic
of a well-trained GNN in the training dataset’s distribution,
and does not need to uncover the reasoning behind incorrect
predictions in OOD scenarios. However, such opinion not
only significantly limits the practical use of XGNN in critical
fields where OOD scenarios are prevalent, but also prevents
XGNN from contributing to improvements in GNN design.

3 Preliminaries
Structural Causal Models (SCMs). Following prior
works [Ahuja et al., 2021; Chen et al., 2022; Ding et al.,
2025], SCMs are used to delineate causal relationships among
variables. Fig. 1 demonstrates three typical distribution shift
assumptions in SCMs: Covariate, Fully Informative Invari-
ant Features (FIIF), and Partially Informative Invariant Fea-
tures (PIIF). Specifically, we propose a Non-assumption SCM
(shown in Fig. 1 (d)), which primarily explores potential causal
relationships among variables Gc, Y , and Gs. We can find
that relying solely on Y and G is insufficient for precise causal
analysis among these variables. Therefore, we perform direct
statistical analyses to deduce environmental variables E and
identify variables with distinct causal relationships to either Y
or E, effectively isolating relevant subsets of Gc and Gs and
reducing the impact of spurious correlations. In addition, the
target GNN M has causal relationships with both G and Y ,
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Figure 2: The overview of the proposed OPEN framework.

indicating that when an XGNN method explains M’s output,
M opens a backdoor path between the XGNN method and
Y . Therefore, XGNN methods also learn the relationships
between Y and Gc, and are susceptible to OOD scenarios.

Problem Definition. We focus on providing post-hoc
instance-level explanations. Given a graph G = (V, E ,X )
where V denotes the vertices, E denotes the edges, and X is
the node features, the target problem is defined as follows:

Definition 1 (Mining complete decision logic of GNNs).
Given a GNN model M trained on the training dataset Dtrain,
consider an unseen testing dataset Dtest where graphs exhibit
distribution shifts from those in Dtrain. For each G ∈ Dtest, the
objective is to identify an explanation subgraph Gc ⊆ G that
effectively elucidates the predictions made by M.

Meanwhile, to eliminate the required prerequisites, we will
not use learnable edge weights or access the GNN internal.

4 Methodology of OPEN
In this section, we present a novel framework, comprehensive
and prerequisite-free explainer for GNNs (OPEN). Fig. 2 de-
picts the overview of OPEN. A summary of all symbols used
in this paper is provided in Appendix A.1. OPEN uses the Non-
Parametric Analysis Framework (NPAF) to analyze potential
environments in the entire dataset’s sample space, based on
training dataset samples. NPAF employs statistical methods
following the non-assumption SCM and assigns environmen-
tal labels to the graphs in the training dataset. Next, NodeVAE
and the Graph Variational Generator (GVAG) generate node
and graph invariant embeddings in each environment, respec-
tively. GVAG then samples explanation subgraphs from the
sample space based on these invariant embeddings. OPEN ad-
justs the sampling probability of explanations by comparing
the predictions, thus uncovering the decision logic of GNNs. 1

4.1 NPAF for Environmental Label Inference
Taking the graph classification task as an example, NPAF
determines the potential environmental label for each graph
Gi ∈ Dtrain through the following procedure.

Obtain Structure-Based Embedding. NPAF leverages
structure-based embeddings to infer environmental labels from
the structural aspects of the training dataset. To generate these
embeddings, we gather relevant structural information from
the training dataset, such as node degrees and node categories.

1Appendix can be found at https://github.com/zh2209645/OPEN

Using these details, we construct structure-based node fea-
tures Xstr and apply a Weisfeiler Leman (WL) kernel-based
GNNs [Togninalli et al., 2019] to derive the structure-based
embeddings for nodes Hstr. We then employ pooling layers
to extract the structure-based embedding hG,i ∈ HG for Gi.

Infer Potential Environmental Label Based on Structure.
We infer potential environmental labels for graphs based on a
commonly adopted assumption in this field [Wu et al., 2021;
Chen et al., 2022], which states that a graph can be divided
into two independent components: Gc, associated with the
label Y , and Gs, influenced by the environment variable E.
Graphs affected by the same E are expected to share sim-
ilar connection patterns during generation. Thus, potential
environmental labels E can be inferred by analyzing and clas-
sifying graph structures. To assign structure-based environ-
mental labels, we apply the K-Means algorithm to cluster
structure-based embeddings HG for Gi ∈ Dtrain. The num-
ber of clusters, K, determines the granularity of potential
environments. A larger K indicates greater diversity and the
presence of multiple potential environments, while a smaller
K reflects less structural diversity. Based on the clustering
results, each graph Gi is assigned an environmental label
Es

k ∈ Estr = {Es
1 , E

s
2 , ..., E

s
K}.

