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Abstract

E-bikes (EBs) are a key transportation mode in ur-
ban area, especially for couriers of delivery plat-
forms, but underdeveloped EB systems can hin-
der courier’s productivity due to limited battery ca-
pacity. Battery-swapping stations address this is-
sue by enabling riders to exchange depleted bat-
teries for fully charged ones. However, manag-
ing supply and demand (SnD) imbalances at these
stations has become increasingly complex. To ad-
dress this, we introduce a new approach that for-
mulates the Battery-Swapping Problem (BSP) as a
discrete-time Markov Decision Process (MDP) to
capture the dynamics of SnD imbalances. Building
on it, we propose a Wasserstein-enhanced Proximal
Policy Optimization (W-PPO) algorithm, which in-
tegrates Wasserstein distance with reinforcement
learning to improve the robustness against uncer-
tainty in forecasting SnD. W-PPO provides a BSP-
specific, accurate loss function that reflects re-
ward variations between two policies under real-
world simulation. The algorithm’s effectiveness is
assessed using key metrics: Shared Battery Uti-
lization Ratio (SBUR) and Battery Supply Ratio
(BSR). Simulations on real-world datasets show
that W-PPO achieves a 30.59% improvement in
SBUR and a 16.09% increase in BSR ensures prac-
tical applicability. By optimizing battery utiliza-
tion and improving EB delivery systems, this work
highlights the potential of Al for creating efficient
and sustainable urban transportation solutions.

1 Introduction

E-bikes (EBs) have become the primary mode of transporta-
tion for many urban residents due to their affordability and
ability to navigate through traffic with ease, significantly im-
pacting service delivery platforms where most couriers rely
on EBs. In China, the number of delivery platform-based
workers reached 84 million by 2020 [Julie Yujie Chen, Ping
Sun2023], with steady growth driven by market expansion.
Similarly, in India and South America, the number of couriers
exceeds 500,000 [Ezra Fieser2019,Rica Bhattacharyya2022].
Couriers typically earn a base hourly wage supplemented

by delivery commissions, making it crucial to optimize EB
transportation systems to maximize the number of deliver-
ies within a given time frame. However, underdeveloped
EB transportation systems often cause range anxiety [Li et
al.2024a], which they cannot travel the desired distance due
to limited battery capacity.

To address this, battery-swapping stations have been intro-
duced, enabling couriers to exchange depleted batteries for
fully charged ones, reducing downtime and improving oper-
ational efficiency. With the rapid expansion of the EB de-
mand, managing the imbalance between supply and demand
(SnD) at battery-swapping stations has become increasingly
complex. As depicted in Figure 1, SnD imbalances can pre-
vent couriers from accessing fully charged batteries at their
initial stations, forcing them to travel to alternative locations
at a greater distance. This inefficiency not only delays deliv-
eries but also diminishes overall couriers and other EB rider
satisfaction of battery needs. The Battery-Swapping Problem
(BSP) has thus become a critical challenge in urban trans-
portation, and finding efficient solutions is vital for ensur-
ing fast, cost-effective, and reliable EB transportation. By
providing higher earning potential for couriers, as their pro-
ductivity and route efficiency improve, the BSP further offers
significant societal benefits aligned with the United Nations’
Sustainable Development Goal 8: Promote sustained, inclu-
sive, and sustainable economic growth, full and productive
employment, and decent work for all [United Nations2015].

In the context of urban transportation, the BSP for EBs
presents unique challenges that differentiate it from EVs [Sun
et al.2019,Mao er al.2024]. One key issue is the dense dis-
tribution of EB battery stations, coupled with the need for
rapid, localized battery replacements to support the swift op-
erations of couriers. Additionally, the variation in courier
behavior and the operational constraints within the battery
station networks introduce a high degree of nonlinearity and
unpredictability to the SnD dynamics, , which traditional
models struggle to capture. Proximal Policy Optimization
(PPO) [Schulman et al.2017], the on-policy state-of-the-art
reinforcement learning algorithm, seeks to mitigate these is-
sues by constraining policy updates to prevent destabiliz-
ing changes. However, its reliance on the clipped surrogate
and Kullback-Leibler (KL) divergence is limited in real-time,
location-based environments, failing to fully capture the true
nature of policy changes and leading to suboptimal perfor-
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Figure 1: In real-world scenarios without BSP optimization, couri-
ers may be unable to access fully charged batteries, resulting in a
decrease in their overall utility.

mance. This creates a critical need for more advanced ap-
proaches that can better model the dynamics of BSP for EBs.

