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Abstract

Maps are crucial for various smart city applications
as a core component of city geographic information
systems (GIS). Developing effective Map Entity
Representation Learning methods can extract se-
mantic information for downstream tasks like crime
rate prediction and land use classification, with sig-
nificant application potential. A map comprises
three entity types: land parcels, road segments,
and points of interest. Most existing methods fo-
cus on a single entity type, losing inter-entity re-
lationships and weakening representation effective-
ness for real-world applications. Thus, jointly mod-
elling and representing multiple map entity types
is essential. However, designing a unified frame-
work is challenging due to map data’s unstructured,
complex, and heterogeneous nature. We propose a
novel method, HygMap, to represent all map entity
types. We model the map as a heterogeneous hy-
pergraph, design an encoder for map entities, and
introduce a hybrid self-supervised training scheme.
This architecture comprehensively captures the het-
erogeneous relationships among map entities at dif-
ferent levels. Experiments on nine downstream
tasks with two real-world datasets show that our
framework outperforms all baselines, with good
computational efficiency and scalability.

1 Introduction
Geographic Information Systems (GIS) are indispensable
tools for urban management and daily life, supporting
location-based applications such as intelligent transporta-
tion [Wang et al.2021a, Liu et al.2024], urban plan-
ning [Wang et al.2018, Wang et al.2017b], and emergency
response [Wang et al.2021b, Wang et al.2017a]. A core com-
ponent of these systems is Map, which comprises points of
interest (POIs), road segments, and land parcels (regions).
Given their critical role in urban management, developing ef-
fective methods to characterize and model map data in a gen-
eralizable manner is essential.

∗Corresponding author

Traditional maps rely on specialised spatial-temporal data
formats, such as Shapefile and GeoJSON, which store geo-
graphic coordinates as attributes for map entities. However,
these formats cannot directly model relationships between
entities, necessitating manual feature engineering for down-
stream tasks. This process is labour-intensive and limits the
effectiveness of downstream applications due to insufficient
data mining.

In recent years, deep neural network-based representation
learning has achieved significant success in various domains,
including text representation learning [Yan et al.2021] ,image
representation learning [Chen et al.2020] and spatio-temporal
representation learning [Ren et al.2021,Hettige et al.2024,Ji
et al.2022]. As a critical form of unstructured data, map
data has also benefited from representation learning. Emerg-
ing Map Entity Representation Learning methods [Han et
al.2025, Jiang et al.2024, Cheng et al.2025] use deep learn-
ing to extract structural and semantic information from maps,
converting it into generic representation vectors for down-
stream tasks such as traffic prediction [Ji et al.2025, Wang
et al.2016], route planning [Wang and Wong2023, Wang et
al.2021c], and land-use classification [Zhang et al.2020].

Maps are unified wholes comprising multiple interactive
entity types. For instance, a commercial land parcel may
house numerous POIs (e.g., stores, restaurants, entertain-
ment venues), attracting tourists and boosting economic vital-
ity, transportation demand, and traffic flow on nearby roads.
Transportation hubs (e.g., train stations, subway stations,
bus stops) connect to multiple roads, forming complex net-
works where high traffic volume significantly affects accessi-
bility and flow in surrounding areas. These inter-entity rela-
tionships hold valuable structural and semantic information.
However, existing map representation learning methods fo-
cusing on single-entity categories often lose such relation-
ships, weakening representation effectiveness for real-world
applications. Therefore, it is crucial to model and represent
multiple map entity categories jointly.

However, designing a unified framework to represent mul-
tiple types of map elements is non-trivial. As a form of un-
structured, highly complex, and heterogeneous data, Maps
pose significant challenges for uniform representation. First,
the entities in maps are diverse and heterogeneous. Land
parcels, roads, and points of interest (POIs) have distinct data
structures and attributes. Second, the relationships among
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these entities are also heterogeneous across different entity
levels. Previous work on map entity representation has fo-
cused on capturing different semantic information at each
level. For example, at the land parcel level, the adjacency
relationships of polygons are captured; at the road segment
level, the connectivity of the road network and traffic trans-
fer relationships are represented; and at the POI level, the
semantic relationships implied by check-in sequences are re-
vealed. Finally, at the overall map level, as illustrated in Fig.
1, multiple roads enclose a parcel, a road may be adjacent
to many parcels, and multiple POIs are distributed within a
parcel, forming a natural high-order topological relationship.

