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Abstract

Accurate weather forecasting is critical for science
and society. However, existing methods have not
achieved the combination of high accuracy, low
uncertainty, and high computational efficiency si-
multaneously. On one hand, traditional numer-
ical weather prediction (NWP) models are com-
putationally intensive because of their complex-
ity. On the other hand, most machine learning-
based weather prediction (MLWP) approaches of-
fer efficiency and accuracy but remain determin-
istic, lacking the ability to capture forecast uncer-
tainty. To tackle these challenges, we propose a
conditional diffusion model, CoDiCast, to gener-
ate global weather predictions, integrating accuracy
and uncertainty quantification at a modest compu-
tational cost. The key idea behind the prediction
task is to generate realistic weather scenarios at a
future time point, conditioned on observations from
the recent past. Due to the probabilistic nature
of diffusion models, they can be properly applied
to capture the uncertainty of weather predictions.
Therefore, we accomplish uncertainty quantifica-
tions by repeatedly sampling from stochastic Gaus-
sian noise for each initial weather state and run-
ning the denoising process multiple times. Exper-
imental results demonstrate that CoDiCast outper-
forms several existing MLWP methods in accuracy,
and is faster than NWP models in inference speed.
Our model can generate 6-day global weather fore-
casts, at 6-hour steps and 5.625-degree latitude-
longitude resolutions, for over 5 variables, in about
12 minutes on a commodity A100 GPU machine
with 80GB memory. The source code is available
at https://github.com/JimengShi/CoDiCast.

1 Introduction

Weather prediction describes how the weather states evolve
by mapping the current weather states to future weather
states [Palmer, 2012]. Accurate weather forecasting is cru-
cial for a wide range of societal activities, from daily plan-
ning to disaster preparedness [Shi et al., 2025]. For example,

governments, organizations, and individuals rely heavily on
weather forecasts to make informed decisions that can signif-
icantly impact safety, economic efficiency, and overall well-
being. However, weather predictions are intrinsically uncer-
tain largely due to the complex and chaotic nature of atmo-
spheric processes [Slingo and Palmer, 2011]. Therefore, as-
sessing the range of probable weather scenarios is significant,
enabling informed decision-making.

Traditional numerical weather prediction (NWP) methods
achieve weather forecasting by approximately solving the
differential equations representing the integrated system be-
tween the atmosphere, land, and ocean [Price er al., May
2024; Nguyen et al., 2023]. However, running such an
NWP model can produce only one possibility of the fore-
cast, which ignores the weather uncertainty. To solve this
problem, Ensemble forecast' of multiple models is often em-
ployed to model the probability distribution of different fu-
ture weather scenarios [Palmer, 2019; Leinonen et al., 2023].
While such NWP-based ensemble forecasts effectively model
the weather uncertainty, they have two primary limitations:
physics-based models inherently make restrictive assump-
tions of atmospheric dynamics, and running multiple NWP
models requires extreme computational costs [Rodwell and
Palmer, 2007].

In recent years, machine learning (ML)-based weather pre-
dictions (MLWP) have been proposed to challenge NWP-
based prediction methods [Ben Bouallegue er al., 2024;
Biilte et al., 2024]. They have achieved enormous success
with comparable accuracy and a much (usually three orders
of magnitude) lower computational overhead. They are typi-
cally trained to learn weather patterns from a huge amount of
historical data and predict the mean of the probable trajecto-
ries by minimizing the mean squared error (MSE) of model
forecasts [Hewage et al., 2021]. Representative work in-
cludes Pangu [Bi et al., 2023], GraphCast [Lam et al., 2023],
ClimaX [Nguyen er al., 2023], ForeCastNet [Pathak et al.,
2022], Fuxi [Chen et al., 2023b], Fengwu and [Chen er al.,
2023a]. Despite the notable achievements of these MLWP
methods, most of them are deterministic [Kochkov et al.,
2024], falling short in capturing the uncertainty in weather
forecasts [Jaseena and Kovoor, 2022].

