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Abstract

Portfolio optimization faces persistent challenges
in adapting to dynamic market environments due
to its dependence on static assumptions and high-
dimensional decision spaces. Although reinforce-
ment learning (RL) has emerged as a promising
solution, conventional reward engineering methods
often struggle to capture the complexities of market
dynamics. Recent advances in deep RL and graph
neural networks (GNNs) have sought to enhance
market microstructure modeling. However, these
methods still struggle with the systematic integra-
tion of financial knowledge. To address the above
issues, we propose a novel heuristic-guided inverse
RL framework for portfolio optimization. Specif-
ically, our framework provides an effective mech-
anism for generating expert strategies that takes
into account sector diversification and correlation
constraints. Then, it employs a multi-objective re-
ward optimization method to strike an adaptive bal-
ance between returns and risks. Furthermore, it
utilizes heterogeneous graph policy learning with
hierarchical attention mechanisms to model inter-
stock relationships explicitly. Finally, we conduct
extensive experiments on real-world financial mar-
ket data to demonstrate that our framework outper-
forms several state-of-the-art baselines in terms of
risk-adjusted returns. We also provide case studies
to demonstrate the effectiveness of our framework
in balancing return maximization and risk contain-
ment. Our code and data are publicly available at
https://github.com/ChloeWenyiZhang/SmartFolio/.

1 Introduction
Portfolio optimization in dynamic financial markets presents
the following three fundamental challenges: balancing risk-
return trade-offs under uncertainty [Markowitz, 1952], inte-
grating domain-specific knowledge into algorithmic frame-
works [Brandt, 2010], and modeling nonlinear asset interde-
pendencies [Pflug et al., 2012].

∗Corresponding author.
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Figure 1: Illustration of the role of diversification in mitigating elim-
inable unsystematic risks.

As illustrated in Figure 1, effective risk management dis-
tinguishes between reducible factors (e.g., asset selection, in-
dustry spread, and correlation control) and irreducible ones.
Modern portfolio theory establishes that the reduction of un-
systematic risk follows from the following equation:

σ2
p =

1

N
σ2 + (1− 1

N
)ρσ2,

where σ2
p denotes the total portfolio variance, N represents

the number of constituent assets, σ2 indicates the average id-
iosyncratic variance (i.e., asset-specific risks), ρ signifies the
mean correlation coefficient between assets, and σ2 denotes
the systematic market variance. As such, the first term 1

N σ2

quantifies the reducible idiosyncratic risk that diminishes
with increasing asset quantity. Consequently, we can see that
(1) a higher number of assets dilutes idiosyncratic risk, (2) in-
dustry diversification mitigates sector-specific volatility [Ang
et al., 2009], and (3) low asset correlation amplifies diversi-
fication efficacy [Choueifaty and Coignard, 2008], isolating
non-systematic risk for reduction.

Traditional reinforcement learning (RL) approaches, while
adaptive to market dynamics, suffer from three critical lim-
itations in financial applications. First, their manual reward
engineering often fails to capture essential market patterns,
such as momentum effects [Jegadeesh and Titman, 1993] and
regime-dependent correlations [Longin and Solnik, 2001].
Second, standard RL architectures struggle to meet the re-
quirements for sector diversification [Roncalli, 2013]. Third,
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their fully-connected networks do not adequately model mar-
ket microstructure relationships [Aste et al., 2010]. These
limitations often lead to unstable performance during black
swan events [Taleb, 2010], as evidenced by the 2020 COVID-
19 market crash [Baker, 2020]. To address these gaps, we
propose a heuristic-guided inverse reinforcement learning
(IRL) framework for portfolio optimization, with the follow-
ing three main components.

• The optimization module formalizes domain knowledge
(sector weight caps and momentum-correlation control
from [Moskowitz et al., 2012]) into synthetic expert tra-
jectories. This overcomes data scarcity in conventional
IRL methods [Ng and Russell, 2000] while maintaining
financial logic consistency [Buehler et al., 2019].

