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Abstract

In recent years, machine learning (ML) methods
have become increasingly popular in wireless com-
munication systems for several applications. A
critical bottleneck for designing ML systems for
wireless communications is the availability of real-
istic wireless channel datasets, which are extremely
resource-intensive to produce. To this end, the gen-
eration of realistic wireless channels plays a key role
in the subsequent design of effective ML algorithms
for wireless communication systems. Generative
models have been proposed to synthesize channel
matrices, but outputs produced by such methods
may not correspond to geometrically viable chan-
nels and do not provide any insight into the scenario
being generated. In this work, we aim to address
both these issues by integrating established para-
metric, physics-based geometric channel (PPGC)
modeling frameworks with generative methods to
produce realistic channel matrices with interpretable
representations in the parameter domain. We show
that generative models converge to prohibitively sub-
optimal stationary points when learning the under-
lying prior directly over the parameters due to the
non-convex PPGC model. To address this limita-
tion, we propose a linearized reformulation of the
problem to ensure smooth gradient flow during gen-
erative model training, while also providing insights
into the underlying physical environment. We evalu-
ate our model against prior baselines by comparing
the generated, scenario-specific samples in terms
of the 2-Wasserstein distance and through its utility
when used for downstream compression tasks.

1 Introduction
The use of machine learning (ML) for applications in wire-
less communication has seen extensive interest in the past few
years. At the physical layer (PHY) of wireless communication
systems, ML research has predominantly focused on two main

This work was presented in part at the 2025 ICLR Workshop
DeLTa [Wagle et al.2025].

objectives: estimating and mitigating distortions in electro-
magnetic signals during over-the-air (OTA) transmission (such
as channel estimation, channel compression, equalization, and
beamforming), [Liang et al.2020, Soltani et al.2019, Huang
et al.2019, Mao et al.2018, Sant et al.2022] and addressing
noise and non-linearities at transmitting or receiving anten-
nas [Drakshayini and Kounte2022,Sant and Rao2024,Nguyen
et al.2021]. For practical PHY layer deployments, the ML
pipeline requires a substantial amount of OTA wireless channel
data to effectively train the models. However, the process of
manually collecting, cleaning and labeling wireless data from
the real world is often complex and expensive both in terms
of resources and time. Past data measurement and labeling
campaigns have taken multiple months to capture a handful
of fully characterized data points for a single scenario [Ju and
Rappaport2023, Ju et al.2022, Kumar et al.2024].

Capitalizing on the recent advances in AI, generative mod-
els have been proposed to mitigate this problem by artificially
synthesizing wireless data [Xiao et al.2022], significantly re-
ducing the effort required to create wireless channel datasets
for the aforementioned applications. However, unlike com-
mon modalities of data that we typically encounter, such as
image, text, audio, etc. which are directly human-interpretable,
the wireless channel data is a tensor of complex numbers and
is not human-interpretable or easily visualized. Combined
with the inherently stochastic nature of generative models,
this poses two major challenges around effectively testing
and using generative channel models. Firstly, the outputs
of generative models may not correspond to valid channels.
Here, the validity of channel data implies that the wireless
channel can be represented as a multipath geometric model
representing the multiple paths the transmitted signal takes,
before arriving at the receiver [Forenza et al.2007, Meijerink
and Molisch2014]. While the generative models are trained to
generate data points statistically similar to the training set, ow-
ing to the stochasticity of the model, the synthesized outputs
may not correspond to a geometrically valid set of interactions
or multipaths. Secondly, it is hard to gain any insights about
the physical parameters associated with the signal propaga-
tion or any information about the environment or scenario
being considered (e.g. angles associated with paths, gains
of paths, line-of-sight transmission or non-line of sight, etc.)
from generated data samples.

This work primarily focuses on the design of generative
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models for synthesizing millimeter wave (mmWave) channels,
which forms the backbone of next-generation wireless commu-
nication and IoT systems [Kong et al.2017, Qamar et al.2019].
The proposed method to generate mmWave channels over-
comes the limitations of existing approaches by incorporating
a verified PPGC model into the generative pipeline. As the
PPGC model parametrizes the channel generation, our gen-
erative process learns the joint distribution of the underlying
parameters responsible for channel generation.