!Generating a set of forecasts, each of which represents a single
possible scenario.
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To compute the uncertainty for ML models, two meth-
ods exist. Perturbing initial conditions [Morley et al., 2018]
helps estimate the aleatoric uncertainty (data noise), while
the Monte Carlo Dropout approach [Gal and Ghahramani,
2016] estimates epistemic uncertainty (model uncertainty)
[Siddique et al., 2022]. However, neither approach fully cap-
tures uncertainty in both the input conditions and the evolu-
tion of weather models. Additionally, these methods require
manual tuning of perturbations and dropout rates, which can
negatively impact model accuracy. These limitations moti-
vate us to explore an approach for comprehensive uncertainty
quantification without the loss of accuracy.

Denoising diffusion probabilistic models (DDPMs) [Ho
et al., 2020] stand out as a probabilistic type of generative
model, which can generate high-quality images. By explic-
itly and iteratively modeling the noise additive and its re-
moval, DDPMs can capture intricate details and textures of
images. Furthermore, controllable diffusion models [Zhang
et al., 2023] enable the generation process to be guided by
specific attributes or conditions, e.g., class labels, textual de-
scriptions, or other auxiliary information. By doing so, the
models can generate images that adhere to the specified con-
ditions. This inspires us to consider the weather “prediction”
tasks as “generation” tasks - generating plausible weather
scenarios with conditional diffusion models. Promising po-
tentials could be the following: (1) Weather numerical data is
usually a 2-D grid over latitude and longitude, sharing a sim-
ilar modality with the image. Diffusion models can capture
the intricate weather distribution with iterative denoising. (2)
Weather states from the recent past (i.e., initial conditions)
can be injected into diffusion models to guide the genera-
tion of future weather evolution. (3) More notably, the start-
ing noise sampling from the Gaussian distribution can mimic
the aleatoric uncertainty while iteratively adding and remov-
ing noise captures the epistemic uncertainty. These features
prompt probabilistic diffusion models to generate a set of di-
verse weather scenarios rather than a single deterministic one.
Our contributions are presented as follows:

e We identify the shortcomings of current weather pre-
diction methods. NWP-based methods are limited to
restrictive assumptions and computationally intensive.
Moreover, a single deterministic NWP- and MLWP-
based method cannot achieve uncertainty quantification.

» To address these problems, we propose CoDiCast, a
conditional diffusion model for global weather predic-
tion conditioning on observations from the recent past
while probabilistically modeling the uncertainty. In ad-
dition, we use the cross-attention mechanism to effec-
tively integrate conditions into the denoising process to
guide the generation tasks.

* We conduct extensive experiments on a decade of ERAS
reanalysis data from the European Centre for Medium-
Range Weather Forecasts (ECMWF), and evaluate our
method against several state-of-the-art models in terms
of accuracy, efficiency, and uncertainty. It turns out that
CoDiCast achieves an essential trade-off among these
valuable properties.

2 Related Work

Physics-based Numerical Weather Prediction. Numer-
ical Weather Prediction (NWP) methods achieve weather
forecasts by modeling the system of the atmosphere, land,
and ocean with complex differential equations [Bauer et
al., 2015]. For example, High-Resolution Forecasts System
(HRES) [ECMWF, 2023] forecasts possible weather evolu-
tion out to 10 days ahead. However, it is a deterministic NWP
method that only provides a single forecast. To overcome
the limitation of deterministic methods, the ensemble forecast
suite (ENS) [Buizza, 2008] was developed as an ensemble
of 51 forecasts by the European Centre for Medium-Range
Weather Forecasts (ECMWF). ENS provides a range of pos-
sible future weather states, allowing for investigation of the
detail and uncertainty in the forecast. Even if NWP ensemble
forecasts effectively model the weather evolution, they ex-
hibit sensitivity to structural discrepancies across models and
high computational demands [Balaji et al., 2022].

