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Abstract
Offline reinforcement learning seeks to derive im-
proved policies entirely from historical data but of-
ten struggles with over-optimistic value estimates
for out-of-distribution (OOD) actions. This issue
is typically mitigated via policy constraint or con-
servative value regularization methods. However,
these approaches may impose overly constraints
or biased value estimates, potentially limiting per-
formance improvements. To balance exploitation
and restriction, we propose an Imagination-Limited
Q-learning (ILQ) method, which aims to maintain
the optimism that OOD actions deserve within ap-
propriate limits. Specifically, we utilize the dy-
namics model to imagine OOD action-values, and
then clip the imagined values with the maximum
behavior values. Such design maintains reason-
able evaluation of OOD actions to the furthest ex-
tent, while avoiding its over-optimism. Theoret-
ically, we prove the convergence of the proposed
ILQ under tabular Markov decision processes. Par-
ticularly, we demonstrate that the error bound be-
tween estimated values and optimality values of
OOD state-actions possesses the same magnitude
as that of in-distribution ones, thereby indicating
that the bias in value estimates is effectively mit-
igated. Empirically, our method achieves state-of-
the-art performance on a wide range of tasks in the
D4RL benchmark.

1 Introduction
Offline Reinforcement Learning (RL) [Lange et al., 2012;
Fujimoto et al., 2019] is designed to learn optimal policies
purely from a static dataset previously collected by an un-
known policy (behavior policy). By eliminating the need for
online interaction with environments, it offers dual benefits.
On the one hand, it can mitigate the expensive costs [Gu et
al., 2017] and potential risks [Sallab et al., 2017] associated
with trial-and-error learning in real-world applications; on the
other hand, it can be leveraged to enhance the generalization
ability and scalability of RL models when the logged data is

∗Corresponding author

massive and diverse. However, the offline learning paradigm
unavoidably incurs distributional shifts [Levine et al., 2020]
of state-action visitation between the learned policy and the
behavior policy, which makes it difficult to correctly assess
out-of-distribution (OOD) action-values. Especially, over-
optimistic estimates may even invalidate the learned policy.

To address this challenge, two main classes of techni-
cal routes are commonly employed in the model-free ap-
proaches [Prudencio et al., 2023]. 1) Policy constraint: It
usually explicitly restricts the gap between the learned and
behavior policy. The batch-constrained Q-learning (BCQ)
[Fujimoto et al., 2019] was devised to restrict the action
space via adding perturbations on a state-conditioned behav-
ior model. Kumar et al. [Kumar et al., 2019] proposed
BEAR to reduce maximum mean discrepancy between the
learned policy and the behavior one. Subsequently, differ-
ent methods corresponding to other metrics have been pro-
posed, such as KL divergence for BRAC [Wu et al., 2019]
and mean squared error for TD3-BC [Fujimoto and Gu, 2021;
Srinivasan and Knottenbelt, 2024], which similarly seeks to
steer the policy closer to actions in the dataset. However,
these learned models are limited to the neighborhood of the
behavior policy hindering their performance, especially when
the dataset is collected by poor policies. 2) Value regulariza-
tion: It aims to utilize value regularizations to suppress OOD
action-values. The conservative Q-learning (CQL) [Kumar et
al., 2020] was designed to penalize the expectation of OOD
action-values, thus mitigating optimistic estimates outside the
dataset. Kostrikov et al. [Kostrikov et al., 2022] introduced
implicit Q-learning (IQL) to estimate value function through
expectile regression to implicitly depress OOD action-values.
The MCQ [Lyu et al., 2022] was proposed to regularize OOD
action-values with the maximum behavior value. And the
OAC-BVR [Huang et al., 2024] was developed to regard the
difference between the Q-function and the behavior value as
a regularization term. While these methods effectively limit
OOD optimism, they also introduce uncontrollable bias into
Q-value estimates, as illustrated in Fig. 1(a). Especially,
the Q-values under CQL exhibit noticeable bias of pessimism
over all MuJoCo tasks, as shown in Fig. 1(c).