This mitigates both the above-mentioned issues, as by incor-
porating a verified PPGC model in the pipeline, the outputs of
our framework are guaranteed to be valid channels, and as our
model generates the parameters associated with the channels,
we can extract insights related to the environment in which
the channels were recorded, making the channels generated
by our system more interpretable.

We further discuss the challenges associated with training
the generative model with the PPGC model in the loop due to
the non-convex loss landscape induced by the PPGC model.
We further propose a linearized reformulation of the PPGC
model, which mitigates these issues, and enables the integra-
tion of the PPGC model in the generative pipeline.

1.1 Summary of Contributions
The contributions of our paper are as follows.

• We propose a generative ML framework which leverages
a parametric, physics-based channel (PPGC) model to
produce realistic channel data that belongs to the distri-
bution of interest (Sec. 3).

• We explore the challenges associated with the training
of the proposed generative framework arising from the
non-convexity of the PPGC model (Sec. 3.2).

• We develop a linearized relaxation of the PPGC model to
mitigate the effect of this non-convexity (Sec. 3.3).

• We show that our method can accurately generate channel
data as well as the parameter distributions associated with
a given set of real data (Sec. 4).

• We evaluate our method against prior arts baselines, and
experimentally show that our method is able to capture
scenario-specific distributions more accurately (Sec. 4).

2 Related Work
Several works propose using a generative model to produce
novel channel samples through the stochastic generative pro-
cess. A generative adversarial network (GAN) based wireless
channel modeling framework was first introduced in [Yang et
al.2019]. [Xiao et al.2022] utilize a Wasserstein-GAN with
Gradient Penalty (WGAN-GP) to synthesize novel channel
matrices given a limited set of training data points and are
evaluated by cross-validating between real and synthesized
data. [Orekondy et al.2022] trained their model on multiple-
input multiple-output (MIMO) data, with a discriminator ex-
plicitly designed to learn the spatial correlation across the
channel data. In [Sengupta et al.2023], a diffusion based gen-
erative model has been adopted to circumvent the issue of
mode collapse in GANs. They further evaluate the overlap of
generated data with real data by calculating the approximate

2-Wasserstein distance between the power spectra. Works
such as [Arvinte and Tamir2022] utilize a score-based gener-
ative model to generate channel matrices and further extend
the framework for channel estimation in noisy environments.
All of the above works utilize a generative model to directly
produce channel matrices at the output, but they have no guar-
antees on the validity of the generated channel data, with
limited interpretability.

A similar research direction involves using labeled datasets
to predict parameters associated with the wireless channel.
In [Xia et al.2022], the authors use the locations of UAVs to
predict the link state and the channel parameters sequentially,
using a conditional variational autoencoder (VAE) to capture
complex statistical relationships within the data. Similar to the
previous work, in [Hu et al.2022] the authors develop a GAN
based model to generate new instances of channel parameters
given the location of UAVs. The above works require datasets
labeled with metadata relating to the environment, locations
of the transmitter or receiver, and the entire set of channel
parameters, and can not evaluate the channel matrices directly.
In contrast, our method does not require labeled data and can
learn channel parameters directly from the channel matrix.

3 System Model and Approach

In this section, we describe our proposed system. We begin
by describing the PPGC model that is used in the generative
process, followed by the design of the generative model. We
discuss the design choices made for the generative model.
Finally, we describe the training and inference pipeline.

3.1 Channel Model

We consider a wireless communication system with Nt trans-
mit and Nr receive antennas. The associated PPGC model
defined by M : R3P → R2×Nt×Nr [Alkhateeb et al.2014],
maps a set of parameters s ∈ R3P to a matrix H ∈ CNt×Nr ,
where P is the number of paths that a transmitted signal takes
before being received at the receiver antennas. In mmWave
channels, the total number of paths P is typically small in over-
the-air transmission. The PPGC model considers the channel
matrix H to be a superposition of the individual propagation
matrices associated with each of the P paths.