ML-Based Weather Prediction. Pangu [Bi et al., 2023]
employed three-dimensional transformer networks and Earth-
specific priors to deal with complex patterns in weather
data. GraphCast [Lam et al., 2023] achieved medium-range
weather prediction by utilizing an “encode-process-decode”
configuration with each part implemented by graph neural
networks (GNNs). GNNs perform effectively in capturing
the complex relationship between a set of surface and atmo-
spheric variables. A similar GNN-based work is [Keisler,
2022]. Fuxi [Chen et al, 2023b] and Fengwu [Chen et
al., 2023a] also employ the “encode-decode™ strategy but
with the transformer-based backbone. FourCastNet [Pathak
et al., 2022] applied Vision Transformer (ViT) and Adaptive
Fourier Neural Operators (AFNO), while ClimaX [Nguyen et
al., 2023] also uses a ViT backbone but the trained model
can be fine-tuned to various downstream tasks. However,
these models fall short in modeling the uncertainty of weather
evolution [Jaseena and Kovoor, 2022] even though perturba-
tions are added to initial conditions [Biilte et al., 2024] and
dropout methods [Gal and Ghahramani, 2016] are used to
mimic the uncertainty. Additionally, ClimODE [Verma et al.,
2024] incorporated the physical knowledge and developed a
continuous-time neural advection PDE weather model.

Diffusion Models. Diffusion models [Ho et al., 2020] have
shown their strong capability in computer vision tasks, in-
cluding image generation [Li et al., 2022], image editing
[Nichol er al., 2021], semantic segmentation [Brempong et
al., 2022] and point cloud completion [Luo and Hu, 2021].
Conditional diffusion models [Ho and Salimans, 2022] were
later proposed to make the generation step conditioned on the
current context or situation. However, not many efforts have
adopted diffusion models in global medium-range weather
forecasting. More recent research has focused on precipita-
tion nowcasting [Asperti ef al., 2023; Gao et al., 2024], and is
localized in its predictions. GenCast [Price et al., May 2024]
is a recently proposed conditional diffusion-based ensemble
forecasting for medium-range weather prediction. However,
their conditioning is to directly use the observations from the
recent past, which is shown to be insufficient (see the last case
in the ablation study).
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3 Preliminaries

In this section, we formulate the global weather prediction
problem and briefly review Denoising Diffusion Probabilistic
Models (DDPMs) [Ho et al., 2020].

3.1 Problem Formulation

Deterministic Global Weather Predictions. Given the
input consisting of the weather state(s), X* € RHXWxC gt
time ¢, the problem is to predict a point-valued weather state,
Xt+at ¢ REXWXC at g future time point ¢ + At. H x W
refers to the spatial resolution of data which depends on how
densely we grid the globe over latitudes and longitudes, C'
refers to the number of channels (i.e., weather variables), and
the superscripts ¢ and ¢ + At refer to the current and future
time points. The long-range multiple-step forecasts could be
achieved by autoregressive modeling or direct predictions.

Probabilistic Global Weather Predictions. Unlike the de-
terministic models that output point-valued predictions, prob-
abilistic methods model the probability of future weather
state(s) as a distribution P(X*+2¢ | X*), conditioned on the
state(s) from the recent past. Probabilistic predictions are ap-
propriate for quantifying the forecast uncertainty and making
informed decisions.

Model Deterministic

)C‘ Forecast
,/—\\\/ \\

. Forecast

Initial point
Uncertainty

Figure 1: Deterministic vs Probabilistic Models.

3.2 Denoising Diffusion Probabilistic Models

A denoising diffusion probabilistic model (DDPM) [Ho et
al., 2020] generates target samples by learning a distribu-
tion pg(xo) that approximates the target distribution ¢(zg).
DDPM comprises a forward diffusion process and a reverse
denoising process. The forward process transforms an input
xo with a data distribution of ¢(z) to a Gaussian noise vec-
tor z vy in N diffusion steps. It can be described as a Markov
chain that gradually adds Gaussian noise to the input accord-
ing to a variance schedule {f1, ..., Oy }:

q(zp | Tpo1) =N (mn; \1— ﬂnmn_l,ﬁnl) ,and

N
a(ern |20) = [[ al@n | 2a1),n € [1LN],
n=1
where at each step n, the diffused sample z,, is obtained from

ZT,—1 as described above. Multiple steps of the forward pro-
cess can be described as follows in a closed form:

q(xn | ©0) = N (2n; Vanzo, (1 — an)l),

where o, = 1 — 8, and &, = []._, @. Thus, z, =

Vanxo + /1 — ane, with € sampled from A(0, ).