• The multi-objective reward learning mechanism dynam-
ically balances four competing objectives, namely return
maximization, sector diversification [Koumou, 2020],
momentum alignment [Geczy and Samonov, 2016], and
correlation penalization [Buraschi et al., 2010]. The
adaptive weight adjustment mechanism enables auto-
matic rebalancing during shifts in market regimes.

• The graph-based policy network advances prior finan-
cial models through three structural innovations: explicit
encoding of sector affiliation graphs, correlation graphs
derived from tail dependence coefficients, and hierar-
chical attention mechanisms combining local asset fea-
tures with asset indicators. This design enhances mi-
crostructure modeling while improving generalization
ability through adaptive information fusion.

Extensive experiments and case studies on real-world fi-
nancial market data demonstrate that our framework consis-
tently outperforms several state-of-the-art baselines in terms
of risk-return trade-offs and robustness to extreme events, of-
fering a novel technical pathway for adaptive portfolio man-
agement.

2 Related Work
Portfolio optimization has evolved through three research
paradigms. The foundational work of Markowitz [1952] es-
tablished mean-variance optimization but suffered from static
assumptions and sensitivity to estimation errors [Choueifaty
et al., 2013]. Subsequently, some dynamic extensions, such
as stochastic portfolio theory [Fernholz and Karatzas, 2005],
improved market adaptability but grappled with the curse
of dimensionality in multi-asset scenarios. Then, reinforce-
ment learning (RL) emerged as a promising alternative for
dynamic portfolio management. Pioneering work by Moody
et al. [1998] demonstrated the potential of RL in financial
time series prediction. At the same time, recent deep RL ap-
proaches [Deng et al., 2016] achieved superior risk-adjusted
returns through neural policy networks. However, these
methods are critically dependent on manually designed re-
ward functions that oversimplify market complexity, a limita-
tion extensively documented by Hambly et al. [2023] in their
survey on RL-based trading systems. Inverse RL (IRL) at-
tempted to address reward engineering challenges by learning

Algorithm 1 Greedy Expert Strategy Generation
Input: Historical returns rt, industry relation matrix I , correlation
matrix C, total number of stocks N , number of stocks to select K
Parameter: max industry ratio α ∈ (0, 1), threshold γ ∈ (0, 1)
Output: Expert action vector at

1: Ranking all stocks based on rt in descending order as C
2: Calculate K′ ← ⌊αK⌋
3: Initialize at ← 0 ∈ {0, 1}N and S ← ∅
4: while |S| < K and C ̸= ∅ do
5: i← C.pop
6: Ii ← {j | I[i, j] > 0} ∪ {i}
7: ki ←

∑
j∈Ii

at[j]

8: if ki ≥ K′ then
9: continue

10: if S ̸= ∅ then
11: ρi ← 1

|S|
∑

j∈S C[i, j]

12: if ρi ≥ γ then
13: continue
14: at[i]← 1 and S.add(i)
15: return at

implicit objectives from expert demonstrations. The founda-
tional IRL framework [Ng and Russell, 2000] has inspired
financial applications to systematically incorporate domain
knowledge through heuristic-guided reward learning.

Recently, graph-based approaches have demonstrated po-
tential in modeling market structures. In [Chen et al., 2018],
graph neural networks are employed to capture stock cor-
relations, while temporal graphs are integrated for financial
time series prediction in [Xiang et al., 2022]. Some pioneer-
ing works [Wang et al., 2019; Wang et al., 2021] utilized
graph neural networks as the RL decision model to enhance
the understanding of cross-asset interdependencies in portfo-
lio management. Our heterogeneous graph attention mecha-
nism advances these works by explicitly modeling sector hi-
erarchies and correlation dependencies in a unified architec-
ture, which is particularly crucial for handling cross-market
portfolio optimization. The incorporation of financial do-
main knowledge into adaptive learning mechanisms is based
on hybrid approaches such as those in [Xiong et al., 2018;
Liu et al., 2021] but significantly extends these paradigms
through the systematic integration of interpretable heuristics,
multi-objective reward optimization, and structured market
graph representation learning.