Identify Causal Structure in Graphs. To identify nodes
and edges in Gi that have a causal relationship with Es

k, we
leverage the idea that graphs influenced by the same E exhibit
similar structural patterns. Specifically, structure-based em-
beddings of nodes belonging to the Gs should show higher
similarity within the same environment. This is because the
embeddings Hstr generated by the WL kernel effectively cap-
ture graph structures and reflect connection patterns. Since
embeddings Hstr are highly correlated with E, they can be
used to infer causal relationships between nodes and the envi-
ronment. To pinpoint nodes irrelevant to the environment, we
analyze the variance in their structure-based embeddings. For
nodes sharing the same Es

k and classification label Y within
Dtrain, we calculate the variance Ss

k,Y of their embeddings
Hstr. By computing the gradient of Ss

k,Y with respect to each
node’s embedding hi ∈ Hstr, we identify nodes with high
gradients as irrelevant to the environment and group them into
Vc. Nodes with lower gradients are assigned to Gs, indicating
their potential causal relationships with the environment E.

To determine edge significance in Gs, we first generate a
subgraph G′

i from the original graph Gi by dropping edges
randomly. We then measure the distance change between the
subgraph’s embedding h′

G,i and the environment cluster centre
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of Gi. A substantial change suggests an edge’s importance to
Gs. By repeatedly testing each edge in Gi, we identify and
quantify the significance of edges. Critical edges are included
in Gs, while others are considered part of Gc.

Identify Causal Dimension in Node Features. To identify
causal dimensions in node features, we observe that the distri-
bution of feature dimensions affected by the same E should
exhibit similarity across different node types and graph labels.
This is because node features in distinct dimensions typically
represent independent characteristics. Based on the research
of existing SCMs [Ahuja et al., 2021], nodes influenced by the
same environment tend to show similar values in dimensions
relevant to that environment. To determine these dimensions,
we first group node features X by their node type (if applica-
ble) and the classification label Y of their corresponding graph.
For each feature dimension, we compute its probability den-
sity across these groups. Using these densities, we construct a
Jensen-Shannon (JS) divergence confusion matrix to evaluate
the similarity of distributions. If a feature dimension demon-
strates high similarity across different node types and classi-
fication labels, it suggests that this dimension is not specific
to node type or graph label but is instead primarily influenced
by environmental variables. Such dimensions are classified as
Dimenv , representing causal relationships to the environment.
After identifying Dimenv , we use a pooling layer to aggregate
these dimensions from X and generate graph-level features.
These are then clustered using the K-Means to assign environ-
mental labels Ef

k ∈ Efeat = {Ef
1 , E

f
2 , ..., E

f
K}. However,

the above procedure cannot completely exclude dimensions
that are spuriously correlated with Y . To improve isolation,
we assume dimensions influenced by the same E show con-
sistent distributions across node types. We apply this method
to nodes with the same Ef

k , enhancing the precision of our
analysis in identifying dimensions solely linked to node types.

Once environmental labels for graph structure (Es
k) and

node features (Ef
k ) are inferred, we can use node features with

varying environmental labels to create contrastive learning
samples that diverge from the training dataset’s distribution.
This method refines the proposed OPEN’s ability to handle
diverse distributions. In the inference stage, the learned cluster
centres are used to predict environmental labels for new data.

4.2 Invariant Learning and Subgraph Generation
To explore how different environments affect graph structures
and node features, we randomly initialize embeddings for
environmental labels Estr and Efeat, refining them through
the training process. The target GNN M is used to encode the
graph G into node embeddings H, which are then aggregated
via a pooling layer to form the graph embedding hG.