Driven by these, we propose a unified framework for rep-
resenting all types of map entities, denoted as Heteroge-
neous Hypergraph-based Map Representation Learning
(HygMap), which unifies their diverse characteristics and
complex relationships. Firstly, we put forward a map mod-
elling method, which models the unstructured data into a map
hypergraph structure composed of three types of nodes and
four types of hyperedges. Then, we designed a map entity en-
coder for this graph structure. It includes the message passing
among the same type of entities and covers the message pass-
ing between heterogeneous entities. Finally, we proposed a
hybrid training strategy for the map entity encoder we have
put forward, comprehensively capturing and balancing enti-
ties’ relationships while ensuring the representations’ robust-
ness. Experimental results show that HygMap can achieve
the optimal performance while also possessing excellent ef-
ficiency after we conduct extensive experiments on two real-
world datasets and nine types of tasks. Compared with the 22
existing methods, our method is superior in all downstream
tasks, with an average performance increase of over 7%, val-
idating the effectiveness and versatility of HygMap in han-
dling multiple categories of map entity representation learn-
ing challenges.

2 Related Work
POI Representation Learning. POI representation learn-
ing typically involves capturing users’ mobility patterns
and generating POI representations based on check-in data.
Early approaches utilised generic word representation learn-
ing methods [Mikolov et al.2013a], and later researchers of-
ten used sequence models such as LSTM and Transformer to
capture temporal patterns from POI check-in sequences and
generate representations for predicting the next POI [Lin et
al.2021, Gong et al.2023].
Road Segment Representation Learning. At first, re-
searchers relied on topology-aware graph embedding meth-
ods [Perozzi et al.2014], but these methods have limitations
in capturing complex road attributes and traffic semantics.
Subsequently, more graph-based road network representa-
tion methods emerged. These methods consider topology
and geospatial attribute information [Wu et al.2020, Chen et
al.2021, Zhang and Long2023]. In the latest development,
two self-supervised methods have been proposed, namely
JCLRNT [Mao et al.2022] and SARN [Chang et al.2023].
Land Parcel (Region) Representation Learning. Early
approaches utilised the skip-gram method to learn repre-

sentations of parcels from sequences of human mobility
data [Wang and Li2017]. Subsequent research has fo-
cused on modelling parcel features using multi-view data
(e.g. geographic distance and human mobility data) [Zhang
et al.2019]. More recently, researchers have explored the
graph structure of parcels with multiple views for repre-
sentation learning [Zhang et al.2020, Wu et al.2022]. In
the latest study, the ReCP model [Li et al.2024] presents a
self-supervised representation learning scheme incorporating
cross-view comparison learning, showing promising results.

Previous studies represented map data at three levels with
distinct methods, overlooking interactions among urban en-
tities at different scales. CityFM [Balsebre et al.2024] is a
pioneering work to represent map entities uniformly but over-
looks their complex relationships. In contrast, our model
uniformly represents three entity types via comprehensive
map modelling, preserving map integrity and capturing inter-
entity relationships.

3 Preliminaries
3.1 Definitions of Basic Map Entities
Definition 1 (Point of Interest). A point of interest is defined
as a location in the city, such as a building or landmark (in
Fig. 1(d)). A typical coordinate is [x, y], with x and y being
the geographic longitude and latitude, respectively. The POI
set within a city can be denoted as P =

{
p1, p2, · · · , pNp

}
,

where Np is the number of POIs. For a specific POI pi ∈ P ,
its raw features are encoded as the vector frawpi ∈ RDP ,
where DP is the dimension of the raw feature vectors for
POIs. The raw feature of P is F raw

P ∈ RNp×DP .

Definition 2 (Road Segment). A road segment is a poly-
line of the road network (in Fig. 1(c)). A typical coordi-
nate is [[x0, y0], [x1, y1], · · · ], with xi and yi being the ge-
ographic longitude and latitude of the i-th point on the road
segment, respectively. The road segment set is denoted as
S = {s1, s2, · · · , sNs}, where Ns is the number of road seg-
ments. For a specific road segment si ∈ S , its raw features
are encoded as the vector frawsi ∈ RDS , where DS is the di-
mension of the raw feature vectors for roads. The raw feature
of S is F raw

S ∈ RNs×DS .