To tackle these challenges, we formulate the BSP as a
Markov Decision Process (MDP) and introduce a new on-
policy RL algorithm enhanced by the Wasserstein distance,
noting that the problem exhibits Markovian characteristics,
where the information received on a given day is primar-
ily influenced by the immediate previous day and a lim-
ited set of today’s user behaviors, without being influenced
by prior days. This algorithm is specifically designed to
optimize the battery-swapping process across stations, aim-
ing to maximize battery utilization, improve rider satisfac-
tion, and increase the overall robustness of the BSP system.
Grounded in real-world datasets, the algorithm incorporates a
carefully designed RL environment to ensure the robust per-
formance guaranteed in highly dynamic environments. Un-
like the traditional PPO methods that minimize divergence
between old and updated policies, our Wasserstein-enhanced
Proximal Policy Optimization (W-PPO) algorithm calculates
the actual differences between policies, leveraging real-world
simulations for improved precision. This end-to-end solution
integrates Wasserstein-improved penalty calculations, deliv-
ering high capability and efficiency. To assess the effective-
ness of the algorithm, we introduce two key performance met-
rics: the Shared Battery Utilization Ratio (SBUR) and the
Battery Supply Ratio (BSR). The SBUR quantifies the pro-
portion of riders receiving fully charged batteries relative to
the total number of batteries at a station, while the BSR as-
sesses the increase in battery availability and the number of
riders the system can serve, reflecting the overall performance
of EB transportation.

The main contributions can be summarized as follows:

* Formulating the Battery-Swapping Problem (BSP) to
address the imbalance between SnD across battery sta-
tions within a EB rider transportation network, and mod-
eling the BSP as a discrete-time Markov Decision Pro-
cess (MDP).

¢ Introducing a Wasserstein-enhanced Proximal Policy
Optimization (W-PPO) reinforcement learning algo-
rithm as a comprehensive solution to the BSP, designed
to improve the robustness against SnD dynamic. This
algorithm integrates the Wasserstein distance with on-
policy reinforcement learning. W-PPO does not mini-
mizing the divergence between probabilities, as allowing
policy changes better reflects the dynamics of the real-

world simulation. By leveraging the strengths W-PPO,
our approach effectively addresses the challenges posed
by SnD imbalances in BSP.

Developing a well-structured algorithm and conducting
theoretical evaluations, leading to significant structural
insights into the complex BSP transportation network,
which demonstrates superior capability and flexibility
compared to traditional deep learning methods. The
SBUR increased for the average of 30.59% (7 stations
per route) and the BSR increased for 16.09%. These
two metrics demonstrate our work’s improvement of the
urban EB transportation system.

2 Battery-Swapping Problem

This section introduces the formal problem statement and its
corresponding mathematical models.

From the previous section, we know that customer will
swap batteries when the current one they are using is on low
battery mode. Depends on the distance they need per day,
customers will swap batteries for different number of times.
They can return the battery at the station they swapped or at
another nearby station, so the number of batteries in each sta-
tion can be different from one night to the next.

The scenario involving Sharing EB Battery with shared
batteries presents a complex landscape that necessitates a de-
tailed representation of the dynamic interactions between rid-
ers and EB batteries within a reinforcement learning frame-
work. Delivery companies assign their riders to operate
within a designated region, ensuring that battery replace-
ments occur within a confined area. Consequently, the BSP
we address is inherently location-based. When users replace
batteries, the same battery can appear at multiple exchange
stations based on their convenience, allowing it to be reused
by a succession of different users. This leads to unbalanced
battery resources. To balance the resource, we design the
model to learn and match the supply and demand of surplus
and shortage battery stations.