NodeVAE. NodeVAE, built on conditional variational au-
toencoders, ensures that node features from different distri-
butions are mapped to a unified embedding space. Firstly, it
predicts label Ef

k using the NPAF module, and obtains the cor-
responding environmental embedding ei for node i. Then, the
NodeVAE encoder gϕ1(·), featuring a two-layers Multi-Layer
Perceptrons (MLPs), processes node embedding hi ∈ H and
ei to determine the distribution qϕ1(zi|hi, env) as follows:

µi, log(σ
2
i ) = gϕ1

(hi, ei), (1)

where ϕ1 represents the parameters of encoder models, µi
and log(σ2

i ) denote the mean and log-variance of the node-
invariant representation distribution of node i, respectively.
env denotes the environmental embedding(s). The node po-
tential invariant embedding zi is sampled using reparameteri-
zation trick [Kingma and Welling, 2014]:

zi = µi + exp(1/2 · log(σ2
i ))⊙ ϵ, ϵ ∼ N (0, I). (2)

NodeVAE’s decoder fθ1(·) uses the learned distributions
pθ1(hi|zi, env) to reconstruct node embedding ĥi from zi
and ei. The decoder, parameterized by θ1, is followed by
calculating the mean squared error between hi and ĥi, forming
the reconstruction loss Lmse. Thus, NodeVAE’s final loss is:

LNodeVAE = ωmseLmse + ωKLDKL
(
N (µi,σ

2
i )∥N (0, I)

)
,
(3)

where ωmse and ωKL are used to balance the two terms, and
DKL(· ∥ ·) donates the Kullback-Leibler (KL) divergence.

GVAG. GVAG can take into account the characteristics of
different environments when sampling explanation subgraphs.
GVAG first computes the graph’s environmental embedding
eG by averaging both Es

k and Ef
k environmental embeddings.

Then, GVAG’s encoder gϕ2(·), consisting of a two-layers
MLPs, leverages eG and the graph embedding hG to generate
the graph-invariant embedding zG as follows:

µG, log(σ
2
G) = gϕ2

(hG, eG), (4)

where µG and log(σ2
G) denote the mean and log-variance of

the graph-invariant representation distribution, respectively.
Then, the graph-invariant embedding zG can be sampled with
the reparameterization trick like Eq. 2.

The Novel Graph Decoder (NGD) in GVAG, unlike the
GraphVAE [Simonovsky and Komodakis, 2018], which re-
quires constructing and aligning a complete graph, directly
models node and edge existence probabilities. Thus, GVAG
improves scalability for large graphs and avoids the complexi-
ties of learnable edge weights, broadening its application range.
The NGD consists of two decoders: fθ2(·) models the proba-
bility distributions of nodes (pθ2(vi|zG, zi, env)), and fθ3(·)
handles the distributions for edges (pθ3(eij |zG, zi, zj , env)),
both using zG, node-invariant embeddings znode, and eG. The
specific formulas are as follows:

Prob(vi) = fθ2(zG, zi, eG), Prob(eij) = fθ3(zG, zi, zj , eG),
(5)

where Prob(vi) and Prob(eij) denote the probabilities that
node i and edge eij exist on the explanation subgraph, re-
spectively. By leveraging node-invariant and graph-invariant
embeddings instead of standard node and graph embeddings,
our subgraph generation method efficiently handles varying
data distributions. In addition, GVAG employs another NGD
instance to establish causal relationships between nodes, edges,
and labels Y , serving as a regularization term to improve the
refinement of environmental embeddings.

GVAG utilizes direct reconstruction loss to refine graph gen-
eration by optimizing node and edge existence probabilities.
This method maximizes the mutual information between the
explanation subgraph and the predicted label, given the input
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graph, as follows:

LMI =−
∑

Gc
1[Y = Ỹ ] log(Prob(Gc))

+
∑

Gc
1[Y ̸= Ỹ ] log(Prob(Gc)), (6)

where Gc denotes the generated subgraph, 1[·] is an indicator
function, and Y and Ỹ are the outputs of the GNN for the orig-
inal graph G and the subgraph Gc, respectively. Furthermore,
to optimize node and edge existence probabilities in expla-
nations, we leverage the Reconstruction Regularization Loss
(LRR). This approach adjusts probabilities by comparing the
GNN prediction loss between the original graph Gi ∈ Dtrain
and its explanation Gc,i, effectively emphasizing crucial sub-
structures in the subgraph. The specific formula is as follows:
LRR =

∑
i(Li

diff · Prob(Gc,i)), Li
diff = L(Gc,i)− L(Gi),

(7)
where L(·) is the loss function used to train M.

Subgraph Generation. By utilizing the mean-field varia-
tional approximation theory [Kawamoto et al., 2018; Ying et
al., 2019], we complete the subgraph generation process based
on the probabilities of nodes and edges. OPEN dynamically
constructs the explanation by adding nodes and edges based
on Prob(vi) and Prob(eij). Pseudocode and computational
complexity analysis can be found in the Appendix A.2. After
subgraph Gc is generated, the probability of Gc is determined
using the following equation:

Prob(Gc) =
∏

vi∈Gc
Prob(vi) ·

∏
eij∈Gc

Prob(eij). (8)

This probabilistic method lets users adjust the scale and density
of subgraphs, significantly improving explanation quality.