In the reverse process, the denoiser network is used to re-
cover xg by stepwise denoising starting from the pure noise
sample, x . This process is formally defined as:

N
po(zo.n) = p(an) [ po(an-1 | 2n), (1

n=1

where pg (., ) is the distribution at step n parameterized by 6.
For each iteration, n € [1, N], diffusion models are trained
to minimize the following KL-divergence:

Ly, = Drr (q(Tn-1|2zn) || po(Trn-1|zn)). 2

where ¢(z,—1|2,) can be computed from g(x,,|x,—_1) using
Bayes rule and the multistep forward process equation above.

4 Methodology

This section introduces our approach for global weather pre-
diction, CoDiCast, implemented as a conditional diffusion
model. The key idea is to consider “prediction” tasks as “gen-
eration” tasks while conditioning on the context provided
by recent past observation(s). An overview of the proposed
CoDiCast is shown in Figure 2.

4.1 Forward Diffusion Process

At time point ¢, the forward diffusion process assumes
that a pure noise sample X4 is generated from X:*' €
RIXWXC by adding noise N times (see the dotted lines in
Figure 2):

X = a, - XET 4+ VT = ane, 3)

where € is sampled from N (0, I) with the same dimensions
as Xé“, and & is as described in Section 3.2).

4.2 Reverse Conditional Denoising Process

CoDiCast models the probability distribution of the fu-
ture weather state, conditioned on the current and previous
weather states. We exploit a pre-trained encoder to learn con-
ditions as embedding representations of the past observations
X*=1 and X?, which are used to control and guide the syn-
thesis process. Working in the latent space of embeddings
works better than the original space of the observations.

N
po(Xgh 1 20715 = p(X ) T mo(XEEY | X571, 2071,
n=1

- “)
where X4 ~ N(0,1), Z'~1* is the embedding representa-
tion as shown in Eq. (6).

After prediction at the first time point is obtained, a fore-
cast trajectory, X7, of length T, can be auto-regressively
modeled by conditioning on the predicted “previous” states.

T N
po(Xox) = [T p(X8) [T po(X5oa | X1, 2072070 (5)
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Figure 2: Framework of our conditional diffusion model for global weather forecast CoDiCast. The superscript 7' and the subscript N
denote the time point and iteration step of adding/denoising noise. H and W represent the height (#latitude) and width (#longitude) of grid
data. C' is the number of variables of interest. X is the observation data and Z is the feature representation in the embedding space.

4.3 Pre-trained Encoder

We learn an encoder by training an autoencoder network
[Baldi, 2012]. An Encoder compresses the input at each
time point into a latent-space representation, while Decoder
reconstructs the input from the latent representation. After the
encoder, F, is trained, it can serve as a pre-trained represen-
tation learning model to project the original data into a latent
embedding in Eq. (6). We provide more details on the model
architecture in the arXiv version?.

~7t—1:t t—1 t
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Figure 3: Autoencoder structure.

4.4 Attention-based Denoiser Network

Our denoiser network consists of two blocks: cross-attention
and U-net (as shown in Figure 4). Cross-attention mechanism
[Hertz et al., 2022] is employed to capture how past observa-
tions can contribute to the generation of future states. The
embedding of past observations, Zt_lit, and the noise data
X1 at diffusion step n, are projected to the same hidden
dimension d with the following transformation:

Q = Wq . XZ+1,K — Wk . Zt*l:t, V= WU . thlzt7 (7)
where Xt+1 c R(HXW)XC and Zt 1:t c R(wa)xd
W, € R>XC W, € R™= W, € R™% are

*Preprint version: https://arxiv.org/abs/2409.05975

learnable projection matrices. Then we implement the
cross-attention mechanism by Attention (Q, K, V) =

softmax( Qf} )V'. A visual depiction of the cross-attention
mechanism is in the arXiv version.
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T

Denoiser Embedding

L U-Net | Cross
|| Attention

t+1

Xt+1
Po(Xnh | XELZ0H

Figure 4: Attention-based denoiser structure.