We define the problem by building a battery-swapping net-
work: G = (C, R), to be more specific:

» Each station C; € C allows customers to swap battery
and generate corresponding SnD. The number of boxes
that can contain battery for each C; is denoted as X;.
The number of EB battery users for each C; is denoted
as Y;' as the amount is increasing in a timely manner.

» The initial number of batteries in the station at C; as B?,
and we use BY, D!, and L!, Vt € (t = 1,2,...,T) to
represent the number of batteries, battery demand, and
battery returned loaded at different time, respectively.

* The battery demand D} for each station C; is the total
order number each day.

* The battery returned at each station is denoted as the
normal distribution of L; : N(L;,02). The distri-
bution follows a normal pattern because the location
dynamics remain stable, with consistent daily patterns
observed. However, notable variations arise between
weekdays and weekends. The formulation of L; is
BIt! — Bt + D! — ot
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* Under the problem formulation, each route R; € R is

a cycle in the battery-swapping network, consisting of

a sequence of consecutive stations Cj,,C,, ..., C; B,
where |R;| is the number of stops on R;, and the next
destination of Cj ) I8 Ci,, which generates a looped
path for the vehicle. Each route cannot intersect with
others in the network to ensure transportation efficiency.
On each route R;, there is one vehicle cycling around the
route, a capacity C’apé- (the maximum number of batter-
ies it can convey). When a vehicle arrives at a station, it
can load batteries or discharge its batteries to the station.

The objective of the battery-swapping network is to max-
imize the Sharing Battery Used Rate to optimize utility for
individual EB riders. At a specific time t, the station can only
use the batteries in the last date, i.e., Bffl, to fulfill the cur-
rent demand D}. Once the battery number is not balanced
among stations on one route, customer cannot pick up a fully
charged battery, which leads to decreased amount of distance
they can travel and delivery order they can finish. Accord-
ingly, re-balancing the surplus and shortage stations can in-
crease the amount of fully charged orders and increase the
Shared Battery Used Rate (SBUR).

Definition 1. Given the total number of batteries in each
station, BY, and the fully charged and swapped order number,
D!, we define the Shared Battery Used Rate (SBUR) in the
Battery-Swapping Problem:

D!
SBUR! = E D
After the current demand is processed, returning battery
loaded and those discharged from the vehicle will be added
to the station battery number. Thus, we can compute the new
battery number as B = max(B{~'—D!,0)+ L+, where
xg € N denotes the number of batteries to delivery or pickup
at station C; by vehicle V; at time ¢. x§ can be negative to
denote the discharged amount of resources from the vehicle.
Upon the completion of the battery relocation process, the
number of batteries available for swapping increases. This in-
crease in availability can be quantified through the calculation
of the Battery Supply Ratio (BSR), based on the variables X;
and Y;'. Consequently, the increase in the BSR facilitates the
determination of the additional number of EB riders that the
system can now accommodate, thereby enhancing the overall
efficiency of the EB transportation network.

Definition 2. Given Shared Battery Utilization Rate
SBURY!, battery capacity X;, and the number of EB riders
utilizing the shared battery at each cabinet Y, we define
Battery Supply Rate (BSR) within the context of the BSP as:

Y-t
BSR! = L ) 2
i~ (1+ SBUR!) x X, @

3 Designs of W-PPO

Traditional method of matching the demand and supply has
limitation as of failures in front of uncertainty of SnD, com-
plex business constraints, and high complexity of transporta-

tion networks. To address these issues, we implement the
reinforcement learning problem.

3.1 Discrete-time Markov Decision Process

In this section, we will formally define the BSP as a discrete-
time Markov Decision Process (MDP) (S, A, P,r,~,T)
where S is the state space, A is the action space, P(+|s, a) is
the transition probability distribution function, 7 is the reward
function, -y is the discount factor, and 7" is the total number of
days to training in one episode.