4.3 Regularization Terms
Causal Structure Regularization. We employ binary cross-
entropy to optimize environmental embeddings and predict
causal relationships between graph structures and labels Y .
The calculation formula of Rcausal is computed as follows:
Rcausal = −EG[Ev∈V [yv · log(σ(zv)) + (1− yv) · log(1− σ(zv))]

+Ee∈E [ye · log(σ(ze)) + (1− ye) · log(1− σ(ze))]],
(9)

where σ(·) denotes the sigmoid function, and zv and ze rep-
resent the prediction logits for the node v and edge e, respec-
tively. yv = 1 if node v is part of Gc, otherwise yv = 0.
Similarly, ye follows the same pattern as yv .

Hinge Regularization. We introduce hinge regularization
to constrain OPEN learning process, ensuring the empirical
loss of Gc is smaller than Gs. The formula is as follows:

Rhinge = EL(Gs)>L(Gc)

∑
L(Gs). (10)

Subgraph Node Count Regularization. We design con-
straints on the compactness of subgraphs. Specifically, given
the loss function outputs for original graphs L(G) and expla-
nation subgraphs L(Gc), subgraph node counts nsub, and prior
node counts nprior, this loss for instance i is defined as:

Ri
subg_node =


(

1
Li

diff+ϵ

)(
nsub,i−nprior,i

nprior,i

)
, if Li

diff > 0(
1

Li
diff+ϵ

)(
1

nsub,i

)
, if Li

diff ≤ 0
(11)

where ϵ is a small constant to prevent division by zero, the
overall regularization Rsubg_node is computed as the average of
the Ri

subg_node for all graphs in Dtrain.

Dataset Cora Motif
Input(X) Scientific publications Motif-base graphs
Prediction(Y) Publication classes Motifs
#Subgraphs 19,793 30,000
#Nodes 8,896,055 785,320
#Edges 64,479,758 2,085,430
Domain Word/Degree Basis/Size
#Domains 218/102 5/5
Shift Type Covariate Concept Covariate Concept
#Environments
(train:val:test) 10:1:1 3:1:1 3:1:1 3:1:1

Table 1: Dataset statistics.

Dataset Cora Motif
Shift Domain Degree Word Basis Size

fid+ ↑ fid− ↓ GEF ↓ fid+ ↑ fid− ↓ GEF ↓ fid+ ↑ fid− ↓ GEF ↓ fid+ ↑ fid− ↓ GEF ↓
GMT-SAM 0.0563 0.5676 0.0777 0.0645 0.6980 0.0931 0.0063 0.0031 0.0037 0.0301 0.2148 0.0034
OPEN 0.5704 0.3318 0.0279 0.6932 0.2674 0.0164 0.0110 0.1930 0.0540 0.0120 0.1123 0.0018

Table 2: The comparison of OPEN and the baseline under
prerequisite-free scenarios.

4.4 Other Loss Functions
Contrastive Loss. We implement a specialized contrastive
learning loss in OPEN to bolster its resistance to environmen-
tal interference. Given a set of original graph embeddings
and their perturbed counterparts grouped by class labels, the
formula for the contrastive loss LCON is given by:

LCON = − log
( ∑

exp(sintra)∑
exp(sintra)+

∑
exp(sinter)+ϵ

)
, (12)

where sintra and sinter denote the similarity scores among graph-
invariant embeddings within the same class and across differ-
ent classes, respectively. ϵ is used to avoid calculation issues.

Last Action Rewards (LAR). Inspired by reinforcement
learning, we introduce reward functions for mining explana-
tions in OPEN. Rewards are assigned based on whether the
prediction accuracy of explanations improves post-update;
penalties apply if it worsens. The LAR is defined as:

LAR = (E(Ldiff)− E(Lold_diff)) · EGcProb(GC), (13)

where E(Ldiff) and E(Lold_diff) are the expectation of Ldiff in
this epoch and last epoch, respectively.

Final Loss of OPEN. The final optimization function for
our proposed method is as follows:

Lfinal = ωNodeVAELNodeVAE + ωRECON(LMI + LRR) + ωCONLCON

+ωLARLAR +Rcausal +Rhinge +Rsubg_node,
(14)

where ωNodeVAE, ωRECON, ωCON and ωLAR are hyper-
parameters.