3 Methodology
In this section, we present our proposed framework in detail.
The architecture of the framework is illustrated in Figure 2.

3.1 Greedy Expert Strategy Generation with
Heuristic Rules

We utilize a greedy algorithm to generate high-quality port-
folio trajectories through iterative stock selection, where sec-
tor diversification and correlation constraints are incorpo-
rated. The detailed expert strategy generation procedure is
described in Algorithm 1.

The process begins with ranking stocks based on their his-
torical returns in descending order, ensuring that the most
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Figure 2: Illustration of the proposed framework, where (a) denotes the data preprocessing stage to generate stock graphs, (b) displays the
reward network optimization process via maximum entropy inverse reinforcement learning using heuristic rule-generated expert strategies,
(c) shows a hierarchical multi-head graph attention network as the policy of RL Agent to naturally aggregate information from neighbors,
and, finally, proximal policy optimization is employed on the whole framework.

promising stocks are considered first. To manage the risk of
sector concentration, we impose sector diversification con-
straints, limiting the maximum ratio per industry cluster to
α ∈ (0, 1). That is, the number of selected stocks in each
industry sector cannot exceed ⌊αK⌋, where K is the total
number of stocks to select. Additionally, the strategy dynam-
ically excludes candidates with an excessive correlation with
selected stocks. If the average correlation of the stock i with
the selected set S of stocks exceeds a threshold γ, given by
1
|S|

∑
j∈S ρij ≥ γ, the stock will be excluded from consid-

eration. Finally, the expert strategy outputs a binary action
vector at ∈ {0, 1}N , indicating which stocks are selected for
the portfolio.

3.2 Multi-Objective Reward Learning

The multi-objective reward learning component enhances the
strategy by integrating four objectives: maximizing returns,
diversifying across sectors, penalizing positive correlations,
and incentivizing negative correlations.

Return Maximization
The return reward is based on the portfolio log-return, which
is calculated as:

Rreturn = log

(
PVt

PVt−1

)
.

Sector Diversification
To promote diversification, the reward function maximizes
the entropy of sector weights, defined as

Rdiversity = −
∑
s∈S

ps log ps,

where ps =
∑

i∈Is
wi/

∑
s′
∑

i∈Is′
wi.

Correlation Management
The positive correlation penalty discourages positive correla-
tions among low-momentum assets, given by:

Rpos = −
N∑
i=1

N∑
j=1

wiwj ·max(0, ρij) · I(mi < mthreshold).

Conversely, the negative correlation incentive promotes nega-
tive correlations with high-momentum assets, represented as:

Rneg =
N∑
i=1

N∑
j=1

wiwj · |min(0, ρij)| · I(mi ≥ mthreshold).

Adaptive Reward Function
The composite reward is a weighted sum of these components

Rtotal = λ1Rreturn + λ2Rdiversity + λ3Rpos + λ4Rneg,

with weights λi dynamically adjusted via Lagrangian duality.
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3.3 Maximum Entropy Inverse Reinforcement
Learning

The Maximum Entropy Inverse Reinforcement Learning (i.e.,
MaxEntIRL) framework, originally proposed in [Ziebart et
al., 2008], addresses the ambiguity problem in estimating
the reward function by preferring the reward function that
maximizes entropy over the demonstrated trajectories. Our
implementation extends this principle to portfolio optimiza-
tion, adapting the formulation to handle non-stationary mar-
ket conditions and partial observability.

Expert-Agent Reward Gap
We model the expert-agent reward loss function as:

L = − (EπE
[Rtotal]− logEπA

[exp(Rtotal)]) ,

which encourages it to learn from the expert’s behavior.
We model the likelihood of expert trajectories τE under the

learned reward function Rθ as:

P (τE |θ) =
exp(Rθ(τE))∫
exp(Rθ(τ))dτ

.

