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Abstract

Accurate canal network mapping is essential for
water management, including irrigation planning
and infrastructure maintenance. State-of-the-art
semantic segmentation models for infrastructure
mapping, such as roads, rely on large, well-
annotated remote sensing datasets. However, in-
complete or inadequate ground truth can hinder
these learning approaches. Many infrastructure net-
works have graph-level properties such as reach-
ability to a source (like canals) or connectivity
(roads) that can be leveraged to improve these
existing ground truth. This paper develops a
novel iterative framework IGraSS, combining a se-
mantic segmentation module—incorporating RGB
and additional modalities (NDWI, DEM)—with a
graph-based ground-truth refinement module. The
segmentation module processes satellite imagery
patches, while the refinement module operates on
the entire data viewing the infrastructure network
as a graph. Experiments show that IGraSS reduces
unreachable canal segments from 18% to 3%, and
training with refined ground truth significantly im-
proves canal identification. IGraSS serves as a ro-
bust framework for both refining noisy ground truth
and mapping canal networks from remote sensing
imagery. We also demonstrate the effectiveness
and generalizability of IGraSS using road networks
as an example, applying a different graph-theoretic
constraint to complete road networks.

1 Introduction
Given the growing challenges of water conservation, mod-
ern irrigation patterns are shifting towards more cost-effective
and water-efficient systems [Pérez-Blanco et al., 2020; Fan et
al., 2023]. Furthermore, increasing pressures from drought,
rising operational costs of canal infrastructure, and the de-
creasing cost of canal technology are driving many irrigation
districts toward modernization [Belt and Smith, 2009; Creaco

Figure 1: Visualization of Canal Network Completion via IGraSS:
Blue lines represent reachable canal pixels, while red lines indicate
unreachable canal pixels. The images demonstrate gaps in the red
canal segments that are iteratively filled. Initially, the green seg-
ments connect one of the unreachable red segments with the blue
reachable segment, making the upper red segment reachable in Iter-
ation 1 (It #1). In the next iteration (It #2), yellow segments connect
the smaller unreachable red segments. Finally (It #3), pink segments
connect the remaining bottom segment by filling the gaps, thus mak-
ing these canals reachable.

et al., 2023; Fan et al., 2023; Creaco et al., 2023]. Modern-
izing irrigation infrastructure requires accurate knowledge of
existing canal networks, but manual mapping is slow and out-
dated maps lack completeness [Hosseinzade et al., 2017].We
tackle this challenge by using high-resolution remote sensing
to automatically extract canal networks, which will inform
efforts on water management and infrastructure planning.
This contributes to sustainable development and aligns with
United Nations Sustainable Development Goals 12 (SDG 12)
by promoting responsible resource use in agriculture and re-
lated sectors [United Nations, 2015].

Irrigation canal mapping by agencies typically relies on a
labor-intensive GIS process, where experts manually anno-
tate lines and polygons [Belt and Smith, 2009; Archuleta and
Terziotti, 2023]. This approach often results in noisy, incom-
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plete labels (See Fig 1) and requires updates over time as
infrastructure evolves—for example, open canals being con-
verted to closed pipe systems or covered with solar panels
for efficiency [Loureiro et al., 2024]. An automated remote-
sensing approach can streamline updates and help assess wa-
ter and energy efficiency improvements. While road net-
work extraction is well-studied [Abdollahi et al., 2020] with
high-quality benchmarks [SpaceNet on Amazon Web Ser-
vices (AWS), 2018; Demir et al., 2018], datasets for other
infrastructure networks, such as irrigation canals, remain lim-
ited, often containing insufficient data and noisy, incomplete
annotations.