5 Experiments
In this section, we conduct a series of experiments to compre-
hensively evaluate the effectiveness of OPEN. The primary ob-
jectives are to assess fidelity, robustness and efficiency across
various OOD scenarios, answering the following research
questions: RQ1: How does OPEN perform in terms of fidelity
and robustness compared to baseline methods in prerequisite-
free and prerequisite-satisfied scenarios? RQ2: How does
OPEN perform in terms of explanation subgraph quality and
interpretation efficiency compared to baseline methods? RQ3:
How do different modules within OPEN contribute to its per-
formance? More experiments can be found in Appendix B.
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L&P XGNN (OOD sensitive) Ideal Performance for Reference (OOD insensitive)
Shift Type Dataset Shift Domain PGExp MixupExp GMT-SAM ProxyExp OPEN GradCAM ATT GNNExp PGMExp CF-GNNExp KRCW

Covariate Shift

Cora

Degree
fid+ ↑ 0.2554 0.2252 0.0563 0.2500 0.5704 (+123.3%) 0.0038 0.5753 0.6045 0.5871 0.3807 0.5078
fid− ↓ 0.5009 0.5281 0.5676 0.5559 0.3318 (+33.76%) 0.5851 0.3283 0.1398 0.2284 0.3599 0.0391
GEF ↓ 0.0678 0.0716 0.0777 0.0691 0.0279 (+58.85%) 0.0805 0.0323 0.0139 0.0254 0.0432 0.0052

Word
fid+ ↑ 0.2018 0.1669 0.0645 0.2020 0.6932 (+243.2%) 0.0005 0.1862 0.7435 0.6961 0.3306 0.5234
fid− ↓ 0.5882 0.6239 0.6980 0.6266 0.2674 (+54.54%) 0.6956 0.6292 0.1225 0.4147 0.3573 0.0859
GEF ↓ 0.0710 0.0765 0.0931 0.0676 0.0164 (+75.74%) 0.0960 0.0844 0.0074 0.0498 0.0301 0.0055

Motif

Basis
fid+ ↑ 0.0133 0.0163 0.0063 N/A 0.0110 0.2097 0.1390 0.1713 1.0000 0.1727 1.0000
fid− ↓ 0.1950 0.1956 0.0031 N/A 0.1930 0.0343 0.0707 0.1713 0.1950 0.1687 0.0008
GEF ↓ 0.0559 0.0542 0.0037 N/A 0.0540 0.0389 0.0181 0.0498 0.0543 0.0498 0.0000

Size
fid+ ↑ 0.0410 0.0387 0.0301 N/A 0.0120 0.1843 0.0490 0.0510 1.0000 0.0483 0.9941
fid− ↓ 0.2540 0.2483 0.2148 N/A 0.1123 (+47.72%) 0.2673 0.0777 0.0513 0.1240 0.0530 0.0004
GEF ↓ 0.0057 0.0053 0.0034 N/A 0.0018 (+47.06%) 0.2054 0.0146 0.0001 0.0020 0.0001 0.0000

Concept Shift

Cora

Degree
fid+ ↑ 0.1850 0.1848 0.0605 0.1660 0.6146 (+232.2%) 0.0306 0.1850 0.7464 0.6233 0.3276 0.4297
fid− ↓ 0.5376 0.5379 0.5820 0.5539 0.2843 (+47.12%) 0.6054 0.5664 0.1080 0.2944 0.3198 0.1016
GEF ↓ 0.0741 0.0725 0.0805 0.0558 0.0196 (+64.87%) 0.0846 0.0781 0.0065 0.0323 0.0308 0.0176

Word
fid+ ↑ 0.1513 0.1641 0.0512 0.1555 0.6166 (+275.7%) 0.0131 0.1335 0.7114 0.6242 0.3040 0.4766
fid− ↓ 0.5541 0.5385 0.5777 0.5523 0.2821 (+47.61%) 0.6133 0.5687 0.0942 0.3357 0.2975 0.1484
GEF ↓ 0.0791 0.0754 0.0793 0.0554 0.0200 (+63.90%) 0.0873 0.0807 0.0052 0.0394 0.0263 0.0054