Definition 3 (Land Parcel). A land parcel is a polygon area
divided by road segments (in Fig. 1(b)). A typical coordi-
nate is [[x0, y0], [x1, y1], · · · , [x0, y0]], with xi and yi being
the geographic longitude and latitude of the i-th point on the
parcel boundary, respectively. The land parcel set is denoted
as R = {r1, r2, · · · , rNr

}, where Nr is the number of land
parcels. For a specific land parcel ri ∈ R, its raw features
are encoded as the vector frawri ∈ RDR , where DR is the
dimension of the raw feature vectors for parcels. The raw
feature of R is F raw

R ∈ RNr×DR .

3.2 Problem Statement
Given the map entity set M = S ∪ R ∪ P , map representa-
tional learning aims to encode each POI pi, road segment si,
and land parcel ri to the dense vector fpi ∈ RD, fsi ∈ RD,
and fri ∈ RD within a unified representation space, respec-
tively. Here, D is the embedding dimension. These embed-
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(a) City Map (b) Land Parcels(Polygons) (c) Road Segments(Lines) (d) Points of Interest(Points)

Figure 1: City map with three types of entities.

dings are expected to integrate the essential features of M,
thereby supporting various downstream tasks.

4 Methods
The overall framework is shown in Figure 2. Firstly, we con-
structed a heterogeneous map hypergraph with three types of
nodes and four types of hyperedges to model the map data.
Then we proposed a map entity encoder with a hybrid train-
ing strategy which leverages both generative and contrastive
training paradigms for robust representations.

4.1 Map Hypergraph Builder
The graph structure is suitable for modelling map entities and
their relationships, with entities as nodes and relationships as
edges. Specifically, relationships among map entities exhibit
two key characteristics: i) Relationships are heterogeneous
and more complex than geographic adjacency. ii) Relation-
ships do not have to be one-to-one relationships; they can be
high-order. Therefore, we designed a hypergraph-based mod-
elling approach to model the map as the map hypergraph.
The map hypergraph we designed encompasses three types
of heterogeneous entities as nodes and constructs four high-
order relationships as hyperedges. Specifically, high-order
relationships are concluded from different views, such as ex-
plicit connections (geographic view) and implicit connections
(functional view, mobility view).
Geographic View. From the spatial topological perspective
of the map, the relationships among different types of entities
exhibit a hierarchical structure, which emphasizes the many
- to - many dependencies. Specifically, a land parcel may be
enclosed by multiple road segments. Meanwhile, a road can
be adjacent to numerous parcels, and many Points of Inter-
est (POIs) are located within a land parcel. Therefore, from
the geographical view, we will construct two types of hyper-
edges, “located” and “enclose”.

For POIs and land parcels, we take all the POIs within a
land parcel and the land parcel itself together as a hyperedge
of the type “located”. To reflect the importance and connec-
tion strength of the hyperedge, we normalize the POI density
within the parcel and use it as the weight of the “located”
hyperedge. E located denotes the “located” hyperedge set and
wlocated{pi1 ,pi2 ....,rj}

denotes the weight of the “located” hyperedge
that encompasses the entity set {pi1 , pi2 ...., rj}. The calcula-
tion process is expressed as follows

wlocated{pi1 ,pi2 ....,rj}
=

count ({pi1 , pi2 ....})
area (rj)

. (1)

For all located hyperedge weight set W located, we normalize
their weight into [0, 1] by min-max normalization.

For roads and land parcels, we consider all the road seg-
ments that enclose a land parcel and the land parcel itself as
a hyperedge of the “enclose” type. The weight of the hyper-
edge is calculated based on the average geographical distance
between the two types of entities. The closer the distance be-
tween the two entities, the stronger their connection. Eenclose
denotes the “enclose” hyperedge set and wenclose{si1 ,si2 ....,rj}

de-
notes the weight of the “enclose” hyperedge that encom-
passes the entity set {si1 , si2 ...., rj}. The calculation pro-
cess is expressed as the inverse of the geographical distance,
which is

wenclose
{si1 ,si2 ....,rj}

1∑
s∈{si1 ,si2 ...} dist (s, rj)/ |{si1 , si2 ...}|+ ϵ

.