Our approach leverages graph-theoretic properties (e.g.,
reachability, connectivity, planarity) to address noisy or in-
complete infrastructure annotations. In irrigation networks,
for instance, every canal segment should be reachable from
a water source. Similar constraints apply to road and power
networks. Unlike prior work using topological representa-
tions for road extraction, our method integrates graph con-
straints by aggregating segmentation outputs across multi-
ple images. To effectively apply graph constraints such as
reachability and connectivity, segmentation outputs must be
aggregated across multiple images. Beyond segmentation,
we propose a method to refine ground truth, which is often
fragmented or disconnected. Using graph-theoretic proper-
ties, we correct these inconsistencies and show that improved
annotations further boost model performance (See Figure 1).

Contributions. Our contributions in this work are: (i) a
framework that allows the combination of learning with op-
timization/constraint satisfaction methods through the use
of pseudo-labels, (ii) a refined set of metrics, called r-
neighborhood metrics, which are more suitable for evaluat-
ing the performance of semantic segmentation problems like
the ones studied here, (iii) a demonstration of improved per-
formance in canal network identification (using reachability
constraints), (iv) demonstration of generalizability using road
network completion as an example, optimizing pairwise dis-
tances under a graph-theoretic constraint. (v) we provide
the code and framework used to refine the canal network for
the state of Washington, making it more connected and less
noisy. The implementation is available for research purposes
at: https://github.com/oishee-hoque/IGraSS.

Team. This work is the result of an interdisciplinary col-
laboration between computer scientists, an agro-ecosystems
modeler with expertise in water and agricultural resource
management, and an earth science and remote sensing expert.

2 Related Work
Liu et al. [2022] provide a comprehensive review of infras-
tructure network extraction using deep learning, particularly
in the context of roads.) We use popular models from this
literature as backbone networks for our semantic segmenta-
tion module. Similar approaches have also been applied to
related problems such as crack detection, blood vessel seg-
mentation, abnormality in anatomical structures, and extract-
ing power systems [Ganaye et al., 2018; Cheng et al., 2021;
Ren et al., 2022].

Graph-based segmentation methods have been explored
for road network inference and related tasks. Our work is
most closely related to RoadTracer [Bastani et al., 2018],
which iteratively constructs road graphs using dynamic la-
bels. However, unlike our approach, which refines labels
based on global constraints (e.g., reachability), their method
relies on a CNN-based decision function constrained to local
patches.

Other relevant works include Sat2Graph [He et al., 2020],
which encodes road graphs as tensors for deep aggregation
networks, and GA-Net [Chen et al., 2022], which integrates
segmentation with geometric road structures to enhance con-
nectivity. Additionally, road boundaries detected via tra-
ditional filtering serve as inputs to a deep learner with D-
LinkNet architecture [Zhou et al., 2018]. Cira et al. [2022]
use an inpainting approach as a postprocessing technique to
link unconnected road segments. Zhang and Long [2023]
utilize hypergraphs to capture high-order and long-range re-
lationships among roads, incorporating various pretext tasks
for optimization and demonstrating significant improvements
across multiple datasets, tasks, and settings. None of these
approaches use global graph constraints/optimization.
Mapping water bodies from remote-sensed data is an ac-
tive area in remote sensing. Various unsupervised and su-
pervised methods have been used. A prominent approach is
the use of water indices such as normalized difference wa-
ter index (NDWI). The use of deep learning methods in this
context is an emerging area of research, with several papers
using standard segmentation techniques. (See Nagaraj and
Kumar [2024] for an extensive review.) Gharbia [2023] high-
lights challenges such as lack of quality data and variations
in water body types. Li et al. [2022] consider the extraction
of natural water bodies from binarized NDWI images. They
apply a connected-component method followed by an analy-
sis of shape and spectral characteristics to assign a confidence
value to each water body. This is subsequently used to train
peer networks. Yu et al. [2023] address the problem of fine-
grained extraction of water bodies, where the challenge is to
accurately detect the boundaries of water bodies. They pro-
pose a novel boundary-guided semantic context network in
this regard. In our work, the emphasis is more on the accuracy
of the network structure of the canal network.

3 Proposed Framework
3.1 Preliminaries
We use the problem of identifying irrigation canals from
satellite images as the main running example in this paper.
However, the framework can also be applied to other prob-
lems, such as identifying road networks.