Motif

Basis
fid+ ↑ 0.0323 0.0282 0.0293 N/A 0.0250 0.0925 0.0282 0.0255 1.0000 0.0223 1.0000
fid− ↓ 0.0473 0.0905 0.1305 N/A 0.0768 0.0188 0.2688 0.0227 0.1273 0.0238 0.0000
GEF ↓ 0.0302 0.0380 0.0354 N/A 0.0458 0.0334 0.1367 0.0050 0.0661 0.0048 0.0000

Size
fid+ ↑ 0.1698 0.1858 0.0660 N/A 0.0730 0.3805 0.1077 0.0912 1.0000 0.0798 1.0000
fid− ↓ 0.5392 0.4990 0.4559 N/A 0.3688 (+19.11%) 0.0370 0.4090 0.0893 0.3763 0.0925 0.0027
GEF ↓ 0.1044 0.0948 0.0902 N/A 0.0894 (+0.887%) 0.0593 0.0983 0.0043 0.0707 0.0050 0.0001

Table 3: The comparison of OPEN and baselines under prerequisite-satisfied scenarios. ↑ and ↓ represent that higher is better and lower is
better, respectively. Bold indicates the best results among all methods, and underline indicates the ideal performance, which is not affected by
OOD scenarios, for reference.

Datasets. We use the Graph Out-of-Distribution Bench-
mark (GOOD) [Gui et al., 2022] to provide OOD scenarios,
and select two widely used datasets, Cora and Motif, from it.
Each dataset includes two shift types (covariate and concept)
and two shift domains, resulting in a total of eight cases (2
datasets × 2 types × 2 domains). Table 1 provides detailed
dataset statistics. Specifically, Cora is a complex real-world
dataset with high node and edge densities and diverse distri-
butions. In contrast, Motif is a simpler artificial dataset with
a lower average node degree and fewer distributions. How-
ever, as an artificially generated dataset, Motif introduces a
two-level OOD issue in the basis domain: the first-level OOD
issue results from distribution shifts in the base part of the
graphs, while the second-level OOD issue arises from distri-
bution shifts in the motif part. This combination encompasses
nearly all factors influencing XGNN performance, supporting
a balanced and comprehensive evaluation of OPEN.

Baselines. Considering dataset compatibility and GNN re-
quirements, we select several Learning & Prediction (L&P)
type XGNN methods as SOTA baselines, including: PG-
Exp [Luo et al., 2020], MixupExp [Zhang et al., 2023],
GMT-SAM [Chen et al., 2024a], and ProxyExp [Chen et
al., 2024b]. This type of XGNN method is notably efficient
and capable of providing explanations for new instances imme-
diately after training. In addition, we include XGNN methods
that do not have a learning phase and must fit each instance
individually to identify the explanation subgraphs. Although
these methods cannot learn the decision logic of the GNNs and
are inefficient, they are unaffected by OOD scenarios and can,
therefore, serve as an ideal performance for reference, rep-
resenting the fidelity of the generated explanation subgraphs
when complete decision logic is fully learnt. These include
GradCAM [Pope et al., 2019], ATT [Veličković et al., 2018],
GNNExp [Ying et al., 2019], PGMExp [Vu and Thai, 2020],
CF-GNNExp [Lucic et al., 2022], and KRCW [Qiu et al.,
2024]. We implement these methods using well-established
libraries like torch-geometric [Fey and Lenssen, 2019] and
DIG [Liu et al., 2021], among other reliable sources.

Setup. To evaluate the performance of ATT, we use a
3-layer GAT network [Veličković et al., 2018] as backbone
GNN M. Other experimental setup, including the hardware
and software platform, as well as the hyper-parameter settings,
can be found in the Appendix B.1. Experiments on the hyper-

parameter sensitivity can be found in the Appendix B.2.
Evaluation Metrics. We select five widely used metrics

to evaluate XGNN methods comprehensively [Amara et al.,
2022; Agarwal et al., 2023]: (1) Negative Fidelity (fid−)
measures the inconsistency between the predicted labels of Gc

and G (lower is better). This metric highlights the relevance
of the explanation subgraph to the model’s decision logic and
is the most important metric in relative terms. (2) Positive
Fidelity (fid+) evaluates the inconsistency between predicted
labels of Gs and G (higher is better). (3) Unfaithfulness
(GEF) is quantified using KL divergence between prediction
distributions of Gc and G, which provides insights into the
reliability of explanations. Besides, (4) Node Density (ρv) and
(5) Edge Density (ρe) are given to determine the compactness
of explanations. Method complexity is evaluated by measuring
the time (T ) required to generate explanations for 100 samples,
expressed in seconds.