(2)
where dist (s, rj) represents the Euclidean distance between
the centroid of road s and land parcel rj . ϵ is a small pos-
itive constant to avoid division by zero. For all enclose hy-
peredge weight set Wenclose, we also normalize their weight
into [0, 1] by min-max normalization.

Functional View. The basic functional unit in a city is the
Point of Interest (POI). The functional view captures the func-
tional similarity between two entities, extending beyond spa-
tial proximity. For a POI, we first extract information from
its name to serve as the functional semantics. Specifically, we
use a pre-trained BERT model to encode the name of the POI
to obtain the functional vector, denoted as pfun. Then, to re-
flect the functional semantic similarity among POIs, we per-
form clustering [Ester et al.1996] on the functional vectors
to obtain several functional semantic clusters. We regard each
functional semantic cluster as a function hyperedge, which is

Efunction = Cluster
(
pfun

)
, (3)

where Efunction denotes the “function” hyperedge set.
wfunction{pi1 ,pi2 ....,pin} denotes the weight of the “function” hyper-
edge that encompasses the POI set {pi1 , pi2 ...., pin}, which
is calculated by functional vector similarity. Specifically, the
calculation process is

wfunction
{pi1 ,pi2 ....,pin} =

∑
pj ,pk∈{pi1 ,pi2 ....,pin} sim

(
pfun
j ,pfun

k

)
n (n− 1)

,

(4)
where sim(·, ·) is the cosine similarity.
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Figure 2: The overall framework of HygMap.

Mobility View. Urban human mobility patterns reflect the
relationships among map entities. We utilise historical GPS
trajectory data to build edges for the mobility view. Unlike
prior studies that only capture binary mobility patterns from
trajectories, the property of hypergraphs to capture higher-
order relationships allows us to capture mobility patterns and
entity co-occurrence relationships over longer distances.

First, we apply the map-matching algorithm [Yang and
Gidofalvi2018] to align trajectories with corresponding road
segments for road entities. Then, we sample the trajec-
tory data using a fixed-length sliding window. Entities
within each window form a mobility pattern set, and all
such sets are considered mobility-type hyperedges, denoted
as Emobility . Finally, we use the frequency of these mo-
bility sets in historical trajectories as hyperedge weights.
Specifically, wmobility{si1 ,si2 ....,sin} denotes the weight of the hy-
peredge representing the continuous road transfer sequence
{si1 , si2 , · · · , sin}, which is calculated as

wmobility{si1 ,si2 ....,sin} =
count (si1 → si2 . . .→ sin)

count (si → . . .)
, (5)

where count (si1 → si2 . . .→ sin) represents the statistical
count of transfers along the entities in the current hyper-
edge, and count (si → . . .) denotes the the statistical count of
transfers starting from si1 . The mobility pattern of a land par-
cel is shaped by its nearest road segments. Specifically, each
road segment is mapped to its closest land parcel. Thus, road-
based trajectories are converted to parcel-based trajectories.
For POIs, we employ the consecutive check-in sequences as
POI-based trajectories and follow the similar calculation ap-
proach as road.
Definition 4 (Map Hypergraph). The map hypergraph is de-
fined as G = {V, E ,W,F raw}, where V = P ∪ S ∪ R

is the vertex set composed of POI, road segment and par-
cel sets, vi is the i-th vertex. E = E located ∪ Eenclose ∪
Efunction ∪ Emobility is the hyperedge set, which includes
four types of hyperedges. ej is the j-th hyperedge. W =
W located ∪Wenclose ∪Wfunction ∪Wmobility is the hyper-
edge weight set, wj is the weight of ej . F raw = F raw

P ∪
F raw
S ∪ F raw

R is the raw feature vectors for all map en-
tities. We denote ϕ() : V → {′poi′,′ road′,′ parcel′} as
the type mapping function of the node, and ψ() : E →
{′located′,′ enclose′,′ function′,′mobility′} as the type-
mapping function of the hyperedge.