State Space S We validated the inclusion of states in suc-
cessive steps and evaluated the impact of the choices based
on rewards. The states transitions are looping in the order of
Night (N), Morning (M), and Next Night (N+1).

S =Sn,Sm, SN+

From Sy to Sjs, each agent will take action to match the
demand and the supply. The next night will be the morn-
ing state adding the daily usage. It is also important to note
that batteries in the stations without transporting will be fully
charged throughout the night.

Action Space Each agent, route R; defined in the previ-
ous section, can choose to pick upn € [0,1,2,..,k,k € Z
battery and can drop off n battery as well. n is the capac-
ity of each route R;. Two constraints are set in the action
space. First, the sum of action space on one route is defined
to be zero: Y A; = OVi € R. Second, the number of battery
picked up or dropped off at each station needs to exceed 0:
a; > 0Va € A;.

Transition probability function P defined as a mapping
S x A xS — [0, 1], which can be specified by the definition of
S, A, and R and the distribution behind SnD within particular
battery-swapping networks.

Reward Function We define the reward as maximizing the
SBUR until it reaches 1:

re = In_inSBURE. 3)

The state-value function, the discounted expected reward
stating from state s under policy , is defined as [Sutton and
Barto2018]:

V7(s):=E" {Z Yoreinlse = s} . 4)

To reduce computational overhead, we use the temporal
difference (TD) error approximation as advantage func-
tion [Schulman et al.2017]:

A(S, a) = 5t + (7)\)5t+1 R s o (’Y)\)T7t+15T_1, (5)
where 0; = r¢ + YV (st11) — V(s¢).

We use the policy of maximizing the reward to take action.
Since the battery number of a new day only depends on the
amount of the previous day, the Markov property is satisfied.

A policy 7 is a function from state to a distribution over
actions. The goal of the BSP model is to find policies that
maximize episodic return, which is maximizing the SBUR.
Running a policy 7 in the MDP generates a state-action tra-
jectory (s1,a1,71, S2,a2,72,...,77) =: T. O} denotes the pa-
rameter for the udated policy g, (als).
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Figure 2: The W-PPO model (WD: Wasserstein distance) within the BSP framework iteratively traverses each step, updating the policy to
optimize SBUR as illustrated in the plot, over the specified number of episodes.

Algorithm 1 Wasserstein Enhanced PPO

Input: initialize policy and penalty parameters 6, 3
Parameter: Optional list of parameters
Output: Your algorithm’s output
1: for iteration=1, 2, ... do
2:  Compute the SBUR (reward in the BSP) for each route
and day under 6
for route=1, 2, ...,

3 R do

4 Run policy 7g in environment for 7" time steps
5 if W > Winreshola then

6: Br+1 = 2Pk

7: else if W < Winreshota then
8: Bri1 = Br/2

9 end if A
0 Compute advantage estimates Aq,...,
equation 5

11: Calculate the loss for each route

10: Ar using

[ W—PPO _ Eﬁek(aﬂst) A -
o mo(at|st)

6W(9k7 )

12:  end for

13:  Compute average loss for all routes under the old pol-
icy

14:  Update the the old policy 6 < 6y,

15:  Updated policy 6, based on the average loss

16: end for

3.2 Wasserstein-Enhanced PPO

Building upon the state-of-the-art deep reinforcement learn-
ing method, PPO [Schulman ez al.2017], our analysis reveals
that the traditional use of Kullback—Leibler (KL) divergence
in PPO fails to ensure robust penalty convergence in the con-
text of BSP. While KL divergence is designed to minimize
the divergence between policies, ensuring the new policy 60y,
remains closely aligned with the old one 6, this approach falls
short of capturing the actual difference between the two poli-
cies—a factor that is critical for BSP applications. In the con-
text of BSP, our objective is to evaluate the SBUR, which is
derived from a state and action space modeled on real-world
data. Therefore, accurately measuring the true difference be-

tween policies (how action selections change the battery sta-
tus in real-world) is essential, as it provides deeper insights
into policy performance and adaptability, rather than merely
restricting divergence. To address this limitation, we incorpo-
rate the Wasserstein distance, derived from optimal transport
theory, into the policy optimization algorithm. This modifi-
cation results in a new distance-regularized policy optimiza-
tion approach that better evaluates and enforces meaningful
distinctions between policies. We use 0, representing the up-
dated policy and 6 representing the old policy.