We assume that the study region is overlaid with a grid
where each grid cell corresponds to a pixel of a satellite im-
age. Let G denote the graph induced by this grid where V (G)
denotes the set of grid cells. Two nodes u, v ∈ V (G) are
adjacent if and only if they share a side or a corner. This
corresponds to the Moore neighborhood. The set of edges is
denoted by E(G). The ground-truth canal network Ggt is a
subgraph of G induced by V (Ggt), the set of grid cells iden-
tified as canal pixels. Further, each v ∈ V (G) is assigned a
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Unreachable
segment

Reachable segment

(a) An example scenario (b) The IGraSS framework

Figure 2: An example patch with gaps in data is shown in (a). In (b), an outline of our framework is shown.

label ℓ(v) ∈ {0, 1}, where 0 denotes a non-canal node and 1
denotes a canal node. For all canal nodes (ℓ(v) = 1), the la-
bel γ(v) = 1 implies that it is reachable from a water source,
while 0 means otherwise. Henceforth, for brevity, we use the
phrase “v is reachable” to denote that the node is reachable
from a water source.

3.2 Problems
Inference goal. Under the assumption that the ground-truth
canal network is incomplete (but not erroneous), the goal is
to infer the canal network Gc, an induced subgraph of G such
that all nodes in V (Gc) ⊇ V (Ggt) are reachable; i.e., ∀v ∈
V (Gc), γ(v) = 1.

Prediction goal. Given the satellite imagery of a new re-
gion and the trained model, the objective is to identify all the
edges of the canal network Gc.

3.3 Approach
Training data for neural network-based semantic segmenta-
tion approaches divide large satellite images into patches,
where a patch is a small rectangular part of the large image.
Typical patch sizes are 256×256 pixels or 512×512 pixels,
whereas the image as a whole can be, say, ≈ 20,000×30,000
pixels in size. (See the Experimental Evaluation section
for details regarding the data). While the classifier can be
trained using each patch as a training input and the inter-
section of V (Ggt) with that patch as the corresponding ex-
pected output for training, it is important to note that the over-
all graph constraints (reachability, connectedness) are global
constraints. These cannot be directly incorporated into the
learning process by augmenting the objective function, as is
customary in constrained learning problems.

Figure 2(a) shows a toy example where red-marked canals
are not reachable from any water sources. The dark blue
canals are reachable from the water source. Our goal is to
identify these disconnected canal segments and connect them
to nearby water sources or to reachable (blue) canals. We
therefore develop a new, iterative approach composed of (i) a
learner that infers a canal network given ground-truth data
and satellite imagery after training for a number of inter-
mediate epochs, and (ii) a constraint solver algorithm that

modifies the training data after each iteration by adding pos-
itive pseudo-labels to chosen pixels. A positive pseudo-label
refers to changing the label of a pixel from ℓ(v) = 0 to
ℓ(v) = 1 to satisfy the constraint. In the canal network iden-
tification problem, the constraint solver is a network comple-
tion algorithm to satisfy the reachability constraint. See the
outline in Figure 2. In each iteration, step (ii) modifies the
expected outputs in the training data for the next round of
training. The canal network is initially set to the ground-truth
network, i.e., G0

c = Ggt, and is then modified in step (ii)
of each iteration. The following are the steps in each itera-
tion i ≥ 1.

Learner. The learner’s objective is to provide the likeli-
hood that a node in the grid graph belongs to a canal. It
is trained using modified ground-truth obtained from Gi−1

c
for λi epochs. For the purpose of training in this iteration, for
any node v, ℓ(v, i− 1) = 1 (i.e., v is a canal pixel in iteration
i−1) if and only if v ∈ V (Gi−1

c ). Let f i
s(v) denote the output

of the learner. Note that the output depends on the learning
methodology.