5.1 Performance Comparison (RQ1)
We evaluate the fidelity and robustness of OPEN and baselines
under two scenarios: (1) prerequisite-free, where access to
GNN internals and the use of learnable edge weights are pro-
hibited; and (2) prerequisite-satisfied, where these operations
are permitted. In the prerequisite-satisfied scenario, XGNN
methods can perturb the internal dataflows of GNNs, and gen-
erate learnable edge weights and use them as part of the input
when the dataset does not contain edge features.

Prerequisite-Free Comparisons. Because PGExp and
MixupExp require perturbing the internal dataflows of GNNs,
and ProxyExp relies on learnable edge weights as part of
the input, only GMT-SAM is applicable in prerequisite-free
scenarios. Thus, GMT-SAM serves as the sole baseline for
OPEN in covariate shift settings. As shown in Table 2,
OPEN outperforms GMT-SAM consistently. On the Cora
dataset, OPEN shows a 356.26% average improvement across
all metrics in both degree and word domains. On the Motif
dataset, OPEN performs comparably to GMT-SAM, primar-
ily due to its lower-than-expected performance in the basis
domain. This is because the two-level OOD issue does not
align with the SCM used by OPEN, which limits NPAF’s
ability to partition the sample space, resulting in its perfor-
mance degradation. Overall, these results indicate that by
inferring and partitioning the entire dataset’s sampling space,
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L&P XGNN (OOD sensitive) Ideal Performance for Reference (OOD insensitive)
Dataset Shift Domain PGExp MixupExp GMT-SAM ProxyExp OPEN GradCAM ATT GNNExp PGMExp CF-GNNExp KRCW

Cora

Degree
ρv ↓ 0.5215 0.5250 0.2352 0.6130 0.4338 0.0122 0.3294 0.4681 0.3527 0.8967 0.9657
ρe ↓ 0.2361 0.2092 0.0450 0.2255 0.2092 0.0070 0.1930 0.2340 0.2862 0.5069 0.9928
T ↓ 48.065 8.1771 2.0600 5.7219 7.3380 0.2172 0.6060 24.518 88.125 18.918 9073.4

Word
ρv ↓ 0.4910 0.4664 0.2854 0.5651 0.5412 0.0030 0.1540 0.3973 0.1765 0.9318 0.8714
ρe ↓ 0.1974 0.1679 0.0415 0.1727 0.3613 0.0013 0.0638 0.1812 0.1261 0.5050 0.9070
T ↓ 48.9642 33.4767 2.9617 13.5386 27.9979 0.2177 0.6217 25.0788 112.5488 18.6097 79821.2043

Motif

Basis
ρv ↓ 0.2771 0.2695 0.5259 N/A 0.3445 0.4999 0.5432 0.9276 0.0689 0.9229 0.9916
ρe ↓ 0.1659 0.1659 0.1890 N/A 0.1637 0.3848 0.2346 0.5047 0.0000 0.4981 1.0000
T ↓ 0.9975 1.2111 1.8180 N/A 8.6190 6.0286 0.7405 19.3248 74.9083 17.0641 37.9837

Size
ρv ↓ 0.2561 0.2544 0.4297 N/A 0.2253 0.3198 0.5246 0.9020 0.0247 0.9081 0.9962
ρe ↓ 0.1524 0.1524 0.1726 N/A 0.0981 0.2308 0.2015 0.4802 0.0007 0.4933 0.9998
T ↓ 1.0011 4.5940 1.8287 N/A 3.6504 6.1518 0.7527 28.5231 90.2539 17.4845 198.1647

Table 4: The statistics of comparison on covariate shift scenarios.

OPEN No LAR No LCON No LMI No LRR No NPAF
fid+ ↑ 0.0353 0.0720 (+104.0%) 0.0703 (+99.15%) 0.0693 (+96.32%) 0.0720 (+104.0%) 0.1430 (+305.1%)
fid− ↓ 0.2343 0.2970 (-26.76%) 0.3033 (-29.45%) 0.5050 (-115.5%) 0.2767 (-14.21%) 0.6503 (-177.6%)
GEF ↓ 0.1325 0.1345 (-1.509%) 0.1329 (-0.302%) 0.1052 (+20.60%) 0.1374 (-3.698%) 0.1948 (-47.02%)

Table 5: Ablation study on OPEN various modules.

OPEN captures a more complete GNN decision logic in com-
plex datasets like Cora, leading to greater performance im-
provements than in simpler datasets like Motif. This makes
OPEN more effective for complex datasets. In addition, by
adopting a prerequisite-free approach, OPEN consistently pro-
vides more faithful explanations (i.e., lower fid− and GEF)
than baselines, significantly improving fidelity and robustness.