To mitigate value bias while maintaining appropriate re-
strictions on over-optimism, we propose an Imagination-
Limited Q-learning (ILQ) method. The insight of our method
is straightforward: For in-sample state-action pairs, we adopt
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Figure 1: (a) illustrates the fundamental principle of value regularization methods. While effectively suppressing OOD action-values, it may
introduce uncontrolled bias in estimations. In contrast, instead of indiscriminately suppressing OOD action-values, ILQ, depicted in (b),
envisions reasonable values (purple line) and then appropriately limits potential over-estimations using the maximum behavior value Qβ

max

(black dashed line), resulting in more appropriate policy evaluation (cyan line). (c) demonstrates that Q-value estimations of CQL across
MuJoCo “-v2” tasks are notably compromised, falling well below maximum returns (black line) in datasets. Conversely, ILQ maintains rea-
sonably optimistic Q-value estimations in anticipation of superior policies. Finally, (d) shows that ILQ’s ultimate performance is significantly
improved, particularly in medium tasks.

the standard Bellman backup based on in-sample transitions
to estimate their values. For OOD state-action pairs, instead
of blindly applying value regularizations to suppress their
action-values, we envision what the values would be with-
out any restrictions. The one-step bootstrapped values un-
der an imaged dynamics model would be reasonable estima-
tions, ideally approximating the ground truth when the im-
aged model closely matches the environment. However, er-
rors in the model fitting are inevitable, and optimistic esti-
mates may still exist. Therefore, we need to further consider
how to appropriately limit the imagination values. We em-
ploy the maximum behavior value as the ceiling of the imag-
ined one. Specifically, if the imagined value is less than the
maximum value, it is maintained; otherwise, the maximum
behavior value is applied. Figure 1(b) illustrates the intu-
ition behind our method. This design ensures a more reason-
able evaluation with appropriate constraints on OOD actions,
thereby avoiding unnecessary value suppression and improv-
ing the generalization ability of the learned policy.

We validate the effectiveness of ILQ both theoretically and
empirically. We prove that the policy evaluation Bellman op-
erator of ILQ is a contraction operator under tabular Markov
Decision Processes (MDPs), ensuring convergence. Particu-
larly, we analyze the action-value gap between the fixed point
obtained by our method and that obtained by the Bellman
optimality equation, demonstrating that the error bound of
OOD action-values can reach the same order of magnitude
as in-distribution ones. Empirically, our method maintains
reasonably optimistic Q-values compared to conservative Q-
learning (Fig. 1(c)) and achieves state-of-the-art performance
across a wide range of tasks in the standard benchmark.

2 Background
Reinforcement Learning (RL) is commonly modeled as a
Markov Decision Process (MDP), characterized by a tuple
(S,A, r, P, ρ0, γ) [Sutton and Barto, 2018], where S is state

space, A is action space, r : S × A → [−rmax, rmax] is re-
ward function, P : S×A×S → [0, 1] is transition dynamics,
ρ0 is probability distribution of initial states, and γ ∈ [0, 1) is
discount factor. The RL agent takes actions on the environ-
ment according to its policy, defined as π : S ×A → [0, 1].

During the learning process, evaluating the expected return
of a state-action pair (s, a) under a policy π, called the action-
value (or Q-value) Q(s, a), is essential. Theoretically, it can
be obtained by Eπ[

∑∞
t=0 γ

tr(st, at) | s0 = s, a0 = a]. In
practice, it is usually approximated by minimizing the Bell-
man residual E[(Q(s, a) − (T Q)(s, a))2], where T is the
Bellman optimality operator defined as

(T Q)(s, a) := r(s, a)+γEs′∼P (·|s,a)

[
max
a′∼π

Q(s′, a′)
]
. (1)

Generally, a delayed approximatorQ− is applied in the above
target T Q for training stability [Mnih et al., 2015].

2.1 Offline Reinforcement Learning
In offline RL, the agent is no longer allowed to interact with
the environment and learns policies exclusively from a lim-
ited static dataset D, which is typically gathered from an un-
known behavior policy β. The dataset D is usually repre-
sented by a set of transition tuples {(s, a, r, s′)}. The goal of
the agent remains to maximize the expectation of cumulative
rewards. Without online correction, erroneously optimistic
estimates of OOD action-values are inevitable [Levine et al.,
2020]. These biases can cause the learned policy to favor in-
correct OOD actions, potentially leading to it failure.

The representative value regularization method is CQL
[Kumar et al., 2020], which adds penalties for OOD action-
values to the standard Q-value update objective, as follows:

αCQL

(
Es∼D,a∼µ(·|s)[Q(s, a)]− Es∼D,a∼β(·|s)[Q(s, a)]

)
+
1

2
E
[(
Q(s, a)− T Q(s, a)

)2]
,

where µ(·|s) is a distribution to produce OOD actions, αCQL

is a hyperparameter to adjust the degree of conservatism.
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3 Related Work
3.1 Model-free Offline RL
Recent advancements in offline RL have focused on address-
ing the challenges posed by OOD actions. Importance sam-
pling methods [Nachum et al., 2019] have been developed to
correct evaluation under distributional shifts, but they often
suffer from high variance. Policy constraint methods [Ku-
mar et al., 2019; Wu et al., 2021; Fujimoto and Gu, 2021;
Li et al., 2023; Chen et al., 2024] are employed to limit
the deviation of learned policies; however, their performance
tends to degrade when the behavior policy is suboptimal.