U-Net [Ronneberger et al., 2015] is utilized to recover
the data by removing the noise added at each diffusion step.
The skip connection technique in U-Net concatenates feature
maps from the encoder to the corresponding decoder layers,
allowing the network to retain fine-grained information that
might be lost during downsampling. The detailed U-Net ar-
chitecture is presented in the arXiv version.

4.5 Training Process

The training procedure is shown in the arXiv version.Firstly,
we pre-train an encoder to learn the condition embedding
of the past observations. Subsequently, we inject it into our
conditional diffusion model and train CoDiCast with the
devised loss function:

Leond(0) = Exq,en He —€p (Xffl, n, cond) H2 , (8
where X!+! = /@, Xt +/T— ane, cond = F(X 1),

and €y is the denoiser in Figure 4.
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4.6 Inference Process

We first extract the conditional embedding representations,
A by the pre-trained encoder, and then randomly gener-
ate a noise vector X ~ A (0, I). The sampled noise vector,
X, is autoregressively denoised along the reversed chain to
predict the target until n equals 1, we obtain the weather pre-

diction X at the time ¢ + 1. Later, multi-step prediction can
be implemented autoregressively - the output from the previ-
ous time step is the input while predicting the next step, as
shown in Eq. (5). We provide the pseudocode in the arXiv
version.

4.7 Ensemble Forecast

To enhance the reliability of weather forecasts, ensemble
forecast strategy is often employed to capture the variability
among forecasts by separately running multiple deterministic
models, e.g., ensemble forecast suite (ENS) [Buizza, 2008].
In our approach, since CoDiCast is a probabilistic model
that can generate a distribution of future weather scenarios
rather than a single prediction, following [Price er al., May
2024], we run the trained CoDiCast multiple times to get
the ensemble instead. More specifically, by integrating both
initial conditions and noise sampled from a Gaussian distribu-
tion, CoDiCast implements the ensemble forecast through
multiple stochastic samplings during inference, capturing a
range of possible forecasts for the uncertainty quantification.

5 Experiments

5.1 Dataset and Baselines

Dataset. ERAS5 [Hersbach et al., 2020] is a publicly avail-
able atmospheric reanalysis dataset provided by the European
Centre for Medium-Range Weather Forecasts (ECMWF).
Following the existing work [Verma et al., 2024], we use the
preprocessed 5.625° resolution (32 x 64) and 6-hour incre-
ment ERAS5 dataset from WeatherBench [Rasp e al., 2020].
We downloaded 5 variables for the globe: geopotential at 500
hPa pressure level (2500), atmospheric temperature at 850
hPa pressure level (T850), ground temperature (T2m), 10
meter U wind component (U10) and 10 meter V wind com-
ponent (V10). More details are in the arXiv version.

Baselines. We comprise the following baselines: ClimODE
[Verma et al., 2024]: a spatiotemporal continuous-time model
that incorporates the physical knowledge of atmospheric ad-
vection over time; ClimaX [Nguyen ef al., 2023]: a state-of-
the-art vision Transformer-based method trained on the same
dataset (without pre-training that is used in the original pa-
per); FourCastNet [Pathak et al., 2022]: a global data-driven
weather model using adaptive Fourier neural operators; Neu-
ral ODE [Chen et al., 2018]: an ODE network that learns
the time derivatives as neural networks by solving an ordi-
nary differential equation; Integrated Forecasting System IFS
[Rasp et al., 2020]: a global numerical weather prediction
(NWP) system, integrating multiple advanced physics-based
models to deal with more meteorological variables across
multiple altitudes. Our study focuses solely on a subset of
these variables due to the limited computational resources,
with IFS serving as the gold standard. For a fair comparison,
all ML models use the same data set described in Section 5.1.