Prerequisite-Satisfied Comparisons. As shown in Table 3,
on the Cora dataset, OPEN achieves up to a 275.7% improve-
ment over baselines (in concept shift and word domain), with
an average improvement of 218.6% for fid+, 45.76% for fid−,
and 65.84% for GEF, respectively. Its performance is even
comparable to the ideal performance, like PGMExp and CF-
GNNExp. On the Motif dataset, OPEN performs well in the
size domain, improving fid− by 33.42% and GEF by 23.97%,
though its fid+ performance is lower. In the basis domain,
OPEN performs similarly to baselines, further supporting our
findings in prerequisite-free comparisons. To summarize, in
most cases that align with the SCM used by OPEN, it even
achieves ideal performance, demonstrating its effectiveness in
capturing a more complete GNN decision logic. By adopting
a prerequisite-free method, OPEN maintains consistent perfor-
mance across both prerequisite-free and prerequisite-satisfied
scenarios, showcasing greater robustness than baselines.

5.2 Quality and Efficiency Comparisons (RQ2)
Table 4 lists the statistic results for the covariate shift scenarios.
On complex datasets like Cora, OPEN reduces node density
by up to 16.82% and edge density by 29.23% compared to
PGExp, while also achieving an average speedup of 63.78
times. On simpler datasets like Motif, OPEN delivers perfor-
mance comparable to baseline methods. Since OPEN provides
more faithful explanations than baselines in most cases, these
results suggest that OPEN better evaluates the contributions of
graph structures to GNN predictions. This demonstrates that,
compared to baselines, OPEN captures a more complete GNN
decision logic while maintaining similar time complexity, and
delivers higher-quality explanations on complex datasets. This
demonstrates OPEN’s scalability and superior generalizability
in critical applications compared to baselines.

5.3 Ablation Study (RQ3)
Since GNN predictions in OOD scenarios involve uncertain-
ties, accurately evaluating the role and contribution of each

module in OPEN becomes challenging. Therefore, we conduct
an ablation study on the basis domain of the Motif dataset un-
der in-distribution conditions. We deactivate specific modules
by setting the weights of the corresponding modules to zero.
These modules include: last action rewards (LAR), the con-
trastive learning module (LCON), the reconstruction loss (LMI),
and the reconstruction regularization loss (LRR). To evaluate
the contribution of NPAF, we create a variant by reducing the
number of environments to K = 1, meaning that the dataset’s
sample space is not partitioned.

The results in Table 5 highlight the necessity of each mod-
ule for optimal performance. When all modules are active,
OPEN achieves balanced and robust performance across all
metrics. Disabling NPAF results in a 177.6% decrease in fid−
and a 47.02% decrease in GEF, highlighting its critical role in
identifying diverse distributions in the dataset’s sample space.
This further demonstrates that partitioning the sample space
enhances OPEN’s capability to learn differences in GNN deci-
sion logic across various distributions. LMI is the second most
influential module, as disabling it reduces fid− by 115.5% but
also increases fid+ and GEF. This suggests that while it effec-
tively selects important structures, it also incorporates some
irrelevant structures into the explanations. Disabling either
LCON or LAR reduces fid−, indicating that both modules help
OPEN capture distribution differences and identify structures
relevant to GNN predictions. Disabling LRR slightly reduces
fid− and GEF, suggesting that LMI alone is insufficient to
extract all critical structures for prediction.

6 Conclusion

OPEN has represented a major breakthrough in the field of
XGNN by uncovering the nearly complete decision logic of
GNNs. This research has introduced two key modules: NPAF
and GVAG. These modules have collaboratively explored the
decision logic of GNNs across the entire dataset’s sample
space, enhancing the OPEN’s adaptability. Notably, GVAG’s
approach to generating explanation subgraphs has eliminated
prerequisites on GNN internal accessibility and dataset prop-
erties, significantly extending OPEN’s practical utility. Exten-
sive evaluations across various datasets have confirmed the
OPEN’s capability to provide precise and reliable explanations,
underscoring its relevance in real-world applications. In fu-
ture work, we aim to address the current limitations of OPEN,
including the inability to handle multi-level OOD issues and
the challenge of verifying whether the complete decision logic
of GNNs across all distributions has been fully captured, in
order to develop a truly comprehensive GNN explainer.
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