Our method aligns more closely with value regularization
approaches. For instance, CQL [Kumar et al., 2020] and
CSVE [Chen et al., 2023] directly penalize OOD action-
values, effectively controlling over-optimism but often result-
ing in overly pessimistic estimates. Methods like MCQ [Lyu
et al., 2022] and OAC-BVR [Huang et al., 2024] attempt to
relax restrictions by assigning maximum behavior values or
behavior values, respectively, to OOD action values. How-
ever, this introduces uncontrolled value bias for OOD ac-
tions. Although MCQ additionally employs policy constraint
weighting to mitigate this bias in practical implementations,
it offers limited theoretical guarantees for OOD action-value
estimates. In contrast, our proposed method preserves more
honest estimates of OOD action-values within the limitation
of maximum behavior values, and offers theoretical guaran-
tees for its value estimates.

3.2 Model-based Offline RL
Model-based methods aim to enhance collected datasets
by generating synthetic trajectories using learned dynam-
ics models. Various strategies have been proposed to ef-
fectively leverage these synthetic data, including uncertainty
quantification [Ovadia et al., 2019; Kidambi et al., 2020;
Yu et al., 2020; Diehl et al., 2021], conservative value esti-
mation [Yu et al., 2021], representation balancing [Lee et al.,
2021], and adversarial learning [Bhardwaj et al., 2023]. In
contrast, our proposed ILQ avoids trajectories generation, re-
lying solely on the dynamics model to produce one-step sub-
sequent states and rewards of in-sample states for estimating
imagined OOD action-values. While ILQ utilizes the dynam-
ics model, it remains fundamentally a model-free learning
framework and circumvents challenges of error accumulation
associated with longer trajectories in model-based methods.

4 Imagination-Limited Q-learning Method
We start by elucidating our novel Imagination-Limited Bell-
man (ILB) operator in Subsection 4.1. Subsequently, we
elaborate on its practical implementation details and theo-
retical analysis in Subsection 4.2 and 4.3, respectively. And
the Imagination-Limited Q-learning (ILQ) algorithm is ulti-
mately summarized in Subsection 4.4.

4.1 Imagination-Limited Bellman Operator
In online RL, researchers typically use the Bellman optimal-
ity operator Eq. (1) to evaluate policies. However, in offline
settings, the absence of online corrections makes policy eval-
uation highly susceptible to OOD over-optimism [Levine et

al., 2020] under the standard operator. Existing value regu-
larization methods primarily focus on directly restricting the
OOD action-values [Kumar et al., 2020; Lyu et al., 2022;
Chen et al., 2023; Huang et al., 2024], which introduces un-
controllable bias in value estimates and lacks theoretical guar-
antees for OOD actions.

We argue that establishing reasonable estimates for out-of-
distribution state-actions should take precedence, followed by
the imposition of suitable restrictions, rather than directly em-
ploying value regularization. To achieve this goal, we intro-
duce a novel Imagination-Limited Bellman operator, defined
as follows.
Definition 1. The Imagination-Limited Bellman (ILB) oper-
ator is defined as
TILBQ(s, a)

=

r(s, a) + γEs′∼P
[
max
ã′∼π

Q(s′, ã′)
]
, if β(a|s) > 0

min
{
yQimg, y

Q
lmt

}
+ δ, otherwise.

(2)
where β is the behavior policy,

yQimg = r̂(s, a) + γEŝ′∼P̂ (·|s,a)

[
max
ã′∼π

Q(ŝ′, ã′)
]
, (3)

and
yQlmt = max

â∈Supp(β(·|s))
Q(s, â) (4)

are the imagined value and its limitation, respectively. The P̂
is the empirical transition kernel, r̂ is the empirical reward
function, δ is a hyperparameter with a small absolute value,
and Supp(·) means support-constrained on the dataset.

Here is the insight behind the proposed ILB operator. For
an in-sample state-action pair (s, a), i.e., β(a | s) > 0, we
have its corresponding transition (s, a, r, s′) in the dataset,
allowing us to apply the standard Bellman operator without
any obstacles. However, for an out-of-sample state-action
pair (s, aoos), the standard Bellman backup cannot be applied
solely due to the absence of its successor state and reward. To
address this, one could utilize empirical dynamics model to
predict the next state ŝ′ and reward r̂ and obtain the imagi-
nation value yQimg as Eq. (3), which provides a relatively ac-
curate approximation for an OOD state-action. Nevertheless,
it may still result in optimistic estimates because of fitting er-
rors. To tackle this issue, we use the maximum in-distribution
action-value Eq. (4) as the upper limit for the imagined value.
This design offers dual benefits: First, it maximally maintains
the imagined value, reducing estimation bias on OOD ac-
tions; second, the maximum behavior value ensures that there
is always an in-distribution action-value greater than or equal
to the OOD ones, encouraging the policy to more likely favor
in-distribution actions during the actor improvement process.