This leads to the negative log-likelihood loss function:

L(θ) = −Eτ∼πE
[Rθ(τ)] + logEτ∼πA

[exp(Rθ(τ))],

where the first term encourages high rewards for expert tra-
jectories, while the second term penalizes arbitrary scaling
of rewards for agent trajectories πA, as discussed in [Finn et
al., 2016]. The gradient of this loss with respect to reward
parameters θ becomes

∇θL = −EπE
[∇θRθ(τ)] + EπA

[∇θRθ(τ)
exp(Rθ(τ))

E[exp(Rθ(τ))]
].

This formulation ensures that the agent policy πA covers the
expert’s behavior distribution while maintaining maximum
entropy, crucial for handling the stochastic nature of financial
markets.

Reward Network Optimization
The reward network implements a modular architecture that
dynamically combines multiple financial factors through pa-
rameterized weighting. Formally, the network processes
state-action pairs (st, at) through parallel encoder streams as
follows:

Rθ(s, a) =
∑
k∈K

βk · fk
enc(ϕk(s)⊕ at),

where K = {base, ind, pos, neg} denotes the active feature
modalities,⊕ represents feature-action concatenation, and βk

are learnable weights with
∑

βk = 1 through softmax nor-
malization. The reward network parameters θ are updated via
gradient clipping:

θ ← θ − η∇θL.
Policy Optimization
The agent policy πA is then trained using Proximal Policy
Optimization (PPO) to maximize cumulative rewards under
the updated reward function:

π∗
A = argmax

πA

EπA

[
T∑

t=0

Rtotal(st, at)

]
.

3.4 Graph-Based Policy Network
Finally, the graph-based policy learning component leverages
a heterogeneous graph attention network (HGAT) to dynami-
cally model industry relations and correlations among stocks.

Graph Construction
The industry graph Aind ∈ RN×N is constructed so that
Aind,ij = 1 if stocks i and j belong to the same sector and
0 otherwise. The positive correlation graph Apos ∈ RN×N

is defined as Apos,ij = 1 if correlation ρij > ρthreshold, and 0
otherwise. The correlation values are discretized as:

ρ̃ij =


1 if ρij > ρthreshold;

−1 if ρij < −ρthreshold;

0 otherwise.

Multi-Head Graph Attention Encoding
Multi-head graph attention encoding is applied to the input
features X ∈ RN×d, computing the attention embeddings
for each graph g as H

(l)
g = MH-GAT (X,Ag), where the

attention mechanism is calculated as:

Attention(Q,K,V) = Softmax
(
QK⊤
√
d

)
V,

where Q,K,V are linear transformations of the input fea-
tures, and d is the feature dimension.

Heterogeneous Fusion Attention
The heterogeneous fusion attention stage concatenates the
multi-head output Hind,Hpos,Hneg with raw features, calcu-
lated as:

Hfusion =
∑
k∈K

βk ·Hk,

where βk are adaptively learned weights:

βk = Softmax
(
W⊤

k Hk

)
.

Policy Generation
The fused embeddings are then fed into a generator to output
normalized portfolio weights as:

wt = Softmax (Wg · Flatten(Hfusion)) , (1)

where Wg is a fully-connected layer and Flatten(·) denotes
the vectorization operation.

4 Experiments
In this section, we present our experimental setup and results.

4.1 Experimental Setup
To evaluate the performance of our method, we conduct ex-
tensive experiments on real-world data across the Chinese
and US markets. Specifically, our evaluation is performed
on the constituent stocks of the CSI 300, CSI 500, NAS-
DAQ 100, and S&P 500 indices, covering the period from
January 2018 to December 2024. Each dataset is partitioned
into three subsets: a training set (from 2018 to 2022), a val-
idation set (2023), and a test set (2024). About 5% of the
stocks were discarded due to incomplete data. Raw finan-
cial data includes daily open, close, high, low, previous close
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prices, and trading volume. These features are normalized
using rolling-window standardization (the window size is set
to 20 days) and further grouped via k-means clustering for
intra-group normalization. Monthly correlation matrices are
computed using Pearson’s correlation coefficients, with pos-
itive correlation graphs (edges for ρij > 0.2) and negative
correlation graphs (edges for ρij < −0.2) generated to cap-
ture dynamic market interactions.