Pre-completion network. Given the learner’s output,
ground-truth network Ggt, and a user-specified threshold τ ,
a canal network graph Hi

c is computed. Firstly, a likeli-
hood wi(v) ∈ [0, 1] is computed from f i

s(v). We construct
a pre-completion canal network Hi

c as a graph induced by the
nodes that satisfy the following condition: (i) v ∈ V (Ggt)
(ground-truth) or (ii) wi(v) ≥ τ .

Network-completion instances. Given the pre-completion
network Hi

c, its node set is partitioned into reachable and un-
reachable nodes. A set of candidate instances to apply net-
work completion, called network completion instances, are
identified. Each such instance S consists of a tuple (t, St, Ht)
where t is an unreachable terminal, St = {s1, s2, . . .} is
a collection of reachable nodes called sources, and Ht, re-
ferred to as the t-local graph, is a subgraph of the grid
graph G containing {t}∪St, where each node v ∈ V (Ht) has
weight 1/wi(v) if 1/wi(v) > α (a confidence threshold), 0
otherwise (See Algorithm 2). Only the nodes of V will be
used for extending t to a reachable node. More implementa-
tion details are given in the Appendix. Let S = {S1,S2, . . .}
be the collection of such instances.
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Algorithm 1: Directly Connected Canal Nodes
Input: M : A binary matrix of size m× n
F : A set of water index pairs (i, j)
Output: C: Set of directly connected 1s
Create boolean mask B of size m× n with B[i, j] = 1
if and only if (i, j) ∈ F .

Define kernel K:

K =

[
1 1 1
1 0 1
1 1 1

]

V ← Convolve B with K;
Initialize empty set C;
foreach (i, j) ∈M do

if V [i, j] > 0 and M [i, j] = 1 then
Add (i, j) to C;

return C;

Identifying a network-completion instance. Given Hi
c,

using morphological thinning [Fisher et al., 2003] end points
of canal segments are identified. An end point t is a terminal
if it is not reachable. All pixels at distance ρ (user-specified)
from t form the node set of its local graph Hv . The source
set of v is the set of all end points in the local graph that are
reachable.

Network reachability computation. For each in-
stance S = (t, St, Ht) ∈ S, the objective is to find a
minimum weighted shortest path from t to St in Ht. This in-
volves converting the node-weighted Ht to an edge-weighted
graph (See Algorithm 3), followed by the application of
Dijkstra’s [Dijkstra, 1959] shortest path algorithm. More
implementation details are given in the Appendix B included
in the Online Supplementary Material.

3.4 Framework Modules
Reachable and Unreachable Nodes. Given water source
indices as F , Algorithm 1 identifies canal pixels directly con-
nected to these sources. Given a binary matrix M represent-
ing the canal network (pre-completion Hi

c), the algorithm cre-
ates a boolean mask B, marking the locations of F . It then
applies a convolution with an 8-connectivity kernel to deter-
mine the set of directly connected canal pixels, C, which are
classified as reachable. A breadth-first search (BFS) expands
from C to find all connected canal pixels, forming the set R
of reachable pixels. The remaining canal pixels in M that are
not in R are considered non-reachable U .

Terminals. Given the set of unreachable nodes U , we iden-
tify the terminal nodes. For each point p ∈ U , the algorithm
examines its 8-connected neighborhood defined by the direc-
tions ∆ = {(0,±1), (±1, 0), (±1,±1)}. A point is classified
as a terminal if it has one or fewer neighbors within the set
U . The algorithm maintains a set V of visited points to avoid
redundant computations and it returns the set of terminals E.

Source-Terminal Pairs. For each terminal t ∈ E, we iden-
tify source points St within a radius ρ. The sources include

Algorithm 2: Edge Point Processing
Input: E: Set of terminal points
wi(v): Likelihood matrix
Hi

c: Pre-completion network
ρ: Sampling radius
α: Confidence threshold
Output: Xr: Resultant matrix
Xr ← Hi

c // Initialize with
pre-completion network

(n,m)← size of Hi
c // Extract matrix

dimensions
foreach p ∈ E do

Np ← GetNeighbors(p, ρ, (n,m));
foreach n ∈ Np do

if wi[n] > α and Xr[n] = 0 then
Xr[n]← ⌊1/wi[n]⌋;

return Xr;