We analyze the ILB operator’s properties and demonstrate
that the ILB operator exhibits the same γ-contraction prop-
erty as the standard Bellman operator, ensuring convergence
in policy evaluation. The proof is provided in the Appendix.
Theorem 1 (Convergence). The ILB operator defined in Eq.
(2) is a γ-contraction operator in the L∞ norm, and Q-
function iteration rule obeying the ILB operator can converge
to a unique fixed point.
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4.2 Practical Implementation of Imagination and
Limitation Value

Imagination Value
We fit the environment dynamics to derive empirical transfer
kernel P̂ and reward function r̂ in the simplest manner using

max
T̂ψ

E(s,a,r,s′)∼D

[
log T̂ψ(r, s

′ | s, a)
]
, (5)

where T̂ψ stands for both P̂ and r̂ for brevity, and is repre-
sented by a multivariate Gaussian distribution with parame-
ters ψ practically. We then obtain the imagined value yQimg.

Limitation Value
In fact, the behavior policy β(· | s) in Eq. (4) is unknown and
needs to be empirically modeled. In light of the expressive-
ness of diffusion models [Ho et al., 2020], we fit the behavior
policy using a conditional diffusion model. Specifically, it is
constructed via a reverse diffusion chain, formulated as

Diffω(a | s) := N (aK ; 0, I)
K∏
k=1

pω(a
k−1 | ak, s) (6)

where superscript k denotes the diffusion timestep, a := a0

is the final sampled action, ak, k = 1, · · · ,K − 1, are
latent variables, aK ∼ N (0, I) is Gaussian noise. Typ-
ically, pω(ak−1 | ak, s) is modeled as a Gaussian distri-
bution N

(
ak−1;µω(a

k, s, k),Σω(a
k, s, k)

)
with the covari-

ance matrix Σω(a
k, s, k) = βkI and the mean defined as

µω(a
k, s, k) =

1
√
αk

(
ak − βk√

1− ᾱk
ξω(a

k, s, k)

)
, (7)

where βk is the variance schedule, αk := 1 − βk, ᾱk :=∏k
i=1 αi, and ξω(·) is the noise prediction network with pa-

rameters ω. The conditional diffusion model is optimized by
maximizing the evidence lower bound, which can be simpli-
fied [Ho et al., 2020] to minimize the following objective

min
ω

E ξ∼N (0,I)
k∼U ,(s,a)∼D

∥∥ξ − ξω(√ᾱka+√1− ᾱkξ, s, k)∥∥2 , (8)

where U is an uniform distribution over {1, · · · ,K}. Similar
diffusion behavior modeling methods are also applied in other
works [Wang et al., 2023; Hansen-Estruch et al., 2023].

Accordingly, we adopt the limitation value as shown in the
following equation:

yQlmt = max
âm∼Diffω(·|s)
m=1,··· ,M

Q (s, âm) , (9)

where M is the number of sampled actions. Due to possible
errors in the fitting process, this may result in a deviation be-
tween the estimated value Eq. (9) and the true value Eq. (4).
In order to offset this gap, we introduced the hyperparameter
δ in definition Eq. (2), typically set to a small absolute value.

4.3 Theoretical Analysis
We now theoretically discuss the action-value gap between
the fixed point in Theorem 1 and the Bellman optimality
value. Before proceeding further, we make some commonly
used assumptions about the reward function [Huang et al.,
2024, Assumption 1].

1. The reward function is bounded, i.e., |r(s, a)| ≤ rmax.
Actually, this is consistent with what is required by its
definition r(s, a) : S ×A → [−rmax, rmax].

2. Similar to the Lipschitz condition, i.e., |r(s, ã1) −
r(s, ã2)| ≤ ℓ∥ã1 − ã2∥∞, ∀s ∈ S and ∀ã1, ã2 ∈ A,
where ℓ is a constant. This requires that the reward func-
tion satisfies Lipschitz continuity with respect to actions.