The Wasserstein distance, a metric for comparing two dis-
crete probability distributions P and @, is rooted in optimal
transport theory. Intuitively, it quantifies the minimum “cost”
required to transform one distribution into the other, where
the cost is determined by the amount of mass transported and
the distance it is moved. For computational efficiency and
theoretical analysis, we focus on the dual formulation of the
Wasserstein distance, which provides an equivalent but often
more tractable representation of the original primal problem.
The dual form leverages the properties of duality in optimiza-
tion, facilitating its application in machine learning and rein-
forcement learning contexts [Kolouri ez al.2017, Villani2003]:

W”PQ—bup/w dQ(y /<z> JdP(z).  (6)

The parameter p specifies the order of the Wasserstein dis-
tance, governing how the transport cost is aggregated across
the probability distributions. To accurately quantify the dif-
ference between two policies in our study of the BSP, we
focus on the case p = 1, commonly referred to as the 1-
Wasserstein distance or Earth Mover’s Distance (EMD). This
metric represents the minimum cost needed to transform one
probability distribution into another, with the cost being di-
rectly proportional to the quantity of mass moved and the dis-
tance over which it is transported. This interpretation aligns
closely with practical scenarios, making it particularly suit-
able for applications that demand an intuitive and meaningful
measure of distributional dissimilarity. The equation for 1-
Wasserstein distance:
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Wi (P,Q) —sup/f )dP(z

)= [ f@dqe). @
feF

where F denotes all maps from R? to R such that | f(y) —
f(x)| < ||z — y||Vz,y. Since the difference between the old
policy € and the updated policy 6y, exists in a one-dimensional
flat space, we let d = 1, so the functions f in the set F are
1-Lipschitz, meaning they do not increase faster than the dis-
tance between points by the non-expansiveness property of
1-Lipschitz function [Lang1993, Gulrajani et al.2017]:

([

F and G are the cumulative distribution function of P and
. We further expand the d = 1 and p = 1 Wasserstein
distance with the form of probability distribution functions

Zl|f

With the formulation of the p = 1,d = 1 Wasserstein dis-
tance, it promises a optimal distance between two policies 6
and 6. The stochastic policy of reinforcement learning can
be written as the probability density function:

-1<z>|d<z>) . ®

)AL — f(yi) Ayl ©)

m(als) = P(A = alS = s). (10)
The cumulative distribution function of the policy is:
> w(d|s)Aa. (11)
a’'<a

With the cdf of 7, we obtain the Wasserstein distance VW
of 6 and 6,

W(O,0%) lefek (als)Aa — folals)Adl|.  (12)

=1

With the definition of the Wasserstein distance for policy,
we are ready to propose the Wasserstein enhanced PPO:

Definition 3. Given a MDP M = (S, A, P,r,~,T), the loss
Sfunction of the Wasserstein-enhanced PPO algorithm is de-
fined with a W-penalty:

W—PPO M
Le E[ ’/Tg(at’St) ]

BW (0, 0), 13)

where

W(0, 0) anek (als)Aa — fo(als)Ad]|.

i=1
4 Experiment Results

In this section, we report the experiment results of our algo-
rithm and multiple baselines based on historical data.

4.1 Experiment Settings

The extensive database provided by [Anonymous Company]
is crucial for developing and evaluating our models, en-
compassing detailed information on over 500,000 batteries
and 30,000 battery stations distributed across more than 80
cities. The dataset is divided into two key components: time-
location data, capturing temporal and spatial relationships,
and battery status data, detailing operational metrics such
as inventory, capacity, and usage. As most riders tend to
swap battery in a certain area, we apply the K-Nearest Neigh-
bor (KNN) algorithm to cluster stations into routes, ensuring
the optimization process accounts for the spatial distribution
of stations and aligns resource allocation with both opera-
tional and geographic constraints. Additionally, the database
updates operational data for each station daily, typically by
00:00. In our experiment, we conduct research using the data
of one month (31 days).