4.2 Map Entity Encoder

After abstracting the map into the map hypergraph, we design
a map entity encoder for this structure to represent the three
types of entities as vectors. The encoder is divided into two
submodules. We first use a Raw Entity Feature Encoder to
encode different features for heterogeneous entities and then
use an HGNN for the heterogeneous map hypergraph to com-
prehensively capture the complex relationships and semantics
on the map.

Raw Entity Feature Encoder. As defined in Definition 1, 2
and 3, each entity has a raw feature vector, i.e., frawp ∈ RDP ,
fraws ∈ RDS and frawr ∈ RDR , respectively. Our module
first encodes these raw features as dense vectors through a
linear embedding layer. Then, for the poi pi, segment si and
the parcel ri, we denote their raw feature embedding vec-
tors as{n1, . . . ,nDP

}, {u1, . . . ,uDS
} and {v1, . . . , vDR

}.
Then, we concatenate the raw feature embedding vectors of
an entity as a long vector and adopt a multilayer perceptron
network to compress the long vectors into a dense entity fea-
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ture embedding vector as

xpi = MLP (n1∥ . . . ∥nDP
) ,

xsi = MLP (u1∥ . . . ∥uDS
) ,

xri = MLP (v1∥ . . . ∥vDR
) ,

(6)

xpi ∈ RD, xsi ∈ RD and xri ∈ RD are the dense embed-
ding vectors for the poi pi, segment si and the parcel ri. We
set embedding vectors of all map entities with the uniform
dimension D.
Heterogeneous Hypergraph Neural Network. As defined
in Def. 4, our map hypergraph has three types of heteroge-
neous nodes and four types of heterogeneous hyperedges. We
take xv = xp ∪ xs ∪ xr as the initial feature of the node,
and sequentially go through the two processes of Node-to-
Hyperedge Message Passing and Hyperedge-to-Node Mes-
sage Passing, in which we explicitly model the node and hy-
peredge heterogeneity, and finally output three entity repre-
sentations.

Node-to-Hyperedge Message Passing. This process in-
volves aggregating all node features contained within a hy-
peredge to obtain a representation of the hyperedge. Specif-
ically, for node vi ∈ V , we first project the node features
according to the node type to get the message to be passed,
and then do the aggregation of the messages of all the nodes
within a hyperedge ej ∈ E based on the weight and type of
the hyperedge to get the representation of the hyperedge:

mvi = Wϕ(vi)xvi ,

mej = wj ·Wψ(ej)
1

|Nj |
∑
vk∈Nj

mvk ,
(7)

where Nj is the set of nodes contained in ej , Wϕ(vi),
Wψ(ej) ∈ RD×D are learnable parameters, which are dis-
tinct for different categories of nodes and hyperedges.

Hyperedge-to-Node Message Passing. This step assigns
the hyperedge representations obtained from the aggregation
in the previous step to nodes and obtains the final node rep-
resentations as map entity representations. Specifically for
a node, all the hyperedge representations in which the node
participates are aggregated and weighted according to the at-
tention score:

qvi = Wqmvi , kej = Wkmej , vej = Wvmej ,

aij =
exp

(
q⊤
vikej/

√
D
)

∑
ej′∈Hi

exp
(
q⊤
vikej′ /

√
D
) ,

fvi = r
∑
ej∈Hi

aijvej + (1− r)xvi ,

(8)

Hi is the neighbor hyperedge set of node vi, where
Wq,Wk,Wv ∈ RD×D are learnable parameter matrices, r
is the weight of the residual connection.

4.3 Hybrid Learning Objective
Entity Level: Entity Mask Fill Task. Three types of en-
tities are distributed on the map and serve as the context
for each other. Therefore, we hope to utilize the training

paradigm of Masked Autoencoders (MAE) on the map hy-
pergraph to infer the properties of certain entities based on
the map context. We propose a hypergraph generative task
named the entity mask fill task.