We compare our method with state-of-the-art deep learning
(DL) models (including LSTM [Hochreiter and Schmidhu-
ber, 1997], GRU [Chung et al., 2014], ALSTM [Feng et al.,
2019], Transformer [Vaswani et al., 2017], PatchTST [Nie et
al., 2023], DLinear [Zeng et al., 2023], iTransformer [Liu et
al., 2024], Crossformer [Zhang and Yan, 2023], and MAS-
TER [Li et al., 2024]), reinforcement learning (RL) mod-
els (including AlphaStock [Wang et al., 2019], DeepTrader
[Wang et al., 2021], and DeepPocket [Soleymani and Paquet,
2021]), and large language model (LLM) models for time se-
ries (including GPT4TS [Zhou et al., 2023], TIME-LLM [Jin
et al., 2024], and aLLM4TS [Bian et al., 2024]).

We use the following six metrics for performance evalu-
ation: Annualized Return Rate (ARR), Annualized Volatil-
ity (AVol), Maximum Drawdown (MDD), Sharpe Ratio (SR),
Calmar Ratio (CR), and Information Ratio (IR). To eliminate
fluctuations, we average the metrics over three repeated tests
for each model. Hyperparameters are configured with a learn-
ing rate of 10−4, a batch size of 128, and HGAT policy net-
works featuring 128-dimensional hidden layers, 8 attention
heads, and 200 training epochs.

Correlation matrices and graph structures are generated
monthly, producing industry relation graphs (Aind), posi-
tive correlation graphs (Apos) and negative correlation graphs
(Aneg). Synthetic expert trajectories are created to enforce
sector diversification constraints and correlation control rules.
We construct training and prediction datasets by encapsulat-
ing time-series features, graph structures, and labels into Py-
Torch Geometric Data objects. The IRL training loop initial-
izes a multi-objective reward network and an HGAT policy
network, alternately optimizing the reward function via Max-
EntIRL and the actor-critic policy via Stable-Baselines3 PPO.

4.2 Performance Analysis
The overall results of all methods across four datasets are
presented in Table 1. These results demonstrate the supe-
rior performance of our proposed method in different scenar-
ios. Our method consistently outperforms the state-of-the-
art baseline models in terms of key return metrics, especially
ARR, SR, and CR. In addition to superior returns, our method
also demonstrates competitive performance in terms of risk
metrics such as AVol and MDD. On the CSI 300 dataset, our
method significantly outperforms the baseline methods with
an ARR of 0.491, surpassing the closest competitor (iTrans-
former: 0.372) by 31.9%. This superiority extends to risk-
adjusted returns, as evidenced by the highest SR (1.777) and
CR (5.134), indicating enhanced returns per unit of risk and
drawdown. In particular, while our method exhibits moderate
volatility (AVol: 0.225), its MDD (-0.095) remains competi-
tive, slightly under-performing ALSTM (-0.073) but demon-
strating improved resilience compared to other models. On