5.2 Experiments Design

We use data between 2006 and 2015 as the training set, data in
2016 as the validation set, and data between 2017 and 2018 as
the testing set. We assess the global weather forecasting capa-
bilities of our method CoDiCast by predicting the weather
at a future time ¢ + At (At = 6 to 144 hours) based on the
past two time units. To quantify the uncertainty in weather
prediction, we generate an “ensemble” forecast by running
CoDiCast five times during the inference phase.

Training. We first pretrain an encoder model with the
Autoencoder architecture. For the diffusion model,
we used U-Net as the denoiser network with 1000 diffu-
sion/denoising steps. The architecture is similar to that of
DDPM [Ho et al., 2020] work. We employ four U-Net units
for both the downsampling and upsampling processes. Be-
fore training, we apply Max-Min normalization [Ali er al.,
2014] to scale the input data within the range [0, 1], mitigat-
ing potential biases stemming from varying scales [Shi et al.,
2023]. Adam was used as the optimizer, where the learning
rate = 2e~%, decay steps = 10000, decay rate = 0.95. The
batch size and number of epochs were set to 64 and 800, re-
spectively. More training details and model configurations
are in the arXiv version.We conduct all experiments on one
NVIDIA A100 GPU with 80GB memory.

Evaluation Metrics. Following [Verma et al., 2024], we
use latitude-weighted Root Mean Square Error (RMSE) and
Anomaly Correlation Coefficient (ACC) as deterministic
metrics. RMSE measures the average difference between val-
ues predicted by a model and the actual values. ACC is the
correlation between prediction anomalies relative to clima-
tology and ground truth anomalies relative to climatology. It
is a critical metric in climate science to evaluate the model’s
performance in capturing unusual weather or climate events.
The formulas of these metrics are in the arXiv version.

5.3 Quantitative Evaluation

Accuracy. We compare different models in forecasting five
primary meteorological variables as described in Section
5.1. Table 1 shows that CoDiCast presents superior per-
formance over other MLWP baselines, demonstrating dif-
fusion models can capture the weather dynamics and make
predictions accurately. However, there is still room for
CoDiCast to be improved compared with the gold-standard
IFS model, which integrates more meteorological variables.