Function GetNeighbors(p, ρ, (n,m)):
(x, y)← p;
N ← ∅;
for dx ∈ [−ρ, ρ] do

for dy ∈ [−ρ, ρ] do
if dx ̸= 0 or dy ̸= 0 then

(nx, ny)← (x+ dx, y + dy);
if 0 ≤ nx < n and 0 ≤ ny < m then

N ← N ∪ {(nx, ny)};

return N ;

water source edge points (those with fewer than eight neigh-
bors) and reachable canal nodes. Using an approach similar
to Algorithm 5, we first detect water source edges and then
determine source-terminal pairs by selecting all source points
p ∈ S that satisfy ∥p− t∥2 ≤ ρ.

3.5 Metrics

Alongside conventional metrics—Precision (P), Recall (R),
F1 Score (F1), and Intersection over Union (IoU)—we intro-
duce parameterized metrics to address width inconsistencies
in thin-structure segmentation. These metrics account for mi-
nor spatial misalignments in single-pixel annotations, such
as canal networks represented by shapefile line segments,
which may not perfectly align with the ground truth. Conven-
tional metrics may underestimate performance in such cases,
even when the model captures the overall structure. To ad-
dress this, we define an r-neighborhood (Nr(i, j)) around
each pixel (i, j), allowing for small spatial deviations. Let
pi,j ∈ {0, 1} be the predicted value at (i, j) and yk,l ∈ {0, 1}
the ground truth at (k, l).

r-Neighborhood True Positives (rTP) is the num-
ber of predicted positive pixels that lie within the r-
neighborhood of the actual positive pixels: rTP =∑N

i=1

∑M
j=1 maxk,l∈Nr(i,j) (yk,l) · pi,j .
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Algorithm 3: Directed Subgraph Around Terminal
Input: Mm×n: Matrix representing the canal network
t = (tx, ty): Terminal coordinates
r: Radius
Output: G = (V,E): Directed graph
R← {(i, j) | |i− tx| ≤ r, |j − ty| ≤ r, 0 ≤ i <
m, 0 ≤ j < n};
∆← {(0,±1), (±1, 0), (±1,±1)};
V,E ← ∅;
foreach (i, j) ∈ R where M [i, j] > 0 do

V ← V ∪ {(i, j, 1), (i, j, 2)};
E ← E ∪ {((i, j, 1), (i, j, 2),M [i, j])};
foreach (dx, dy) ∈ ∆ do

if (i+ dx, j + dy) ∈ R and
M [i+ dx, j + dy] > 0 then

E ← E ∪{((i, j, 2), (i+ dx, j+ dy, 1), 0),
((i+ dx, j + dy, 2), (i, j, 1), 0)};

return G = (V,E);

r-Neighborhood False Positives (rFP) are the number
of predicted positive pixels that do not lie within the
r-neighborhood of any actual positive pixels: rFP =∑N

i=1

∑M
j=1 pi,j ·

(
1−maxk,l∈Nr(i,j) yk,l

)
.

r-Neighborhood False Negatives (rFN) are the number of
actual positive pixels for which there are no predicted positive
pixels within the r-neighborhood: rFN =

∑N
i=1

∑M
j=1 yi,j ·(

1−maxk,l∈Nr(i,j) pk,l
)
.

The r-IoU (rI), r-precision (rP), r-recall (rR), and r-F1
score (rF1) are similar to their conventional counterparts with
TP, FP, and FN replaced by rTP, rFP, and rFN respectively.
The usefulness of these metrics is demonstrated in Figure 3.