H = M(s) =
P∑

p=1

gpar(θpa)at(θ
p
d)

H . (1)

Where, s = [gp, θ
p
a, θ

p
d]

P
p=1, gp represents the propagation

gain associated with the p-th path, at(·), ar(·) represent the
steering vectors or the array response vectors on the transmit
and receive antennas, and θpd and θpa represent the correspond-
ing angle of departure and angle of arrival, both of which
take values between [−π, π] radians. To simplify the discus-
sion, we consider a Uniform Linear Array (ULA) [Forenza et
al.2007] and limit the discussion to the azimuth plane. Thus,
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Figure 1: When integrating the PPGC model in a straightforward
manner, the generator directly predicts the parameters ŝ, which are
then used by the PPGC model M to produce the predicted channel
(Top). In such implementations, the generator cannot converge to
suitable optima due to the non-convexity of the PPGC model, as
observed in the training performance of the pipeline over multiple
instances. (Bottom)

.
the array response vectors can be defined as:

at(θpd) =
1√
Nt

[1, eju sin(θp
d), . . . , ej(Nt−1)u sin(θp

d)]T , (2)

ar(θ
p
a) =

1√
Nr

[1, eju sin(θp
a), . . . , ej(Nr−1)u sin(θp

a)]T , (3)

where, u =
2π

λ
d, λ is the wavelength of the carrier and d is

the distance between antenna elements.
A key characteristic of the PPGC model M is that, a distri-

bution q(·) over the parameters s induces a distribution qM (·)
over the channel matrix H, where the distribution q(·) is spe-
cific to the environment in which the model is deployed. Now,
in order to incorporate the PPGC model into the generative
pipeline, the generative model must learn the prior distribution
over the parameters s instead of directly learning the prior
distribution over the channel matrix H. Thus, the objective
of our system is as follows; given a set of channel matrices
D = [Hi]

N
i=1, where Hi ∼ q′(·) and q′(·) is unknown, we

train a generative model to output a probability distribution
q(·) over the parameters s such that the induced distribution
qM (·) over the channel H is close to q′(·).

3.2 Generative Model to Predict Channel Statistics
For the generative model, we use the variational autoencoder
(VAE) architecture [Kingma and Welling2014], as seen in Fig.
1. We use the generative model to produce the parameter vector
s using a latent variable z, which is then passed to the PPGC
model M to produce a valid channel matrix. The VAE consists
of a decoder network gϕd

(·), parametrized by ϕd, which is
used to reconstruct the parameter vector s given the latent

variable z as gϕd
(z), and the encoder fϕe(·), parametrized by

ϕe, which approximates the posterior distribution of z given
the channel matrix H using the variational posterior fϕe

(H).

Generative model training
During the training phase, the encoder of the generative model
takes a channel matrix H as input and samples a latent vector
z from the posterior distribution as

z ∼ fϕe
(H). (4)

The decoder of the generative model then takes in the latent
vector z as input and produces a parameter vector ŝ as

ŝ = gϕd
(z). (5)

The predicted parameter vector is then passed to the model M
to produce an output channel Ĥ as follows

Ĥ = M(ŝ). (6)

The system loss is a generalization of the evidence based lower
bound (ELBO) [Kingma and Welling2014], given by

L = ||H − Ĥ||22 + αD · KL(z,N (0, I)). (7)

Here, the first term corresponds to the reconstruction or mean
square error (MSE) loss between the input H and the predicted
channel matrix Ĥ. This ensures that the outputs are similar to
the inputs. The second term penalizes the Kullback-Leibler
(KL) divergence [Kullback and Leibler1951] between the la-
tent vector z and a simple, known distribution, in this case,
the multivariate unit Gaussian distribution N (0, I), where I
is the identity matrix of dimension Z. This encourages the
distribution of the latent vectors to be similar to N (0, I).