Based on our dataset, we first configure the environment
according to the BSP formulation. To ensure a fair com-
parison across all approaches, we allocate the same test set
for evaluating performance. Initially, we conduct baseline
experiments using PPO: without penalty, PPO clipped, and
PPO KL penalty [Schulman et al.2017]. We further exper-
imented the off-policy state-of-the-art model: Soft Actor-
Critic (SAC) [Haarnoja et al.2018] to compare the results be-
tween on-policy and off-policy models. Given the unique ob-
jective in BSP to maximize the SBUR across all routes, the
losses and rewards are computed individually for each route.
Subsequently, the average loss and reward across all routes
are calculated to provide a comprehensive evaluation metric.

As outlined in Algorithm 1, the average loss for all routes
within a single episode is used to update the policy. The pri-
mary distinction between these models lies in how the loss is
calculated and how feedback is incorporated to update poli-
cies. This comparative approach ensures insights into the
performance impact of different optimization strategies in the
BSP context.

In the experiment, the threshold for divergence/distance is
determined as the average divergence/distance observed dur-
ing training. By adopting this average as the threshold, the
policy is afforded the flexibility to either update or remain un-
changed, depending on the divergence behavior. To ensure re-
liable evaluation and prevent overfitting, we analyze the loss
patterns and select a configuration of running ten episodes for
each model. This approach is chosen based on the observa-
tion that the loss stabilizes near zero without exhibiting signs
of overfitting, which ensures robust performance across the
tested models.

Figure 4 illustrates the detailed technical workflow of the
W-PPO model. The process begins with the initialization of
the policy, where selected actions are applied to the environ-
ment for each specified date and route. The environment then
generates experience tuples, which are stored in the trajec-
tory memory. Sample routes are drawn from this memory and
processed within the W-PPO model, where they are evaluated
using several metrics: the SBUR as the reward, the Wasser-
stein distance as a penalty, and the ratio between the old and
new policies. These evaluation variables are utilized to com-
pute the advantage and the loss function, incorporating the
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Wasserstein penalty to ensure robust policy learning. Finally,
the policy is updated based on these computations, iteratively
refining its performance to address the BSP effectively.

4.2 SBUR Results Analysis

Table 1 provides a detailed breakdown of the experimental
outcomes. A key performance metric, the percentage im-
provement in the SBUR, is calculated for each policy update
episode to evaluate and compare the models. To benchmark
the performance of our proposed Wasserstein-Enhanced PPO
(W-PPO) model against baseline models, we compute both
the average SBUR improvement across all episodes and the
maximum SBUR improvement observed during the experi-
ments. The table reveals that W-PPO demonstrates superior
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Figure 3: Comparison of SBUR improvements across different route
sizes, highlighting optimal performance at 7 stations per route.
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Figure 4: Comparison of SBUR improvements across different ac-
tion spaces, highlighting optimal performance at the action space:
[-9,9].

performance for routing scenarios involving 5 and 7 stations
per rout, outperforming the baseline models in both average
and maximum SBUR metrics. However, for routes with 3 sta-
tions, W-PPO underperforms compared to the baseline mod-
els, with the PPO without penalty variant achieving the best
results in this scenario. This trend is more pronounced in en-
vironments with a smaller action space (e.g., [-2, 2]). The
observed instability for smaller route sizes can be attributed
to the reduced amount of training data available when fewer
stations are included, limiting the model’s ability to effec-
tively learn optimal policies. The table also reveals that the
off-policy model, SAC, performs less favorably compared to
all on-policy methods. From a mathematical perspective, the

battery patterns exhibit minimal variation within a given time
frame and location cluster. As a result, entropy does not fluc-
tuate significantly between updates, which hinders the SAC’s
ability to effectively train under the BSP framework.