In addition, the error bound assumption between the empiri-
cal models and the real ones are required, which is also uti-
lized in both [Kumar et al., 2020] and [Huang et al., 2024].
Suppose the r̂ and P̂ are the empirical reward function and
empirical transition dynamics, respectively, the following re-
lationships hold with high probability ≥ 1− ζ, ζ ∈ (0, 1),∥∥∥r̂(s, a)− r(s, a)∥∥∥

1
≤ ζr/

√
D, (10)∥∥∥P̂ (· | s, a)− P (· | s, a)∥∥∥

1
≤ ζP/

√
D, (11)

where D is the constant related to the dataset size, ζr and ζP
are constants related to ζ.

We begin by analyzing the Bellman optimality value gap
between the learned policy and behavior policy.
Theorem 2. Suppose Qβ∗ is the fixed point of the support-
constrained Bellman optimality operator. The following gap
can be obtained

|Qβ∗(s, π(s))−Qβ∗(s, β(s))| ≤ ℓϵπ + γ
|S|rmax

1− γ
ϵP , (12)

where ϵπ := maxs ∥π(s)− β(s)∥∞ and ϵP :=∥∥Pπ − P β∥∥∞.
Accordingly, we could prove the error bound between the

imagination value and Bellman optimality value.
Theorem 3. Suppose Qβ∗ is the fixed point of support-
constrained Bellman optimality operator. The gap between
the imagination value yQβ∗img and Qβ∗ has:∣∣∣yQβ∗img −Qβ∗(s, a)

∣∣∣
≤ ζr√

D
+ γℓϵπ + γ2

|S|rmax

1− γ
ϵP + γ

ζP√
D

rmax

1− γ
.

(13)

Based on above theorems, we can estimate the action-value
gap between the fixed point of the ILB operator and Qβ∗ .
Theorem 4 (Action-value gap). Suppose QILB and Qβ∗

denote the fixed point of the ILB operator and support-
constrained Bellman optimality operator, separately. The
action-value gap can be bounded as
∥QILB(s, a)−Qβ∗(s, a)∥∞

≤ 1

1− γ
ζr√
D

+
ℓ

1− γ
ϵπ

+
γ|S|rmax

(1− γ)2
ϵP +

γrmax

(1− γ)2
ζP√
D

+
1

1− γ
|δ|,

(14)

where ζr, ζP are defined in Eq. (10) and Eq. (11), ϵr, ϵP are
defined in Theorem 2, δ is defined in the ILB operator.

According to Theorem 4, we conclude that error bounds
for in-sample and out-of-sample actions are of the same mag-
nitude O(rmax/(1−γ)2). This result aligns with the conclusion
of CQL [Kumar et al., 2020] within the support region. All
proofs are detailed in the Appendix.
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4.4 The ILQ Algorithm
In deep RL, the Q-function is commonly approximated by
a neural network with parameters θ, while the correspond-
ing target network has parameters θ−. As described in the
background, it can be optimized by minimizing the temporal
difference (TD) loss E(s,a,r,s′)[(Qθ(s, a) − T Qθ−(s, a))2].
Intuitively, under the ILB operator we developed, the corre-
sponding loss function can be constructed as

E(s,a,r,s′)

[(
Qθ(s, a)− TILBQθ−(s, a)

)2]
. (15)

Since in-sample and out-of-sample state-action pairs have
different TD targets, as defined by our ILB operator, a com-
mon way is to split the above loss function into a weighted
sum of in-sample and out-of-sample components as follows

LQ(θ) = ηE(s,a,r,s′)∼D

[(
Qθ(s, a)− TILBQθ−(s, a)

)2]
+(1− η)E s∼D

aoos∼u(·|s)

[(
Qθ(s, a

oos)− TILBQθ−(s, aoos)
)2]

,

(16)

where η is a trade-off factor, (s, aoos) refers to the out-of-
sample state-action pair. The u(· | s) is any distribution that
can produce out-of-sample actions. In practice, we directly
treat policy π as the sampling distribution u.

We also incorporate the double network [Hasselt, 2010] to
reduce overestimation, which is widely utilized in both online
[Mnih et al., 2015] and offline RL [Fujimoto and Gu, 2021].
Therefore, combining the definition of ILB operator Eq. (2),
we have the target, for in-sample transition (s, a, r, s′), as:

TILBQθ−(s, a) = r(s, a)+γ min
j=1,2

Eã′∼πϕ(·|s′)
[
Qθ−j

(s′, ã′)
]
,

(17)
where πϕ is the learned policy represented by a neural net-
work with parameters ϕ and Qθ−j is the j-th target network.
Similarly, for out-of-sample (s, aoos), the target is formulated
as:

TILBQθ−(s, aoos) = min
{
yQimg, y

Q
lmt

}
+ δ, (18)

where

yQimg = r̂ (s, aoos)+γ min
j=1,2

Eŝ′∼P̂ (·|s,aoos)
ã′∼πϕ(·|ŝ′)