4 Experimental Setup
Canal Network Dataset. We used PlanetScope
(2020–2023) [NASA, 2023] 3m-resolution RGB im-
agery to map irrigation canals in central Washington. NDWI
was computed from Green and NIR channels, while USGS
3DEP Digital Elevation Map (DEM) (1m) [USGS, 2024] was
resampled to 3m and used alongside NDWI and RGB. Canal
waterway data came from the National Hydrography Dataset
(NHD) [2020]. To prepare the dataset, we merged imagery
tiles into a ≈ 20,000×30,000 tile per year and divided them
into non-overlapping 512×512 patches. We filtered patches
with over 30% black pixels and excluded mask patches with
fewer than 0.5% canal pixels. We have total of 30,000
512x512x5 (RGB, NDWI, DEM) patches in our dataset.

For experiments, we created two distinct sets (Set 1 and
Set 2) of spatially separated training, validation, and test data.
The test set was 20% of the data, while 80% was used for
training and validation. We employed 5-fold cross-validation
and ran IGraSS to track average performance metrics. After
tuning hyperparameters (iterations, epochs, ρ, etc.), we re-ran
IGraSS on training data and evaluated on the test sets.

Figure 3: Comparison of conventional and refined metrics in eval-
uating thin-structure segmentation. These examples illustrate how
our refined metrics more accurately assess model performance by
reducing reliance on pixel-level precision. While the model effec-
tively captures overall structures, conventional metrics fail to fully
reflect this capability. In contrast, our refined metrics provide a more
nuanced evaluation, better representing the model’s ability to iden-
tify key structural elements.

Road Network Data Following RoadTracer [Bastani et al.,
2018], we obtained 60 cm/pixel satellite imagery of New
York City (24 sq km) from Google Maps and merged the
tiles. We extracted the road network from OpenStreetMap,
converted coordinates to match the imagery, and generated
road masks. To create partial road maps, we iteratively re-
moved α road segments of random length β from a predefined
list (e.g., β ∈ {20, 30, 50, 100}). Further details, including
train-test split, are in Appendix A.

5 Results
5.1 Irrigation canals
Our evaluation focuses on two main aspects: (1) compar-
ing IGraSS’s performance against the state-of-the-art models
used as learners in our framework, and (2) assessing its abil-
ity to complete canal networks given reachability constraints.
We also perform extensive experiments under various param-
eter settings to provide a comprehensive evaluation.

Segmentation Baseline Networks. For our experiments,
we select three popular state-of-the-art models to serve as the
Learner in our framework: DeepLabV3+ [Chen et al., 2018],
ResNet50 [He et al., 2015], ResUNet [Diakogiannis et al.,
2019], and Swin Transformer [He et al., 2022]. To the best
of our knowledge, no work has been done on irrigation canal
identification using deep learning and remote sensing images.
Therefore, we use state-of-the-art models’ performances as
our baselines.

To assess the impact of iterative ground truth refinement
on the model’s overall performance, we conduct a systematic
analysis. Intuitively, breaks or inconsistencies in the ground
truth should negatively affect the model’s performance. Con-
versely, as the quality of the ground truth improves through
our iterative process, we expect to see a positive impact on the
model’s performance. This analysis aims to verify this hy-
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Model Test Set w/ or w/o P rP R rR F1 rF1 I rI

ResUnet
1 w/o 0.591 0.838 0.540 0.612 0.564 0.708 0.531 0.601

w 0.643 0.874 0.589 0.668 0.615 0.757 0.546 0.620

2 w/o 0.549 0.802 0.521 0.599 0.535 0.686 0.560 0.630
w 0.648 0.878 0.587 0.664 0.617 0.756 0.585 0.660

Deeplabv3+
1 w/o 0.613 0.805 0.580 0.765 0.596 0.780 0.420 0.600

w 0.644 0.835 0.610 0.790 0.626 0.808 0.440 0.620

2 w/o 0.605 0.798 0.570 0.758 0.587 0.773 0.415 0.590
w 0.636 0.829 0.600 0.785 0.617 0.800 0.435 0.610

SwinTransformer
1 w/o 0.775 0.850 0.765 0.835 0.770 0.842 0.720 0.805

w 0.820 0.900 0.810 0.885 0.815 0.892 0.760 0.850

2 w/o 0.770 0.845 0.760 0.830 0.765 0.838 0.715 0.800
w 0.815 0.895 0.805 0.880 0.810 0.887 0.755 0.845

Table 1: Performance comparison of IGraSS against baseline models on Canal Network datasets. Here ‘w/’ indicates the using IGraSS in
conjunction with the baseline models, while ‘w/o’ represents training the baseline models without IGraSS for the same number of epochs.

pothesis and quantify the relationship between ground truth
refinement and model’s performance.