To further investigate the relationship between route size
and performance, we systematically vary the number of sta-
tions per route C', conducting experiments with 3, 5, 7, 9, and
11 stations. The baseline configuration assumes 5 stations per
route. Figure 4 visualizes the average SBUR improvement for
each configuration, highlighting a clear peak at 7 stations per
route. Beyond this point, performance begins to decline.

This decline for larger routes can be explained by practical
limitations: as the number of stations increases, the geograph-
ical area covered by a route expands. This often exceeds an
efficient delivery range, leading to greater variability in bat-
tery usage patterns and reduced optimization efficiency. On
the other hand, routes with too few stations fail to fully exploit
the available resources, resulting in suboptimal performance.

We tested various action spaces, ranging from [—2,2] to
[—11,11], to account for the differing storage capacities of
battery stations. Most stations have a storage capacity be-
tween 10 and 20 batteries, while some have as few as 7
storage spaces. Experiments were conducted using the top-
performing set of stations per route, specifically routes with
7 and 8 stations. As shown in Figure 5, the action space
[—11,11] did not result in any SBUR improvement, as remov-
ing too many batteries from a station depleted its reserves,
leading to premature experiment termination. Similarly, for
routes with 9 stations, the SBUR remained unchanged for an
action space of [—9,9], as the higher variability in battery
distribution across stations caused some stations to run out
of batteries when taking 9 or more, also terminating the ex-
periment. From the plot, we observe that the average SBUR
reaches its peak at an action space of [—7, 7] for routes with 7
stations, achieving an impressive average SBUR increase of
61.14%. The average SBUR improvement for 7 stations per
route is 30.59% for each route on a daily evaluation. There-
fore, we conclude that in this experiment, the action space
of [—7,7] for 7 stations per route represents the optimal con-
figuration. Building upon the training results from the W-
PPO model for EB battery rebalancing, we further assess the
BSR. As presented in Table 2, we observe that under the op-
timal configuration, the BSR increases by 16.09%. To fur-
ther investigate the impact of BSR, we evaluate the additional
number of EB riders that can be served by this transportation
system design. Using the current data from Shanghai, we
find that with a BSR increase of 16.09%, the number of EB
riders served grows by 45.55%, assuming a constant battery
supply. Additionally, to examine the environmental and effi-
ciency benefits, we calculate the number of batteries saved,
which, based on the current constant EB rider count in the
BSP system, amounts to 3,972. The exploration of the BSR
demonstrates the overall BSP robustness.

5 Discussion and Conclusion

This work has addressed the key challenges of optimizing
SnD imbalances in battery-swapping stations for EB trans-
portation, which impact courier efficiency, income, and over-
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7 Stations per Route

Model SAC PPO-NC

PPO-KL PPO-C W-PPO

[-2,2] [-5,5] [-2,2]

[-5,3]

[-2,2] [-5,51 [-2.2] [-5,5] [-2.2] [-5,5]

Average SBUR -1.32% 0.07%

10.75% 13.09% 20.06% 13.92% 11.02% 9.76% 16.32% 18.41%

Max SBUR -0.57% 0.19% 8.09% 12.66% 23.91% 16.72% 28.61% 15.13% 30.69% 43.69 %
5 Stations per Route
Model SAC PPO-NC PPO-KL PPO-C W-PPO
[-2,2] [-5,5] [-2,2] [-5,5] [-2,2] [-5,5] [-2,2] [-5,5] [-2,2] [-5,5]
Average SBUR -1.59% -0.92% -2.02% -0.48% -1.77% 0.28% 1.56% 2.14% 5.52% 7.31%
Max SBUR -0.66% -0.38% 2.53% 7.73% 12.93% 10.29% 9.86% 17.42% 14.78% 24.64%
3 Stations per Route
Model SAC PPO-NC PPO-KL PPO-C W-PPO
[-2,2] [-5,5] [-2,2] [-5,51 [-2,2] [-5,51 [-2,2]1 [-5,5] [-2,2] [-5,5]
Average SBUR -0.79% -0.11% 1.29% 9.43% 2.77% 691% 1.02% 3.96% 0.36% 4.62%
Max SBUR -0.49% 0.00% 2.02% 10.29% 3.12% 9.63% 2.79% 4.56% 0.48% 7.17%

Table 1: Performance of different models (SAC, PPO-NC: PPO no penalty; PPO-KL: PPO KL penalty; PPO-C: PPO clipping; W-PPO:
Wassertein-enhanced PPO) on different action spaces ([-2,2] & [-5,5] represent two different action spaces) and routing numbers. All the

values are the percentage increase in SBUR.