Uncertainty. The gray-shaded error range in Table 1 repre-
sents model uncertainty, with fluctuations remaining within
10% of the ground truth scale. This indicates the robust-
ness of ML models. However, ForeCastNet predictions
fluctuate relatively larger due to the sensitive selection of the
dropout rate. We provide a case study of CoDiCast fore-
cast for 72 hours with uncertainty quantification in Figure
5. It shows the mean prediction tracks the general trend of
the ground truth and the uncertainty grows as the lead time
increases. Besides, we can tell that most actual values fall
within the 1 or 2 standard deviations (o) ranges, indicating
these predictions are reasonably accurate.
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Vari Lead time | RMSE ({) | ACC (1)
ariable (Hours)
> | NODE ClimaX ForeCastNet ClimODE CoDiCast | IFS | NODE ClimaX ForeCastNet ClimODE CoDiCast | IFS
6 300.6 2475 222.7+18.1  102.9+9.3  73.1+6.7 26.9 0.96 0.97 0.97 0.99 0.99 1.00
12 460.2 2653 310.9+22.7  1348+12.3 1142489 | 338 0.88 0.96 0.95 0.99 0.99 0.99
7500 24 877.8  364.9 402.6+27.3 19344163 186.5+11.8 | 51.0 0.70 0.93 0.92 0.98 0.98 0.99
72 N/A 687.0 755.3-445.8 47874485 451.6+39.5 | 1232 | N/A 0.73 0.75 0.88 0.92 0.98
144 N/A 801.9 956.1--59.1  783.6+37.3 757.54+42.8 | 398.7 | N/A 0.58 0.64 0.61 0.78 0.86
6 1.82 1.64 1.75+0.16 1.16+0.06  1.02+0.05 | 0.69 0.94 0.94 0.94 0.97 0.99 0.99
12 2.32 1.77 2.15+0.20 1.3240.13  1.26+0.10 | 0.75 0.85 0.93 0.92 0.96 0.99 0.99
T850 24 3.35 217 2.514+0.27 1.5540.18  1.5240.16 | 0.87 0.72 0.90 0.89 0.95 0.97 0.99
72 N/A 3.17 3.69-40.34 2.5840.16  2.54+0.14 1.15 N/A 0.76 0.77 0.85 0.93 0.96
144 N/A 3.97 4294042  3.6240.21  3.61+0.19 | 2.23 N/A 0.69 0.71 0.77 0.85 0.81
6 272 2.02 2.05+0.18 12140.09  0.95+0.07 | 0.69 0.82 0.92 0.94 0.97 0.99 0.99
12 3.16 226 2.49+0.21 145+0.10  1.21+0.07 | 0.77 0.68 0.90 0.92 0.96 0.99 0.99
T2m 24 3.86 237 2.78+0.26 1.40-£0.09  1.45+0.07 | 1.02 0.79 0.89 0.91 0.96 0.99 0.99
72 N/A 2.87 3774032 2754049  239+0.37 | 1.26 N/A 0.83 0.85 0.85 0.96 0.96
144 N/A 3.38 4.394+0.41 3304023 3454022 | 178 N/A 0.83 0.81 0.79 0.91 0.82
6 2.30 1.58 1.98+0.17 1.4140.07  1.24+0.06 | 0.61 0.85 0.92 0.87 091 0.95 0.98
12 3.13 1.96 2.58-+0.21 1.8140.09  1.50+0.08 | 0.76 0.70 0.88 0.78 0.89 0.93 0.98
uUl10 24 4.10 2.49 3.02+0.27  201+0.10  1.87+0.09 | 1.11 0.50 0.80 0.71 0.87 0.89 0.97
72 N/A 3.70 4.17+0.36  3.19+0.18  3.15+0.19 | 1.57 N/A 0.45 0.41 0.66 0.71 0.94
144 N/A 424 4.63+0.45  4.02+0.12  4.25+0.15 | 3.04 N/A 0.30 0.28 0.35 0.42 0.72
6 2.58 1.60 2.16+0.19 1.5340.08  1.30+0.06 | 0.61 0.81 0.92 0.86 0.92 0.95 1.00
12 3.19 1.97 2.73+0.23 1.81+0.12  1.56-+0.09 | 0.79 0.61 0.88 0.76 0.89 0.93 0.99
V10 24 4.07 248 3.15+0.28  2.04+0.10  1.94-+0.14 1.33 0.35 0.80 0.68 0.86 0.89 1.00
72 N/A 3.80 4.26+0.34 3.30+0.22  318+0.19 | 1.67 N/A 0.39 0.38 0.63 0.68 0.93
144 N/A 4.42 4.64+0.45 4244010  4.21+0.18 | 3.26 N/A 0.25 0.27 0.32 0.37 0.71

Table 1: Latitude-weighted RMSE (]) and ACC (1) comparison on global weather forecasting. The results of NODE, ClimaX, and ClimODE
models are from the ClimODE paper. N/A represents the values that are not available from their paper. ForeCastNet was re-trained with
their code. We employ Monte Carlo Dropout during the inference to compute the uncertainty. We mark the scores in bold if our model

CoDiCast performs the best among MLWP methods.

Inference efficiency. Generally, numerical weather pre-
diction models (e.g., IFS) require around 50 minutes for
the medium-range global forecast, while deterministic ML
weather prediction models take less than 1 minute [Rasp
et al., 2020] but cannot model the weather uncertainty.
CoDiCast needs about 3.6 minutes (see the last row in Table
2) for the global weather forecast, potentially balancing the
efficiency and accuracy with essential uncertainty quantifica-
tion. The efficiency also depends on the model complexity.