Channel generation by incorporating the PPGC model pro-
ceeds in accordance with the standard VAE architecture. The
loss function (7) enforces a latent space distribution similar to
N (0, 1), with the decoder gθd(·) trained as the channel gener-
ator network. The input to the decoder is a random variable
z ∼ N (0, I). The decoder generates a set of parameters ŝ, cor-
responding to the physics-based parameters of a new channel.
These parameters are passed through the PPGC model M to
generate an interpretable and valid channel matrix. However,
the direct use of the physics-based channel model, using (1)
requires knowledge of the number of multipath components P .
Further, gradient backpropagation using the PPGC model re-
sults in poor training performance, owing to the non-convexity
of the model. This is further elucidated below.

Limitations of generative model training using PPGC
In order to understand the limitations of training a genera-
tive network directly in conjunction with the PPGC model
(1), we analyze the role of the ULA manifold, given in (2).
The presence of sinusoidal functions of the angular channel
parameters, θpd and θpa, in creating the array response vector
results in periodicities in the loss function landscape. The non-
convexity arising from this periodicity is only exacerbated
with the addition of multiple paths. However, these period-
icities cannot be effectively approximated by the non-linear
activation functions used in deep neural networks, leading to
difficulties in training [Nair and Hinton2010, Dumoulin and
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Figure 2: The loss surface as a function of (θ1a, θ
1
d) in reference to a channel matrix with θ1a = θ1d = 1.0 radians using a PPGC model M

with P = 1 and Nr = Nt = 4, 16, 64 antennas respectively. The PPGC model M is extremely non-convex as a function of the parameters
θa, θd because of periodicity arising from the formulation of the array response vectors. Avoiding the numerous local minima surrounding the
global minima poses a significant challenge given the nature of activation functions. As the number of antennas Nr, Nt increases, the gradient
flowing through the model diminishes significantly at locations further away from the minima, where the loss surface is effectively flat.

Visin2016]. As a result, depending on the location of the
optimizer in the parameter space, the gradient may not flow
during backpropagation, resulting in the optimizer converging
at non-optimal points. Additionally, the convergence of the
system to a suitable minimum is highly dependent on the num-
ber of antennas used in the PPGC model. This is illustrated
in Fig. 2 where, as the number of antennas, Nt, Nr increase,
the number of local minima also increase. Further, the opti-
mality gap, the difference between the loss values at the local
minima and the global minima, widens as the number of an-
tennas increases, causing convergence to any local minima
to significantly impact the overall loss, as observed in Fig. 1.
Also, as observed from Fig. 2, the loss landscape flattens as
parameter values move further from the global optimum, lead-
ing to smaller gradients. This diminishes the effectiveness of
optimization processes and gradients in achieving the optimal
parameter values, regardless of the optimization strategies and
momentum employed.

3.3 Linearized Reformulation of the Physics Model
To overcome the challenges posed by the PPGC model, while
maintaining the key underlying model features for channel
generation, we relax the overall cost function by reformulating
the channel generation model M by first discretizing the range
of values that θpa, θ

p
d can take and then expressing the channel

generation process as a weighted average of the resulting
antenna array responses vectors ar(θpa)at(θ

p
d)

H . Different
from directly estimating the channel parameters, this method

utilizes dictionary-based channel generation, where the loss
function is now a linear function of the learnable dictionary
weights. This is further explained next.

Let the range of angles θpa, θ
p
d, given by [θmin, θmax], be

equally divided into R intervals of width ∆θ = (θmax −
θmin)/R. We pre-compute the outer product between the ar-
ray response vectors, ar(θ

p
a)at(θ

p
d)

H , at the discretized angle
values and store them in a dictionary D. The dictionary D has
a total of R2 elements, and we refer to it as the array response
dictionary across the remainder of this work. Each element
of the dictionary, Di,j ∀ i, j ∈ {1, R}, represents a Nr ×Nt

matrix, and is given by

Di,j = ar(θi)at(θj)
H , (8)

where
{
θk := θmin + k(∆θ)| k ∈ {i, j}

}
. Thus, each ele-

ment of the array response dictionary is the combination of
antenna array responses at the transmitter and receiver for cer-
tain values of the angle of arrival and angle of departure. The
angles associated with neighboring elements of the dictionary
Di,j ,Di+1,j or Di,j ,Di,j+1 differ by a value of ∆θ for the
angle of arrival or the angle of departure respectively. The
relaxed PPGC model can now be expressed as,