the NASDAQ 100 dataset, our method achieves the highest
ARR (0.432), outperforming Transformer (0.258) by substan-
tial margins. However, its IR (0.433) lags behind other mod-
els, suggesting potential opportunities to refine risk-adjusted
performance in highly volatile markets. On the CSI 500
dataset, our method achieves a remarkable Annualized Re-
turn Rate (ARR) of 0.710, outperforming all baseline mod-
els by a significant margin (+36.8% over GPT4TS: 0.519 and
+28.1% over TIME-LLM: 0.554). This superior return gen-
eration is complemented by competitive risk management,
as evidenced by an Annualized Volatility (AVol) of 0.290,
which is lower than most models, except DeepPocket (0.260).
While the MDD (-0.161) is slightly higher than PatchTST’s
(-0.129), our method demonstrates exceptional risk-adjusted
performance with the highest Sharpe Ratio (SR: 1.847) and
Calmar Ratio (CR: 4.406), indicating superior returns per
unit of risk and drawdown. However, the Information Ra-
tio (IR: 1.058) trails TIME-LLM (1.470), suggesting poten-
tial enhancements in aligning returns with benchmark con-
sistency. For the S&P 500 dataset, our method achieves an
ARR of 0.250, which, although lower than GPT4TS (0.321),
is accompanied by the lowest AVol (0.117) and a competi-
tive MDD (-0.058), outperforming even DeepTrader (-0.049)
when normalized against return metrics. Its SR (1.906) and
CR (4.293) rank second only to GPT4TS (2.034 and 4.346),
highlighting a robust risk-return trade-off. In particular, the
model’s IR (1.184) remains moderate compared to GPT4TS
(1.872), indicating room for improvement in benchmark-
relative efficiency. Comparative analysis reveals distinct
strengths across models. GPT4TS dominates absolute returns
on the S&P 500 dataset but exhibits higher volatility (AVol:
0.157), while DeepTrader achieves the lowest MDD (-0.049)
at the cost of suboptimal returns. PatchTST excels in mini-
mizing drawdowns on the CSI 500 dataset (-0.129) but lags
in ARR. Our method’s hybrid architecture–likely integrat-
ing temporal feature extraction with dynamic risk mitigation–
enables balanced performance, prioritizing high returns and
stability.

In summary, our method establishes state-of-the-art perfor-
mance on the CSI 300, NASDAQ 100, and CSI 500 datasets
and delivers competitive, low-volatility results on the S&P
500 dataset, indicating that it effectively leads to more robust
and adaptive portfolio management.

4.3 Ablation Study

To validate the effectiveness of key components in our pro-
posed model, we perform an ablation study by sequentially
removing specific modules while keeping other modules and
parameters unchanged. The quantitative results are shown in
Table 2, which are further supplemented by cumulative return
curves in Figure 3.

The quantitative results and cumulative return curves con-
firm the following findings. The full model maintains supe-
rior risk-adjusted growth with smoother equity trajectories,
while ablated variants exhibit either lower terminal returns or
higher volatility. They collectively demonstrate that each pro-
posed component makes a unique contribution to the model’s
robustness and profitability.
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Model CSI 300 NASDAQ 100

ARR AVol MDD SR CR IR ARR AVol MDD SR CR IR

LSTM 0.104 0.243 -0.173 0.431 0.605 0.536 0.140 0.165 -0.095 0.8522 1.470 0.883
GRU 0.166 0.234 -0.154 0.707 1.076 0.779 0.229 0.239 -0.148 0.957 1.542 1.088
ALSTM 0.287 0.198 -0.073 1.444 3.904 1.442 0.235 0.256 -0.172 0.918 1.370 1.070
Transformer 0.235 0.221 -0.158 1.065 1.492 1.112 0.258 0.271 -0.221 0.951 1.167 1.074
PatchTST 0.308 0.243 -0.141 1.265 2.174 1.213 0.206 0.173 -0.112 1.190 1.844 1.279
DLinear 0.192 0.287 -0.143 0.669 1.341 0.816 0.081 0.222 -0.181 0.362 0.444 0.489
iTransformer 0.372 0.309 -0.148 1.203 2.498 1.184 0.088 0.253 -0.163 0.349 0.544 0.590
Crossformer 0.359 0.234 -0.157 1.532 2.280 1.520 0.192 0.231 -0.128 0.831 1.498 0.944
MASTER 0.194 0.223 -0.107 0.869 1.816 0.960 0.229 0.194 -0.151 1.180 1.515 1.219
AlphaStock 0.308 0.215 -0.105 1.431 2.924 1.360 0.131 0.172 -0.123 0.759 1.065 0.803
DeepTrader 0.385 0.293 -0.162 1.313 2.377 1.323 0.183 0.196 -0.108 0.924 1.698 1.161
DeepPocket 0.207 0.203 -0.135 1.016 1.528 1.029 0.106 0.145 -0.097 0.732 1.099 0.771
GPT4TS 0.333 0.330 -0.198 1.009 1.682 1.103 0.242 0.221 -0.077 1.093 3.116 1.104
TIME-LLM 0.370 0.323 -0.209 1.145 1.771 1.205 0.183 0.246 -0.139 0.745 1.320 0.896
aLLM4TS 0.312 0.331 -0.177 0.943 1.764 1.057 0.183 0.210 -0.119 0.869 1.538 0.879
(* Ours) 0.491 0.225 -0.095 1.777 5.134 0.381 0.432 0.182 -0.125 1.978 3.449 0.433