[
Qθ−j

(ŝ′, ã′)
]
,

(19)

yQlmt = min
j=1,2

max
âm∼Diffω(·|s)
m=1,··· ,M

Qθ−j
(s, âm) . (20)

Here Eq. (20) is obtained by coupling Eq. (9).
During policy improvement, we adopt the same objective

as in vanilla SAC [Haarnoja et al., 2018] to optimize the actor
network without any complex design, as follows:

max
ϕ

E s∼D,
a∼πϕ(·|s)

[
min
j=1,2

Qθj (s, a)− α log πϕ(a | s)
]
, (21)

where α is a multiplier for the entropy.
Combining above steps, our method is derived, with its

pseudo-code presented in Algorithm 1.

Algorithm 1 Imagination-Limited Q-Learning (ILQ)

Require: The offline dataset D, number of iterations N , dis-
count factor γ, target network update rate τ , trade-off fac-
tor η, and offset parameter δ.

1: Initialize critic networksQθ1 ,Qθ2 , actor network πϕ, tar-
get networks Qθ−1 , Qθ−2 with θ−i ← θi, i = {1, 2}.

2: // Pre-train the dynamics model and behavior policy
3: Train the dynamics model T̂ψ(s′, r | s, a) via (5).
4: Train the diffusion model Diffω(· | s) for modeling the

behavior policy by optimizing (8).
5: // Policy training
6: for step n = 1 to N do
7: Sample a mini-batch of transitions B = {(s, a, r, s′)}

from dataset D.
8: Compute target value for (s, a) in B as (17).
9: Sample OOD actions conditioned on sates in B via πϕ,

and calculate target value according to (18) via the pre-
trained behavior policy and dynamics model.

10: Update parameters θi, i = 1, 2 for each critic network
via minimizing (16).

11: Update actor ϕ via (21).
12: Update the target networks

θ−i ← τθi + (1− τ)θ−i , i = 1, 2.

13: end for

5 Experiments
In this section, we empirically validate the effectiveness of
our method ILQ. 1) We demonstrate the superiority of ILQ
over existing methods by comparing performance across a
series of tasks. 2) We conduct sensitivity analyses on the hy-
perparameters involved in ILQ, confirming the stability of the
proposed method. 3) We then perform ablation experiments
on both imagination and limitation components to verify their
impacts. 4) We also delve into the Q-value estimations to
further validate the effectiveness of the two components de-
signed; details are in the Appendix due to space constraints.

5.1 Experimental Settings
We evaluate ILQ on the D4RL [Fu et al., 2020] benchmark.
The commonly used domain is Gym MuJoCo “-v2”, includ-
ing halfcheetah, hopper, and walker2d tasks at four levels:
random (r), medium (m), medium-replay (mr), and medium-
expert (me). We also assess ILQ on Maze2D “-v1” domain,
which offers three layouts with two reward types, i.e., umaze
(u), umaze-dense (ud), medium (m), medium-dense (md),
large (l), and large-dense (ld). In addition, comparisons on
several adroit “-v0” tasks are conducted. Due to page limita-
tions, descriptions of compared algorithms and extra experi-
mental results have been relocated to the Appendix. Details
of hyperparameters settings and implementation specifics are
also provided in the Appendix to ensure reproducibility.

5.2 Performance Comparison
In comparing ILQ with state-of-the-art methods on MuJoCo
tasks, as shown in Table 1, ILQ performs significantly bet-
ter than policy constraint methods (BCQ [Fujimoto et al.,
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Task Name BC BCQ CQL UWAC One-step TD3+BC IQL MCQ CSVE OAP DTQL OAC-BVR TD3-BST ILQ(Ours)