H =
R∑
i=1

R∑
j=1

Wi,jDi,j , (9)

where, the channel generation is parametrized by the gain
matrix W ∈ RR×R, instead of the parameters s, and the
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Algorithm 1 Generation of PPGC using Linearized Model
Training :
Given : Dataset of valid channels D, VAE parametrized by
ϕe, ϕd, Chosen range of angles [θmin, θmax], Resolution R,
Latent dimension Z.

1: Calculate the array response dictionary D using (8) for all
i ≤ R, j ≤ R.

2: Sample a channel matrix H from the dataset D.
3: Obtain gain matrix W from H using (4) and (10).
4: Obtain the predicted channel matrix Ĥ from W using (11).
5: Calculate the loss using (12) and update ϕe, ϕd =0

Generation :
Given : Sample vector z̃ ∈ RZ from Multivariate unit Gaus-
sian distribution N (0, I)

1: Obtain gain matrix W̃ from z̃ using (13)
2: Obtain generated channel matrix H̃ from W̃ using (14) =0

channel is constructed by the element-wise product between
W and D.

By making these changes in the pipeline, we now model
the output channel H as a linear function of the gain matrix
W, mitigating the issues arising from the non-convexity of the
PPGC model M as seen in Sec. 3.2. Thus, we now use the
generative model to predict W instead of s. Now, as the total
number of paths P is typically small, as mentioned in Sec. 3.1,
only a few of the entries in the W are expected to be non-zero.

Remark 1 : It is to be noted that (1) and (9) both produce
valid channel matrices. For a suitably high value of R, any
channel H can be approximated by (9) using a suitable sparse
W with P non-zero values. For such a W, (9) is equivalent
to (1), and each non-zero value Wi,j will correspond to the
gain gp of one of the P paths. Thus, for this linearized repre-
sentation of the problem, we can interpret the non-zero values
of the gain matrix W as the path gains, and the angles asso-
ciated with the corresponding array dictionary vector Di,j as
the angle of arrival and departure of those paths.

3.4 Generative Model to Predict the Gain Matrix
In order to utilize the generative model to predict the gain
matrix, we change the training pipeline described in Sec. 3.2
in the following ways.

The VAE decoder gϕd
: RZ → RR×R now predicts the gain

matrix W, where R is the resolution of W. During training, the
decoder gϕd

takes in the latent vector z as input and produces
a gain matrix W as

W = gϕd
(z). (10)

The gain matrix is then used to generate the predicted channel
by multiplying it with the array response dictionary as

Ĥ =

R∑
i=1

R∑
i=1

Wi,jDi,j . (11)

Now, we propose a modified system loss, that also accounts
for the sparsity in the weight matrix W. This is given by

L = ||H − Ĥ||22 + αD · KL(z,N (0, I)) + αS · ||W||1. (12)

Figure 3: We relax the PPGC model by defining a discretized array
response dictionary D and using the generator to output the gain
matrix W. The elementwise multiplication of W and D mimics the
PPGC model process. This relaxation allows the flow of gradient
through the generator, enabling it to converge to more suitable optima.

Here, the first two terms are identical to the ones used in
(7). The last term is the 1-norm of the gain matrix W, which
encourages W to be as sparse as possible, ensuring that W
does not select unrealistic combinations of multipaths that
minimize the MSE. Thus, the overall reformulation can be
interpreted as a sparse dictionary learning problem, with an
additional KL divergence term.