To establish a fair comparison, we train each baseline
model independently for same number of epochs without im-
plementing our framework. The training setup for these base-
lines is identical to the one used within our framework, ensur-
ing consistency in our evaluation. The key distinction lies in
the treatment of ground truth data. In our proposed method,
the ground truth is updated after each iteration using the out-
put from our framework. In contrast, the baseline models are
trained using the original, unmodified ground truth through-
out the entire process. We ran IGraSS framework for 5 itera-
tions with a radius of 100 and an initial confidence threshold
α of 0.2, which was later reduced to 0.01 for optimal result.

Performance evaluation by refining Ground Truth. Ta-
ble 1 presents the performance evaluation on the two different
test sets of the Canal Network Dataset across the 3 models
used for training. The reported results in Table 1, demon-
strate that training the model using refined ground truth from
IGraSS significantly enhances the performance of all mod-
els across all metrics. Swin Transformer outperformed other
models, as it breaks the image into small patches, computing
self-attention locally while enabling cross-window connec-
tions. This helps capture the overall canal structure relation-
ships within patches. For Swin Transformer, model trained
with the IGraSS’s refined ground truth improves precision
from 0.775 to 0.820 (5.8% increase), recall from 0.765 to
0.810 (5.2% increase), F1-score from 0.770 to 0.815 (5.8%
increase), and IoU from 0.720 to 0.760 (5.6% increase) on
Test Set 1. Similar trends are observed in Test Set 2, with
improvements of 5.8% in precision, 5.3% in recall, 5.9% in
F1-score, and 5.6% in IoU. The refined ground truth also im-
proves Deeplabv3+ performance by 5% and enhances Re-
sUnet performance 10% across all metrics. These improve-
ments are evident not only in our proposed metrics but also
in conventional scores showing better ground truth refined by
IGraSS, boost model’s performance.

Network completion assessment. Figure 4 presents a
quantitative analysis of the number of canal pixels that get

Figure 4: Network Completion Analysis with IGraSS.

connected in each iteration. All three models achieved sim-
ilar results in connecting the terminals after 5 iterations. As
we refine the main ground truth by connecting only the ter-
minals to the nearest water sources, the number of reach-
able canals increases with each iteration, while the number
of unreachable canal pixels and terminals decreases. In both
cases IGraSS was able to reduce down the unreachable canals
from (18− 15)% to (5− 3)%. Upon manual analysis of the
terminals that remained unreachable, we found that in most
cases, there were either no water sources within the selected
radius or the corresponding images did not contain any vis-
ible canals at all. This lack of visible canals might have led
the neural network to fail in predicting any canal pixels.

5.2 Ablation Study
Effect of Framework Parameters. The IGraSS frame-
work’s performance is influenced by parameters such as in-
termediate epochs, radius ρ, threshold τ , and confidence
threshold α. We experimented with ρ ∈ {20, 50, 100, 150},
α ∈ {0.3, 0.2, 0.1, 0.01}, and epochs ∈ {10, 20, 30} using
SwinTransformer, DeepLabv3+, and ResUnet, evaluated over
5 iterations with K-Fold cross-validation. Lower α (0.01)
with fewer epochs (10) reduces unreachable canals but intro-
duces noise, while moderate α (0.1) with more epochs (20)
yields cleaner results. Thresholds between 0.2 and 0.1 were
generally effective. The number of epochs is crucial—too
few with low α cause noise, while extended training risks
learning noisy ground truth. An adaptive approach, lowering
α after sufficient training, may be beneficial. Due to space
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Figure 5: Error Results

limit, extensive parameter sensitivity analysis is presented in
Appendix included in Online Supplementary Material (Ta-
bles S3 and S1; further details are in Section C).