halfcheetah-r 2.2 2.2 17.5 2.3 3.7 11.0 13.1 28.5 26.7 24.0 - 31.1 - 31.7 ± 0.7
hopper-r 3.7 7.8 7.9 2.7 5.6 8.5 7.9 31.8 27.0 8.8 - 7.4 - 31.6 ± 0.2
walker2d-r 0.2 4.9 5.1 2.0 5.2 1.6 5.4 17.0 6.1 5.1 - 9.8 - 21.6 ± 0.1
halfcheetah-m 42.4 46.6 44.0 42.2 48.6 48.3 47.4 64.3 48.6 56.4 57.9 52.2 62.1 65.7 ± 0.5
hopper-m 53.4 59.4 58.5 50.9 56.7 59.3 66.3 78.4 99.4 82.0 99.6 95.0 102.9 92.1 ± 5.8
walker2d-m 66.9 71.8 72.5 75.4 80.3 83.7 78.3 91.0 82.5 85.6 89.4 86.0 90.7 91.5 ± 0.7
halfcheetah-mr 34.9 42.2 45.5 35.9 38.6 44.6 44.2 56.8 54.8 53.4 50.9 48.3 53.0 59.6 ± 1.0
hopper-mr 28.1 60.9 95.0 25.3 94.1 60.9 94.7 101.6 91.7 98.5 100.0 95.3 101.2 102.7 ± 0.3
walker2d-mr 19.2 57.0 77.2 23.6 49.3 81.8 73.9 91.3 78.5 84.3 88.5 77.3 90.4 95.3 ± 1.8
halfcheetah-me 60.4 95.4 91.6 42.7 91.7 90.7 86.7 87.5 93.1 83.4 92.7 93.1 100.7 100.0 ± 0.4
hopper-me 51.5 106.9 105.4 44.9 83.1 98.0 91.5 111.2 95.2 85.9 109.3 96.5 110.3 111.6 ± 0.6
walker2d-me 96.7 107.7 108.8 96.5 112.9 110.1 109.6 114.2 109.0 111.1 110.0 112.0 109.4 117.0 ± 1.2

MuJoCo total 459.6 662.8 729.0 444.4 669.8 698.5 719.0 873.6 812.6 778.5 - 804.0 - 920.4

Table 1: Comparison of normalized average scores for ILQ and existing state-of-the-art methods on MuJoCo tasks over the final 10 evalua-
tions. Experiments are conducted using 5 different random seeds. The highest score is bolded.

Task Name ROMI-BCQ BEAR CQL IQL MCQ Diffuser PlanCP ILQ(Ours)

maze2d-u 139.5 65.7 18.9 47.4 81.5 113.9 116.4 91.9± 26.0
maze2d-ud 98.3 32.6 14.4 48.9 107.8 - - 116.2 ± 15.4
maze2d-m 82.4 25.0 14.6 34.9 106.8 121.5 128.5 163.6 ± 31.4
maze2d-md 102.6 19.1 30.5 47.1 112.7 - - 137.8 ± 9.2
maze2d-l 83.1 81.0 16.0 58.6 111.2 123.0 130.9 198.5 ± 23.8
maze2d-ld 124.0 133.8 46.9 75.4 118.5 - - 152.8 ± 10.4

Maze2D total 629.9 357.2 141.3 312.3 638.5 - - 860.8

Task Name BCQ TD3+BC CQL IQL MCQ DQL DTQL ILQ(Ours)

pen-human 68.9 64.8 35.2 71.5 68.5 72.8 64.1 77.3 ± 7.9
pen-cloned 44.4 49 27.2 37.3 49.4 57.3 81.3 85.6 ± 10.2

Adroit total 113.3 113.8 62.4 108.8 117.9 130.1 145.4 162.9

Table 2: Comparison of normalized scores on Maze2D and Aroit
datasets. The scores are also averaged over the final 10 evaluations
across 5 different random seeds.

2019], UWAC [Wu et al., 2021], One-step [Brandfonbrener
et al., 2021], TD3+BC [Fujimoto and Gu, 2021], and OAP
[Yang et al., 2023]) in a wide range of random- and medium-
level tasks. This is because policy constraint methods restrict
the learned policy to be within a neighborhood of the behav-
ior policy. Although TD3-BST [Srinivasan and Knottenbelt,
2024] introduces fine-grained weighting on the constraints
of TD3+BC to enhance performance, it remains inferior to
ILQ overall. The value regularization methods (CQL [Kumar
et al., 2020], MCQ [Lyu et al., 2022], CSVE [Chen et al.,
2023], OAC-BVR [Huang et al., 2024]) show higher scores
in average. ILQ continues to show performance beyond them
in 11/12 tasks. DTQL [Chen et al., 2024] integrates implicit
value regularization and policy constraints to enhance perfor-
mance, but it still falls short compared to ILQ, especially in
halfcheetah tasks.

According to Table 2, neither policy constraint approaches
nor value regularization approaches performed well enough
on Maze2D tasks. Although ROMI-BCQ [Wang et al., 2021]
achieves advanced performance on maze2d-u by utilizing a
reverse dynamics model, it performs mediocrely on other
tasks. Diffuser [Janner et al., 2022] and PlanCP [Sun et al.,
2023] leverage diffusion models to improve their planning ca-
pabilities in maze2d-u, while still lag behind ILQ on maze2d-
m and maze2d-l, further demonstrating stitching abilities of
ILQ. The experimental results on Adroit tasks demonstrate
that our method continues to outperform others, highlighting
its applicability across different tasks.
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Figure 2: Performances under different values of offset parameter δ.