3.5 Inference and Sampling
During the inference phase, we only use the generative decoder
gϕd

. We sample a vector z̃ ∼ N (0, I) and pass it through the
decoder to produce a gain matrix W̃

W̃ = gϕd
(z̃) (13)

W̃ is then used to generate a synthetic channel, using the array
response dictionary, as

H̃ =
R∑
i=1

R∑
i=1

W̃i,jDi,j . (14)

The generated channel H̃ is guaranteed to be a valid channel
matrix as the mapping from the parameter space to the chan-
nel space is done based on a verified PPGC model. H̃ is also
expected to be from the distribution of interest, as the second
term in (12) ensures that the decoder of the generative model
learns to map samples from the multivariate unit Gaussian
distribution to a set of parameters that belong to the distribu-
tion of interest. A summary of the training and generative
processes for the linearized representation is given in Algo. 1.

4 Experimental Results
In this section, we analyze the performance of our method
on wireless datasets generated based on user-defined param-
eter distributions as well as those that correspond to real-life
scenarios, and compare our method against prior art base-
lines. We show the efficacy of our method in capturing the
underlying parameter distributions, its ability to accurately
generate synthetic channels, as well as its effectiveness of the
proposed generative pipeline for downstream channel com-
pression tasks.
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Figure 4: The distributions of angles of arrival and departure (θpa, θ
p
d)

captured by our method (Left) match the underlying distributions of
the training dataset (Right). Each color corresponds to a distinct path.

For our PPGC model, we consider transmit and receive an-
tennas Nt = Nr = 16. We consider six datasets. Five of the
datasets are taken from the DeepMIMO framework [Alkha-
teeb2019] that utilizes 3D ray tracing for generating channel
datasets in different settings. Datasets corresponding to the
following scenarios are used; (i) Two base stations in an out-
door intersection of two streets with blocking and reflecting
surfaces. Here the channels corresponding to base station 10
(BS10) and base station 11 (BS11) in the DeepMIMO frame-
work have been considered; (ii) An indoor conference room,
given by (Indoor); (iii) A section of downtown Boston, Mas-
sachusetts, USA, generated using the 5G model developed
by RemCom [Remcom2025], given by (Boston) and (iv) A
section of the Arizona State University campus in Tempe, Ari-
zona, USA, given by (ASU). The last is a user-defined dataset
of size 20, 000 produced by sampling known distributions of
parameters and using those parameters with the PPGC model
M to produce a dataset (User Defined). More information
regarding the datasets is provided in Appendix Sec. B. All
datasets are split 80/20 for training and testing respectively.

We use a VAE as the generative model, (gϕe
, gϕd

), which is
trained using the Adam optimizer with a learning rate of 1e−3.
For more details regarding the model architecture, please refer
to Appendix Sec. A. We compare our model against Chan-
nelGAN (CGAN) [Xiao et al.2022], the DUNet diffusion
model (DUNet) [Sengupta et al.2023] and a VAE version of
CSINet [Wen et al.2018]. Models are trained for 300 epochs
with a batch size of 256, resolution R = 64 and z = 64.

4.1 Prediction of Parameters
In this experiment, we evaluate the accuracy of our system in
capturing the underlying distribution of parameters associated
with a given dataset. We first define a distribution across the
parameters [gp, θap , θ

d
p]

P
p=1 and generate a dataset D of channel

matrices by sampling parameters from this distribution and
passing them through the model M. We train our model on the
dataset D and compare the distribution of predicted parameters
[g̃p, θ̃

a
p , θ̃

d
p]

P
p=1 with that of the true parameters [gp, θap , θ

d
p]

P
p=1.

In Fig. 4, we observe that our method can accurately capture
the distributions of the angles of arrival and departure for
each path. The discretized array response dictionary results
in grids of generated angles of arrival and departure, which
align with the distribution of parameters used to generate the
channels. This shows that our model training and parameter

extraction methods can be used to determine the distributions
of parameters of input channels without requiring labeled data.

4.2 Reconstruction of Channels
In Table 2, we analyze the ability of our method to capture the
distribution of channel matrices compared to baseline methods.
We generate 3000 synthetic channel matrices and compare the
2-Wasserstein distance [Panaretos and Zemel2019] and Maxi-
mum Mean Discrepancy [Dziugaite et al.2015] between the
distribution of the generated channels and the true channels.