Model CSI 500 S&P 500

ARR AVol MDD SR CR IR ARR AVol MDD SR CR IR

LSTM 0.161 0.313 -0.199 0.514 0.808 0.656 0.183 0.126 -0.070 1.450 2.611 1.416
GRU 0.135 0.292 -0.199 0.461 0.677 0.565 0.204 0.131 -0.075 1.558 2.697 1.456
ALSTM 0.240 0.310 -0.279 0.775 0.861 0.866 0.236 0.151 -0.103 1.556 2.281 1.546
Transformer 0.193 0.306 -0.228 0.629 0.845 0.695 0.244 0.145 -0.102 1.682 2.376 1.630
PatchTST 0.245 0.281 -0.129 0.872 1.903 0.875 0.176 0.166 -0.087 1.063 2.024 1.089
DLinear 0.347 0.336 -0.174 1.033 1.987 1.070 0.167 0.150 -0.085 1.111 1.952 1.095
iTransformer 0.218 0.329 -0.149 0.662 1.461 0.748 0.082 0.156 -0.095 0.523 0.860 0.644
Crossformer 0.307 0.296 -0.187 1.034 1.635 1.016 0.228 0.141 -0.088 1.613 2.600 1.537
MASTER 0.413 0.333 -0.205 1.241 2.013 1.201 0.150 0.147 -0.079 1.014 1.896 1.032
AlphaStock 0.051 0.273 -0.172 0.187 0.297 0.318 0.148 0.118 -0.057 1.257 2.584 1.236
DeepTrader 0.273 0.331 -0.155 0.825 1.759 1.002 0.171 0.118 -0.049 1.457 3.467 1.460
DeepPocket 0.141 0.260 -0.174 0.541 0.809 0.637 0.134 0.116 -0.065 1.156 2.056 1.147
GPT4TS 0.519 0.344 -0.200 1.510 2.590 1.378 0.321 0.157 -0.073 2.034 4.346 1.872
TIME-LLM 0.554 0.342 -0.205 1.617 2.699 1.470 0.130 0.240 -0.155 0.543 0.842 0.682
aLLM4TS 0.376 0.337 -0.247 1.115 1.523 1.115 0.236 0.159 -0.083 1.481 2.821 1.396
(* Ours) 0.710 0.290 -0.161 1.847 4.406 1.058 0.250 0.117 -0.058 1.906 4.293 1.184

Table 1: Quantitative results on the CSI 300, NASDAQ 100, CSI 500, and S&P 500 datasets. For deep learning models, the top-10% stocks
of the predicted results are selected to construct the investment portfolio.
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Figure 3: Accumulated portfolio returns of our full and ablated mod-
els on the CSI 300 dataset.

Necessity of Reward Network (RN) Learning
Removing the dedicated reward network and directly using
portfolio returns severely degrades the performance of the
framework. The 38.9% decrease in the Annualized Return

Rate (ARR) and 34.4% reduction in the Sharpe Ratio (SR)
demonstrate the critical role of RN. This aligns with our con-
jecture that the handcrafted reward mechanism better cap-
tures nonlinear market dynamics than raw returns.