The Entity mask fill task starts by randomly masking some
of the segments and POIs at a mask ratio for each parcel.
Then we mask the parcel based on the degree of the hyper-
edge in the map hypergraph. We tend to mask parcels with
lower degrees. For the masked POI, segment and parcel, we
fill a special vector [MASKP ], [MASKS ] and [MASKR]
that can be learned. Then, we use an MLP module as a de-
coder and try to recover the masked entity features from the
map entity encoder’s results. For a given POI, road and par-
cel, we denote the decoder output features as fDp ,f

D
s and

fDr . Our optimization objective is to maximize the similar-
ity between reconstructed and original features, and we use
scaled cosine error (SCE) to construct the loss function,

Lroad fill =
1

|S̃|

∑
si∈S̃

(
1−

fDsi
⊤frawsi

||fDsi || · ||frawsi ||

)2

,

Lpoi fill =
1

|P̃|

∑
pi∈P̃

(
1−

fDpi
⊤frawpi

||fDpi || · ||frawpi ||

)2

,

Lparcel fill =
1

|R̃|

∑
ri∈R̃

(
1−

fDri
⊤frawri

||fDri || · ||frawri ||

)2

,

(9)

where P̃, S̃ and R̃ are the sets of POIs, segments and parcels
being masked.

City Level: City Contrastive Learning. We want the rep-
resentations we obtain to fully learn the semantics at the en-
tity level while still maintaining global consistency at the city
level. We introduce a visual global city node to the map hy-
pergraph to achieve this. We assume the city node contains
all entities of the map hypergraph. The representation of the
city node is calculated as a average pooling of the entity rep-
resentations, i.e., fc = 1

|V|
∑
vi∈V fvi .

City contrastive learning aims to maximize the mutual
information between the city node representation and par-
cel representations. We consider the city representation and
an entity representation as a pair of positive samples, i.e.,
< fc,fvi >. Besides, we construct a set of fake represen-
tations for the entities as negative samples. Specifically, we
corrupt the raw feature matrix F raw for entities by randomly
permuting its rows, resulting in a set of fake entities. Then we
feed the fake entities into the map entity encoder to get three
types of entity representations, denoted as f̃vi . The represen-
tation pairs < hc, f̃vi > are used as negative samples. The
loss function for city contrastive learning is defined as

LC = −

(
1

|V|
∑
vi∈R

logD (fvi ,fc)

+
1

|V|
∑
vi∈V

log
(
1−D

(
f̃vi ,fc

)))
,

(10)
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where D(fvi ,fc) = Sigmoid(f⊤
viWCfc) and WC is a learn-

able parameter matrix.
The overall learning objective is

L = λ1Lroad fill + λ2Lpoi fill + λ3Lparcel fill + λ4LC ,
(11)

where λ1, λ2, λ3, λ4 are hyperparameters.

5 Experiments
We conduct comprehensive experiments to evaluate the per-
formance of the HygMap. We chose two real-world cities,
San Francisco and Porto, as the datasets for our experi-
ments. Our experiments are completed depending on the Vec-
City [Zhang et al.2024]. The scale, source of the datasets,
code, and more implementation details will be provided in
https://github.com/yyf-buaa/HygMap.

We conduct experiments on the following three types of
downstream tasks to evaluate the learned representations. The
road segment-based tasks are average speed prediction, traf-
fic flow prediction and OD flow prediction. The land parcel-
based tasks are land Parcel classification, traffic flow predic-
tion and OD flow prediction. The POI-based tasks are POI
classification, next POI prediction and trajectory user link.

Our baselines fall into three categories:(1) Land parcel rep-
resentation learning methods, consisting of HDGE [Wang
and Li2017], ZE-Mob [Yao et al.2018], GMEL [Liu et
al.2020], MVURE [Zhang et al.2020], MGFN [Wu et
al.2022], ReMVC [Zhang et al.2022], HREP [Zhou et
al.2023], ReCP [Li et al.2024];(2) Road network repre-
sentation learning methods, including RN2Vec [Wang et
al.2021d], HRNR [Wu et al.2020], Toast [Chen et al.2021],
START [Jiang et al.2023], JCLRNT [Mao et al.2022],
SARN [Chang et al.2023] and HyperRoad [Zhang and
Long2023]; (3) POI representation learning methods: Skip-
gram [Mikolov et al.2013b], Teaser [Zhao et al.2017],
POI2Vec [Feng et al.2017], HIER [Shimizu et al.2020],
Tale [Wan et al.2021], CTLE [Lin et al.2021], CACSR [Gong
et al.2023];