The channels generated by our method are closer to the
distribution of true channels than those generated by the Chan-
nelGAN baseline by up to 4×. This shows that our method can
generate more realistic channel data as compared to baselines.

4.3 Cross Evaluation Between Distinct Datasets
In this experiment, we analyze the ability of our method
to learn distinct channel distributions based on the cross-
evaluation of models trained on different scenarios in the con-
text of a downstream channel compression task. In practical
wireless deployments, effective channel compression is cru-
cial in mitigating feedback overheads that arise in systems that
frequently exchange channel data to optimize communication
efficiency [Wen et al.2018, Mashhadi et al.2020].

We consider two channel datasets R10, R11 from the Deep-
MIMO Outdoor scenario, generated from base stations 10 and
11 respectively. We train an independent instance of the gen-
erative model on each dataset and generate synthetic datasets
of size 20, 000, given by G10, G11 respectively. We then train
independent instances of the CSINet channel compression
model [Wen et al.2018] on each set. We perform cross eval-
uation considering all pairwise combinations of training and
testing datasets and calculate the test NMSE given in Table 1.

Now, a model trained on G10 should generalize well to R10,
and vice versa for a model trained on G11. In Table 1, we
observe that a compression model trained on data generated
by our model follows the aforementioned rules, indicating that
our method can capture the distinctions between two different
datasets and generate distinct channel data samples.

4.4 Effect of Varying Size of Training Dataset
In this experiment, we train our model on datasets of varying
sizes, choosing a subset of the original dataset of the appro-
priate size. We use the DeepMIMO dataset BS10 for this
experiment, which consists of 16, 000 datapoints.

In Fig. 5(a), we observe that our method is able to provide a
similar level of performance even when the size of the training
data is reduced by up to ∼ 40%. This is because our model
predicts distributions in the parameter space, which are less
complex than the distributions in the channel space, even a
small number of datapoints can capture the distribution related
characteristics of the input channels. In a practical deployment,
this translates to significant savings in terms of the resources
deployed to acquire channel data.

4.5 Effect of Varying Resolution
In this experiment, we observe the joint effect of changing the
resolution R of the gain matrix W, and the number of antennas
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Train Testing R10 Testing R11 Testing G10 Testing G11

Ours CGAN DUNet CVAE Ours CGAN DUNet CVAE Ours CGAN DUNet CVAE Ours CGAN DUNet CVAE
R10 0.02 0.02 0.02 0.02 1.35 1.35 1.35 1.35 0.06 1.29 0.46 0.55 1.36 1.37 1.18 1.07
R11 1.14 1.14 1.14 1.14 0.06 0.06 0.06 0.06 1.21 1.51 1.14 1.04 0.25 0.45 0.42 0.72
G10 0.05 0.77 0.19 0.85 1.41 0.97 1.04 1.49 0.01 0.09 0.03 0.09 1.5 0.92 1.17 1.1
G11 1.1 1.37 1.02 1.04 0.14 0.56 0.37 0.52 1.31 1.94 1.33 1.15 0.01 0.02 0.01 0.02

Table 1: NMSE loss for downstream compression tasks using different pairs of training and testing datasets. When compression models are
trained on real data and evaluated on generated data (Rows 1,2) and vice versa (Rows 3,4), our method records lower NMSE for corresponding
real-generated dataset pairs, indicating that the data generated by our method is more similar to the real channel data.