Error Analysis As discussed in our parameter analysis, se-
lecting appropriate parameters is crucial to avoid erroneous
connections. IGraSS’s focus on connecting points via the
shortest path helps minimize errors when adding new data
to the ground truth. Directly using the neural network out-
put would have introduced significant noise to the ground
truth, which our adaptive thresholding process helps mitigate.
However, as illustrated in Figure 5, unwanted connections
may still occur if the right parameters are not chosen.

5.3 Road Networks
To further demonstrate our framework’s effectiveness and
generalizability, we use it to complete road networks under a
different graph-theoretic constraint; the objective in this case
is to minimize the distance (on the network) between any pair
of a user-specified set of points on the road network. We
would like to emphasize here that our objective is to demon-
strate the effectiveness of our IGraSS framework in satisfy-
ing graph-based constraints and not to show improved per-
formance on these road networks which are already of high
quality.

Problem Statement: Given a complete road network G =
(V,E), we introduce random gaps by removing a subset of
edges Er ⊂ E, resulting in an incomplete network G′ =
(V,E \ Er). For a set of N randomly sampled points
S = {s1, s2, ..., sN} ⊂ V , we compute the all-pairs shortest
paths DGT in the original network G and Dpred in the recon-
structed network G∗ produced by our model. The objective is
to optimize G∗ such that

∑
Dpred ≤

∑
DGT , ensuring the

total shortest path length in G∗ is minimized while restoring
connectivity. The process continues iteratively until conver-
gence.

Results. Our results show that IGraSS effectively reduces
shortest path lengths to match the ground truth by the third
iteration (see Fig. S6). Since the network remains well-
connected despite small gaps, reachability is not a suitable
constraint; instead, shortest path minimization yields better
results. Performance metrics exhibit similar trends with and
without the framework, as observed in the canal network.
Comparing final outputs with the ground truth confirms that
our approach achieves comparable results across all metrics

Figure 6: The plot illustrates how gaps in the ground truth (repre-
sented by the orange curve) impact model performance compared to
the correct ground truth (shown by the green curve). The blue curve
demonstrates improvement over time as the noisy ground truth is
corrected using the IGraSS framework. The rightmost curve indi-
cates how the shortest path length decreases as more breaks in the
network are connected over time through the application of IGraSS.

Models Method rI rI rF1 rI

ResNet50
Original 0.782 0.852 0.816 0.698

w/o 0.709 0.834 0.767 0.675
w 0.752 0.846 0.797 0.691

ResUnet
Original 0.859 0.912 0.885 0.732

w/o 0.825 0.899 0.859 0.699
w 0.848 0.910 0.878 0.711

DeepLabV3+
Original 0.872 0.943 0.906 0.768

w/o 0.846 0.929 0.885 0.709
w 0.861 0.942 0.898 0.737

Table 2: Performance Analysis on Road Datasets.

(see Table 2). Due to space constraints, extensive results are
provided in the Appendix (Online Supplementary Materials).

6 Discussion
In summary, we developed a framework called IGraSS to ad-
dress the challenges posed by weak and incomplete annota-
tions by leveraging global constraints inherent in network-
like infrastructures. We assessed IGraSS on canal networks
with reachability constraints, successfully filling gaps in the
ground truth and achieving improved results. IGraSS can
be generalized to other network infrastructures with different
constraints, as demonstrated with road networks. While we
use DEM alongside RGB to enhance canal segmentation by
providing elevation context, the refinement module currently
relies solely on reachability. We acknowledge that perfor-
mance may degrade in areas where canals are obscured by
vegetation or terrain, and future work will explore integrating
flow direction and additional multi-modal data to improve ro-
bustness. By enabling accurate and automated mapping of in-
frastructure networks, IGraSS supports sustainable water and
land resource management—advancing SDG 12 by promot-
ing more responsible and efficient agricultural planning and
infrastructure development.
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