Effectiveness of Industry Diversification

Although removing industry constraints can slightly improve
ARR (+2.7%), it causes significantly deeper drawdowns (-
15.0% vs. -10.1%) and lower CR. This indicates a risk-return
trade-off: Industry concentration may boost short-term re-
turns but increases portfolio volatility, which justifies the role
of diversification constraints in our framework.

Effectiveness of Correlation Management

The 12.9% reduction of ARR and SR when turning off corre-
lation control highlights its importance in stabilizing returns.
This module appears particularly effective in avoiding simul-
taneous drawdowns of highly correlated assets.
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Model Component Configuration ARR SR MDD CR

Full Model Our proposed model with all modules 0.554 1.923 -0.101 5.473
w/o RN Replace reward network with portfolio return 0.338 1.261 -0.113 2.986
w/o MOR Remove multi-objective reward module 0.536 1.868 -0.142 3.757
w/o InD Remove industry diversification constraints 0.569 1.938 -0.150 3.781
w/o COR Remove correlation control 0.482 1.674 -0.115 4.165
w/o HGAT Replace HGAT policy network with MLP 0.448 1.666 -0.101 4.415

Table 2: Ablation analysis of model components on the CSI 300 dataset. The performance of each model is evaluated across four metrics:
Annualized Return Rate (ARR), Sharpe Ratio (SR), Maximum Drawdown (MDD), and Calmar Ratio (CR).
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Figure 4: Visualization for sector distributions and correlation heatmaps of case portfolios in the bull market dynamic (2024.09).
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Figure 5: Visualization for sector distributions and correlation heatmaps of case portfolios in the bear market dynamic (2024.10).

Effectiveness of Heterogeneous Graph Attention
Network (HGAT)
Replacing the HGAT with MLP degrades all evaluation met-
rics, particularly with ARR decreasing by 19.1%. This val-
idates our design choice to leverage graph-structured market
data through attention mechanisms, capturing complex asset
relationships.

4.4 Case Study: Market Regime Analysis
To validate the role of heuristic rules in our framework, we
present regime-specific case studies by visualizing the portfo-
lio sector distributions and stock correlation heatmaps (where
darker red indicates stronger positive correlation and darker
blue indicates stronger negative correlation) across two con-
trasting market conditions in Figures 4 (bull market: 2024.9)
and 5 (bear market: 2024.10). These visualized results reveal

the fundamental behavioral patterns in our framework. The
portfolio provided by the full model shows balanced expo-
sure across defensive/cyclical sectors in both market regimes,
while the ablated model exhibits excessive concentration in
dominant sectors. In the bull market dynamic, the full model
prioritizes momentum continuation through sustained expo-
sure to growth sectors. While in a bear market dynamic, it
activates mean-reversion patterns by shifting to undervalued
(negative-related) assets, whereas the ablated model main-
tains momentum-chasing in declines. These heuristic rules
for adaptation enable dynamic balancing between maximiz-
ing returns and containing risk across market cycles.

5 Conclusion
This paper proposes a novel heuristic-guided inverse rein-
forcement learning (IRL) framework for portfolio optimiza-
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tion that effectively integrates financial domain expertise with
advanced AI techniques. Our experimental results demon-
strate that our proposed framework achieves significant im-
provements in performance and versatility across both Chi-
nese and US markets, enhancing Sharpe and Calmar ratios
considerably compared to existing DL, RL, and LLM-based
methods and exhibiting robustness through controlled draw-
downs during periods of market volatility. These promising
results suggest the potential of our framework to bridge tra-
ditional portfolio management with modern AI techniques,
thereby contributing to the development of more effective in-
vestment strategies in an increasingly complex financial land-
scape. Future work will explore further the applications of
our framework in real-world trading scenarios.
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