2000 4000 8000 12000 16000
Size of Training Dataset

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

2-
W

as
se

rs
te

in
 D

is
ta

nc
e

2-Wasserstein
MMD

0.046

0.048

0.050

0.052

0.054

0.056

0.058

0.060

M
M

D

(a)

4 8 16 32
Number of Antennas Nt, Nr

0.0

0.5

1.0

1.5

2.0

2.5

2-
W

as
se

rs
te

in
D

is
ta

nc
e

Resolution

4

8

16

32

(b)

5 6 7 8
Number of Paths P

0.6

0.65

0.7

0.75

0.8

0.85

0.9

2-
W

as
se

rs
te

in
D

is
ta

nc
e

2-Wasserstein

MMD

0.04

0.05

0.06

0.07

0.08

0.09

M
M

D

(c)

Figure 5: (a) Our method can generate samples with a high degree of fidelity in terms of 2-Wasserstein distance and MMD, even with a
training dataset of around 50% of the size of the training dataset. (b) For a physics model M, as the number of antennas (Nr, Nt) increase,
an increase in the resolution (R) of the gain matrix W results in a higher degree of fidelity with the input data distribution in terms of the
2-Wasserstein distance, as the highest possible precision with which parameters can be estimated is dependent on the number of antennas. (c)
The performance of our method is consistent across a varying number of paths P , as the generative process is independent of P , relying on the
loss function to balance reconstruction fidelity and the identified number of paths, given by the number of non-zero values in the gain matrix W.

2-Wasserstein Distance MMD
Dataset Ours CGAN DUNet CVAE Ours CGAN DUNet CVAE
Boston 0.475 0.84 0.687 0.87 0.013 0.045 0.052 0.095
ASU 0.283 0.932 0.641 1.095 0.012 0.169 0.02 0.592

Indoor 0.17 0.339 0.529 1.802 0.005 0.003 0.02 0.375
BS10 0.656 1.632 0.857 1.837 0.072 0.317 0.108 0.414
BS11 0.267 0.882 0.463 1.12 0.016 0.086 0.033 0.132

Table 2: The distribution of channels modelled by our method is
more similar to the real distribution compared to baselines in terms
of 2-Wasserstein distance and Maximum Mean Discrepancy (MMD).

Nr, Nt used by the physics model M. For this experiment,
we use the DeepMIMO dataset for base station 10.

In Fig. 5(b), we observe that for a model with fewer an-
tennas (Nr = Nt = 4/8), an increase in resolution R offers
diminishing improvements. This is because the highest level of
granularity at which parameters can be estimated is dependent
on the number of antennas, with further increase in resolution
resulting in little in performance. However, for a model with
more antennas (Nr = Nt = 16/32), the added dimensionality
of the channel matrices allows the model to identify angles of
arrival and departure, (θpa, θ

p
d)

P
p=1 with greater precision. Thus,

in such cases, increasing the resolution of the weight matrix
W improves the performance of the model considerably.

4.6 Effect of Increasing Number of Paths
In this experiment, we observe the effect of increasing the
number of paths P . We consider the user defined dataset

with additional paths as follows. Path 6 is sampled from
θap ∼ U(0.4, 0.8)/θap ∼ U(0.1, 0.3), Path 7 from θap ∼
U(0.6, 1.0)/θap ∼ U(−0.3,−0.1), and Path 8 from θap ∼
U(−0.3, 0.9)/θap ∼ U(0.6, 1.0) with gp ∼ U(0.001, 0.01).

In Fig. 5(c), we observe that the performance of our gen-
erative pipeline remains consistent across a varying number
of paths P . This is because our model is independent of P ,
and leverages the formulation of the loss function in (12) to
balance the reconstruction accuracy and the number of non-
zero output values, which dictates the number of identified
paths. The last term in (12), enforces output sparsity. The
hyperparameter αS in (12) can thereby be tuned by observing
the reconstruction loss. Thus, our method can adapt to a range
of values for the number of paths by finding a suitable balance
between the NMSE and the sparsity loss such that the number
of non-zero values are proportional to the number of paths.

5 Conclusion
In this paper, we developed a generative pipeline that lever-
ages a PPGC model for parametrized channel generation. We
tackle the extreme non-linearity in the model by developing a
dictionary-based relaxation and learning a sparse gain matrix
whose non-zero values denote the associated path parameters.
We empirically show that our method captures path-specific
parameter distributions for a given channel dataset and outper-
forms prior art in terms of 2-Wasserstein distance and MMD.
Our work can be extended to 3-dimensional scenarios with
angles of elevation and additional parameters such as delay.
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