5.1 Performance Comparison
The experimental results of the land parcel-based, road
segment-based, and poi-based tasks are shown in Tab. 1. Al-
though the baseline methods exhibit good performance, our
proposed method outperforms all of them in all tasks and met-
rics on the two datasets, as confirmed by the Student’s t-test at
a significance level of 0.01. Our average improvement across
all tasks and datasets is over 7%. The outstanding perfor-
mance can be attributed to the ability of our model to integrate
representations of different types of entities in a unified man-
ner. Our proposed map hypergraph models the relationships
as high-order interactions between heterogeneous entities, ef-
fectively capturing the intricate interrelationships among city
map entities, enabling comprehensive representation learn-
ing. Additionally, by incorporating information from the ge-
ographic, functional, and mobility views, our model takes ad-
vantage of multiple perspectives. This comprehensive under-
standing of entity relationships endows our model’s remark-
able ability to capture diverse entity information. Finally, un-
like most SOTA models that adopt contrastive learning meth-

Figure 3: Ablation study on the San Francisco dataset.

ods, our model integrates contrastive and generative learning
at both the city and entity levels. This enables our model to
learn more comprehensive, rich, and robust representations,
demonstrating its superiority in handling complex urban map
data.

5.2 Ablation Study
We conduct ablation experiments on all datasets and report
the average results in Fig. 3. Due to limited space, we only
present the results on the San Francisco dataset. Removing
any module leads to a decline in the performance of entity
representation in each task. The most significant drop oc-
curs when the Raw Encoder and Hypergraph Neural Network
(HGNN) are removed, as they capture the different char-
acteristics of heterogeneous entities and complex heteroge-
neous relationships in the hypergraph structure. Removing
any of the three views in the map hypergraph reduces per-
formance, confirming the necessity of using a heterogeneous
hypergraph. For the hybrid training objective, removing any
entity mask filling task affects its related tasks and impacts
other entity types, further demonstrating the interconnection
among different types of map entities. Removing contrastive
learning reduces the global consistency of the representation,
making the model overly focus on the local information of
nodes, leading to performance degradation.

5.3 Parameter Sensitivity
We conduct a parameter sensitivity analysis for encoder lay-
ers L and embedding dimension D on the San Francisco
datasets. We present the results of 3 tasks in Fig 4. We
observe that as D and L increase, the expressive power of
the model becomes stronger, and the performance on various
tasks all rises. However, as D and L continue to increase, the
performance on all tasks decreases. This is because, under the
premise of a fixed amount of data, an overly complex model
will overfit. Therefore, it is necessary to select a model scale
corresponding to the scale of the dataset.
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Data Porto San Francisco
Land Parcel-based Tasks Classification Flow Prediction OD Prediction Classification Flow Prediction OD Prediction

Models
Metrics Mi-F1 Ma-F1 MAE RMSE MAE RMSE Mi-F1 Ma-F1 MAE RMSE MAE RMSE

HDGE 0.553 0.554 5523 6402 33.42 50.32 0.770 0.507 511.8 926.4 7.397 21.94
ZEMob 0.456 0.436 5532 6423 35.31 51.44 0.791 0.621 509.1 910.5 7.837 23.48
GMEL 0.607 0.604 5503 6398 36.42 52.31 0.789 0.654 514.0 916.7 7.377 22.29

MVURE 0.649 0.646 5244 5924 31.95 47.41 0.780 0.595 511.2 913.1 7.196 22.73
ReMVC 0.784 0.780 5435 6341 32.49 48.35 0.794 0.558 444.7 852.3 7.007 22.60
HREP 0.803 0.794 5034 5942 31.53 49.02 0.824 0.692 490.2 835.4 6.751 21.98
ReCP 0.813 0.810 4978 5750 30.32 48.77 0.836 0.709 438.4 799.3 6.154 21.03

HygMap 0.842 0.841 4788 5440 29.62 45.79 0.876 0.742 363.5 765.8 5.605 19.61
Improve 3.57% 3.83% 3.81% 5.39% 2.32% 5.30% 4.78% 4.65% 17.10% 4.19% 8.92% 6.75%

Road Segment-based Tasks Speed Prediction Flow Prediction OD Prediction Speed Prediction Flow Prediction OD Prediction