SBUR
30.59%

BSR
16.09%

EB Rider Growth  Batteries Saved
45.55% 3972

Table 2: SBUR, BSR, percentage increase of the EB riders for ser-
vice, and number of batteries saved performance of the optimal con-
figuration of the action space [-7,7] for 7 stations per route.

all EB rider satisfaction. By formulating the BSP as a
discrete-time MDP, we provide a robust mathematical foun-
dation to manage these imbalances in complex transporta-
tion networks. The proposed W-PPO algorithm, combining
PPO with Wasserstein distance, effectively handles the un-
certainties in SnD forecasting. Our approach demonstrates
notable advantages in both theoretical insights and practical
outcomes, achieving a 30.59% average improvement in the
SBUR and a 16.09% increase in BSR for 7 stations per route,
offering a significant enhancement over traditional methods.

Several limitations and future works is considered in this
study. Data protection restrictions hinder the evaluation of
cost efficiency, and the applicability of our method to other
transportation systems like EVs and AGVs requires further
adaptation due to differing operational dynamics. Addition-
ally, the method’s performance is sensitive to hyperparam-
eters, affecting its generalizability. Future work will focus
on developing advanced hyperparameter optimization tech-
niques, adapting the W-PPO algorithm for broader transporta-
tion contexts, and extending the W-PPO algorithm to real-
time SnD predictions.

6 Related Work

Electric transportation management has become a key re-
search area, with significant efforts in optimizing various ob-
jectives in different types of electric transportation, like elec-
tric vehicles (EVs), automated guided vehicles (AGVs), E-
Scooters [He and Shin2020], and EBs. Most works studied
the EVs discussing its state of charge [Baccari ef al.2024,Sun
et al.2019,Cui et al.2023], system costs [Widrick ef al.2016],

battery system [Mao et al.2024,Zhang et al.2018], and com-
pany profits [Jin et al.2023, Shalaby et al.2023, Liang et
al.2023, Zheng et al.2014, Gao et al.2020]. The studies re-
lated to AGVs used RL and are implemented in warehouses
to increase logistics and operational efficiency. Additionally,
Al models like transformers and RL techniques have played
a vital role in the studies of the EB transportation system.
Previous studies focused on monitoring and detecting battery
status and predicting riding range in EBs [Li et al.2024c, Li
et al.2024b]. These Al-driven approaches have greatly ad-
vanced the efficiency and reliability of electric transportation
management systems. Moreover, Al has been extensively ap-
plied to optimize logistical systems, such as express delivery
networks [Li et al.2020], empty container repositioning [Li
et al.2019], and resource-balancing challenges in various do-
mains [Naderializadeh et al.2020, Yi et al.2019], further im-
proving operational decision-making and system efficiency
across the electric transportation landscape.

In RL, Proximal Policy Optimization (PPO) has proven ef-
fective in diverse applications, including robotics and logis-
tics, due to its stability and efficiency [Schulman ez al.2017].
Optimal transportation theory has also been integrated into
RL to address resource allocation and distribution challenges.
Studies have combined optimal transportation with RL in
multi-agent systems [Gulrajani et al.2017, Ali Baheri2024]
and curriculum learning [Huang et al.2022], showcasing its
potential. Our work extends this by incorporating the Wasser-
stein distance [Kolouri et al.2017, Villani2003] with PPO to
create a more meaningful penalty structure for policy opti-
mization, especially in environments with limited data. This
combination enhances the model’s ability to make precise and
efficient updates, making a significant contribution to RL ap-
plications in complex resource-balancing scenarios.
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