5.4 Qualitative Evaluation

In Figure 6, we qualitatively evaluate the performance of
CoDiCast on global forecasting tasks for all target vari-
ables, 7500, T850, T2m, U1 0 and V10 at the lead time of 6
hours. The first row is the ground truth of the target variable,
the second row is the prediction and the last row is the dif-
ference between the model prediction and the ground truth.
From the scale of color bars, we can tell that the error per-
centage is less than 3% for variables Z500, T850, and T2m.
However, error percentages over 50% exist for U10 and V10
even though only a few of them exist. We also observe that
most higher errors appear in the high-latitude ocean areas,
probably due to the sparse data nearby. We provide visualiza-
tions for longer lead times in the arXiv version.

5.5 Ablation Study

CoDiCast includes two important components: pre-trained
encoder and cross attention. To study their effectiveness, we
conduct an ablation study: (a) No-encoder directly consid-
ers past observations as conditions to the diffusion model;
(b) No-cross-attention simply concatenates the embedding

and the noisy sample at each denoising step; (c) No-encoder-
cross-attention concatenates the past observations and the
noisy sample at each denoising step. Figure 7 shows that the
full version of CoDiCast consistently outperforms all other
variants, verifying positive contributions of both components.

285.0
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282.5 1 =e— Mean Prediction
1o Range
280.0 1 20 Range
30 Range
< 2775 ¢
O 275.01
©
= 272.54 = ~~
270.0 1
267.5
265.0 T

6 12 18 24 30 36 42 48 51 60 66 72
Time Step
Figure 5: Model Forecasts with confidence intervals.

5.6 Parameter Study

Table 2 shows that the accuracy improves as the number of
diffusion steps, /V, increases when NV < 1000, indicating that
more intermediate steps are more effective in learning the im-
perceptible attributes during the denoising process. However,
when 1000 < N < 2000, the accuracy remains approxi-
mately flat but the inference time keeps increasing linearly.
Considering the trade-off between accuracy and efficiency,
we finally set N = 1000. Additionally, we study the ef-
fect of “linear” and “quadratic” variance scheduling /3, where
B € [0.0001, 0.02]. Figure 8 shows that the “linear” variance
scheduling performs better than the “quadratic” one.
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Figure 6: Visualization of true and predicted values across five meteorological variables at 6 hours lead time.
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Figure 8: Effect of linear and quadratic variance scheduling methods.
Variable Lelf_ild Time | Diffusion Step limitations. Experimental results demonstrate it can simul-
(Hours) | "550 500 750 1000 1500 2000 taneously complete more accurate predictions than existing
7500 24 696.1 3248 1906 1865 1935 1919 MLWP-based models and a faster inference than NWP-based
T850 24 388 238 153 152 156 158 . : -1 .
Tom " 526 270 198 144 150 133 model.s while being capable Qf . pr.0V1d1ng uncertainty quan-
Ul10 24 274 205 181 187 199 201 tification compared to deterministic methods. In conclusion,
vio E 243 \211f T8 194 204 206 our model offers three key characteristics at the same time.
Inference time (min) | ~1.1 ~1.9 ~28 ~36 ~65 ~83

Table 2: RMSE with various diffusion steps at 24 hours lead time.

6 Conclusions

In this work, we start with analyzing the limitations of cur-
rent deterministic numerical weather prediction (NWP) and
machine-learning weather prediction (MLWP) approaches.
They either require substantial computational costs or lack
uncertainty quantification in their forecasts. We propose a
conditional diffusion model, CoDiCast, to address these

7 Collaborations and Broader Impacts
Machine learning (ML) and atmospheric researchers were in-
volved in the multidisciplinary collaborations. The domain
experts provide ML researchers with data sources and con-
textual experiment results while obtaining insights into the
potential applications of diffusion models in atmospheric sci-
ences. Impact: Our work facilitates weather warnings such as
extreme heat and cold, and storm warnings, which could help
the government, local agencies, and residents to take neces-
sary preventive and protective measures to minimize losses.
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