Models
Metrics MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

RN2Vec 4.580 8.196 25.23 86.23 0.743 1.525 2.978 5.897 8.423 38.80 0.459 2.235
HRNR 4.557 8.167 24.90 86.02 0.814 1.553 2.560 5.474 8.341 38.02 0.402 2.187
Toast 4.554 7.983 24.52 85.54 0.623 1.505 2.603 5.395 8.245 38.42 0.398 2.094

START 4.475 7.928 23.88 83.84 0.546 1.458 2.500 5.433 7.945 37.04 0.339 1.805
JCLRNT 4.334 7.822 23.04 83.07 0.723 1.511 2.584 5.295 7.972 36.92 0.348 1.935

HyperRoad 4.395 7.899 23.18 83.90 0.549 1.456 2.536 5.350 8.074 36.82 0.298 1.554
SARN 4.372 7.849 23.82 84.51 0.543 1.464 2.531 5.403 7.823 36.94 0.205 1.533

HygMap 4.156 7.560 22.05 81.13 0.529 1.411 2.411 5.071 7.342 35.64 0.172 1.403
Improve 4.11% 3.35% 4.29% 2.33% 2.58% 3.09% 3.56% 4.23% 6.15% 3.21% 16.1% 8.48%

POI-based Tasks Classification Next Poi Prediction Trajectory User Link Classification Next Poi Prediction Trajectory User Link

Models
Metrics Mi-F1 Ma-F1 ACC F1 ACC F1 Mi-F1 Ma-F1 ACC F1 ACC F1

Skipgram 0.251 0.103 0.096 0.044 0.367 0.254 0.243 0.205 0.054 0.019 0.343 0.185
Teaser 0.249 0.103 0.884 0.044 0.338 0.293 0.311 0.194 0.050 0.018 0.378 0.195

POI2Vec 0.255 0.111 0.119 0.052 0.365 0.272 0.319 0.174 0.049 0.014 0.301 0.127
HIER 0.289 0.177 0.128 0.054 0.401 0.313 0.314 0.201 0.050 0.018 0.357 0.186
Tale 0.306 0.219 0.130 0.058 0.445 0.351 0.359 0.269 0.066 0.028 0.440 0.260

CTLE 0.331 0.233 0.132 0.056 0.414 0.331 0.345 0.256 0.632 0.229 0.432 0.259
CACSR 0.346 0.232 0.159 0.082 0.475 0.393 0.315 0.222 0.064 0.022 0.425 0.225

HygMap 0.395 0.273 0.181 0.088 0.515 0.413 0.404 0.315 0.077 0.030 0.449 0.296
Improve 14.16% 14.65% 13.68% 7.04% 8.43% 5.14% 12.53% 14.60% 16.77% 6.34% 2.23% 13.78%

Table 1: Performance on Downstream Tasks.

Figure 4: Parameter Sensitivity Result on the San Francisco dataset.

5.4 Model Efficiency and Scalability
Fig. 5 shows the training time results. The land parcel repre-
sentation models have the shortest training time because land
parcels are the geographical entities with the smallest quan-
tity and encompass the other two types of entities. Road seg-
ment representation models typically require a longer train-
ing time due to the relatively large number of road segments.
Moreover, models such as in START, JCLRNT, utilize both
GNNs to model the road network and Transformers to per-
form sequence modeling on trajectory data based on road seg-
ments incurs significant time consumption. The training time
of HygMap is slightly slower than that of some land parcel
representation models but faster than the POI and road seg-
ments representation models. Moreover, our model provides
a unified representation for all three types of map entities,

Figure 5: Model training time on San Francisco dataset.

whereas the baseline models can only represent one type.

6 Conclusion and Future Work
We propose HygMap, a novel framework for uniformly rep-
resenting all types of map entities through heterogeneous hy-
pergraph modeling. Extensive experiments demonstrate its
robust representation ability and efficiency across three map
entity type. Future work may focus on enriching data modal-
ities by integrating supplementary sources (e.g., satellite im-
agery and social media) to further enhance urban entity repre-
sentations. HygMap can also support diverse heterogeneous
data types in the future as a tokenizer module for spatio-
temporal foundation models [Yu et al.2024,Yuan et al.2024].
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