5.3 Parameter Study
Offset parameter δ
To assess impacts of parameter δ, we conduct sensitivity
analyses by varying δ across {−2,−1,−0.5, 0, 0.5, 1, 2}.
We evaluate the performance on halfcheetah-me, hopper-mr,
hopper-me, and walker2d-m, where each experiment was run
over 3 random seeds. Figure 2 shows that the score curve re-
mains stable as δ changes. Overall, performance is slightly
lower when δ is negative compared to when it is positive.
Notably, a negative δ always ensures a safe learned policy.
However, when δ is positive, meaning the limit exceeds the
maximum behavior value a little bit, there may exists policy
failure, as illustrated in Fig. 2(c). These indeed validate our
argument that overly restricting OOD values could inhibit po-
tential performance gains, and taking the maximum behavior
value (δ = 0) as a ceiling of the imagined value is consis-
tently a solid choice.

Trade-off Factor η
To evaluate the impact of the trade-off factor η, we conduct
sensitivity analyses by varying η around its optimal value.
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Figure 3: Performances under different values of trade-off factor η.

According to results in Fig. 3(a) and 3(c), ILQ achieves ro-
bust performance for all variations of η around 0.9, making it
a typically safe choice for medium and medium-replay tasks.
This suggests that ILQ should place greater trust in in-sample
value estimates when evaluating policies. In medium tasks,
the Q-value of OOD actions generated by the learned policy
rarely reach the maximum behavior value. Consequently, as-
signing too high a weight to these OOD action-values, i.e., a
smaller η, may lead to misplaced trust in OOD actions and
ultimately cause policy failure, as illustrated in Fig. 3(c). In
medium-expert tasks, the in-sample data comprises a mixture
of medium and expert levels, and the value of the OOD ac-
tions generated by the learned policy can approach the max-
imum behavior value. Therefore, the value estimate needs to
be more balanced between in-sample and out-of-sample. In
this case, the optimal value of η is usually around 0.6 for all
medium-expert tasks. The overall results in Fig. 3 show that
ILQ maintains stable performance when η varies around its
optimal parameter.

5.4 Ablation Study
To understand the contribution of each component in our
OOD target action-value Eq. (18), we conduct an ablation
study. This study evaluates the impact of removing either the
imagination component or the limitation value from the tar-
get value. All experiments are run over 3 random seeds. More
results can be found in the Appendix.

Without Imagination
In this part, we assess the performance of ILQ without the
imagination component yQimg, indicating solely the maximum
behavior value is considered as the regularization target. The
results are illustrated in Fig. 4. As shown in Fig. 4(a) and (b),
the performance degrades significantly and the curve of nor-
malized score exhibits a very oscillatory behavior. This is be-
cause directly using the maximum behavior value as the target
values for OOD actions introduces uncontrollable bias and ul-
timately impairs policy improvement. This demonstrates the
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Figure 4: Performance comparison of the ILQ algorithm with and
without the imagined value yQ

img in the target value.
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Figure 5: Performance comparison of the ILQ algorithm with and
without the limitation value yQ

lmt in the target value.

necessity of the imagination component for providing cali-
brated target values under the limitation.

Without Limitation
Here we exclude the limitation component yQlmt from the tar-
get value, relying solely on yQimg for learning. This approach
is intended to evaluate the importance of the limitation com-
ponent. In one specific case, Fig. 5(a), performance in-
creased when relying solely on the imagination value, indi-
cating that the imagination component can sometimes pro-
vide highly reliable guidance. However, in most tasks, perfor-
mance dropped significantly, with some policies in hopper-m
task Fig. 5(b) collapsing completely. This underscores the
importance of the limitation component in preventing the in-
correctly optimistic estimates. These studies suggest both of
the two components play critical role on OOD estimates.

6 Conclusion
In conclusion, the Imagination-Limited Q-learning (ILQ)
method effectively mitigates bias of value estimations by
maintaining reasonable evaluations of OOD action-values
within appropriate limits. Specifically, it utilizes a dynamics
model to help generate imagined values and capping these
with the maximum behavior values for OOD actions, while
standard target values for in-distribution ones. Theoretical
analysis confirms the convergence of ILQ and demonstrates
that the error bound between estimated and optimal values for
OOD actions is comparable to that for in-distribution actions,
thereby enhancing performance improvements. Empirical re-
sults show that ILQ achieves state-of-the-art performances on
a wide range of tasks in the D4RL benchmark. We hope this
work can provide new insights into the value estimates for
offline RL.
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