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Abstract
The minimum dominating set (MDS) problem is a
crucial NP-hard combinatorial optimization prob-
lem with wide applications in real-world scenar-
ios. In this paper, we propose an efficient lo-
cal search algorithm namely NuMDS to solve the
MDS, which comprises three key ideas. First,
we introduce a dominate propagation-based reduc-
tion method that fixes a portion of vertices in a
given graph. Second, we develop a novel two-
phase initialization method based on the k-shell de-
composition method. Third, we propose a multi-
stage local search procedure, which adopts three
different search manners according to the current
stage of the search. We conduct extensive experi-
ments to demonstrate the outstanding effectiveness
of NuMDS, and the results clearly indicate that
NuMDS outperforms previous state-of-the-art al-
gorithms on almost all instances.

1 Introduction
Given a graph G = (V,E), a dominating set D is a subset
of V such that every vertex in V belongs to D or is adja-
cent to at least one vertex in D. The minimum dominating
set (MDS) problem aims to find a dominating set with the
minimum size. The MDS is one of the most important com-
binational optimization problems in graph theory. In some
real-world domains, the MDS has numerous applications,
including wireless communication [Wu, 2002; Stojmenovic
et al., 2002], infectious diseases analysis [Liu et al., 2011;
Takaguchi et al., 2014; Stefan, 2014], and computer vision
[Potluri and Bhagvati, 2012; Yao and Li, 2012]. For instance,
Shen et al. [2010] formulated the multi-document informa-
tion extraction problem as the MDS and extracted vital infor-
mation from a group of files to generate a refined summary.

Because the MDS is NP-hard, no polynomial algorithm
can solve this problem unless P=NP [Raz and Safra, 1997].
The approximation algorithms can guarantee an approxima-
tion ratio between the solution produced by the algorithm and
the optimal solution. Up to now, various studies have pro-
posed approximation algorithms for the MDS [Sanchis, 2002;

∗Corresponding author

Eubank et al., 2004; Campan et al., 2015; Chalupa, 2017].
However, it has been proven even obtaining a (1−ε) ln(|V |)-
approximation for the MDS is NP-hard for any ϵ > 0 [Dinur
and Steurer, 2014]. Thus, the asymptotic worst-case perfor-
mance ratio achieved by the greedy algorithm can hardly be
further improved. In practice, approximation algorithms usu-
ally have poor performance in solving the MDS.

Besides approximation algorithms, there are two types of
algorithms, i.e., exact and heuristic algorithms for the MDS.
Recent works of exact algorithms for the MDS have been de-
veloped in the theoretical aspect, which focuses on improving
the upper bound of the time complexity of these algorithms
[Grandoni, 2004; Grandoni, 2006; Van Rooij and Bodlaender,
2011]. The state-of-the-art exact algorithms for the MDS are
proposed in [Jiang and Zheng, 2023] and [Xiong and Xiao,
2024]. In detail, Jiang et al. [2023] propose a novel lower
bound for the MDS based on the definition of 2-hop adja-
cency of vertices. Xiao et al. [2024] propose two branch-
and-bound algorithms to enhance the performance of exact
algorithms for the MDS. One of them uses LP relaxations as
lower bounds for pruning the search space, and the other one
is a pure combinatorial algorithm. Results show that those
exact algorithms for the MDS can successfully solve some
small instances, but they fail to solve large-scale instances.

To solve large-scale instances in an acceptable time limit,
researchers turn to designing many heuristic algorithms for
the MDS. Heuristic algorithms for the MDS can be cat-
egorized into evolutionary algorithms [Alber et al., 2005;
Ho et al., 2006; Hedar and Ismail, 2010a; Potluri and Singh,
2011; Hedar and Ismail, 2012; Giap and Ha, 2014; Chalupa,
2018; Reixach and Blum, 2024] and local search algorithms
[Chalupa, 2017; Fan et al., 2019; Cai et al., 2020; Okumuş
and Karcı, 2024; Zhu et al., 2024]. Despite the above algo-
rithms, all the heuristic algorithms for the minimum weighted
dominating set (MWDS) problem [Jovanovic et al., 2010;
Potluri and Singh, 2013; Chaurasia and Singh, 2015; Boua-
mama and Blum, 2015; Wang et al., 2017; Wang et al., 2018;
Chen et al., 2023] can be adapted to solve the MDS by assign-
ing the weight of all vertices as 1. According to the literature,
the current best heuristic algorithms for the MDS are DmDS
[Zhu et al., 2024] and FastDS [Cai et al., 2020]. The best-
performing heuristic algorithm for the MWDS is DeepOpt-
MWDS [Chen et al., 2023].

This work proposes a local search algorithm namely
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NuMDS1 to solve the MDS. It contains three novel ideas.
First, we propose a dominate propagation-based reduction
method (DPRM) as a preprocessing procedure to fix a por-
tion of vertices in an optimal solution and exclude some other
vertices from an optimal solution. The proposed DPRM com-
prises four propagation-based reduction rules, which take into
account three vertex relationships, including the strong cover
relationship, the strong ignore relationship, and the unique
dominate relationship. The proposed rules significantly pro-
mote each other, leading to reducing a large portion of the
search space.

The second strategy is a two-phase initialization method.
Previous initialization methods usually use greedy ways to
generate an initial solution. However, according to prelimi-
nary experiments, dominating vertices in sparse regions typ-
ically requires a larger amount of vertices than in dense re-
gions. To address this issue, we propose a two-phase initial-
ization procedure, including priority and greedy phases. In
the first phase, our proposed initialization method focuses on
dominating vertices in the sparse regions of a given graph by
utilizing the k-shell decomposition method. Subsequently,
in the second phase, vertices are added in a greedy manner.
By employing this initialization method, our search proce-
dure starts from a good starting point.

The third idea of NuMDS is a multi-stage search mech-
anism. Previous local search algorithms for the MDS usu-
ally use a uniform search strategy throughout the entire pro-
cedure, and do not consider the current search state. Unlike
previous local search algorithms for the MDS, we introduce
a novel local search procedure, which considers three search
stages. When the current solution exhibits evident potential
for improving the quality of solution, the algorithm employs a
greedy search approach to accelerate the convergence speed.
But, when the current solution reaches a state where further
improvement becomes challenging, the algorithm switches to
a randomized search manner and an exploitation search man-
ner sequentially.

We carry out extensive experiments to illustrate the perfor-
mance of our proposed algorithm. Experimental results show
that NuMDS outperforms all the competitors on almost all
instances.

2 Preliminaries
Given an undirected graph G = (V,E), V denotes the vertex
set and E ⊆ V ×V denotes the edge set. For each e = (u, v),
we call vertices u and v are the endpoints of edge e, and u
and v are neighbors. We use N(v) = {u ∈ V |(v, u) ∈ E}
to denote v’s neighbors, and the degree of v is represented
as |N(v)|. Moreover, N [v] is the closed neighborhood of v,
defined as N(v) ∪ {v}. For a vertex set S ⊆ V , N [S] =⋃

v∈S N [v] is used to denote the closed neighborhood of S.
The MDS is defined as follows.
Definition 1. Given an undirected graph G = (V,E), a
dominating set of G is a vertex subset D ⊆ V such that
∀v ∈ V, v ∈ N [D]. The minimum dominating set (MDS)
problem aims to find a dominating set with the minimum size.

1Source code and supplementary materials are available at
https://github.com/yiyuanwang1988/NuMDS.

During the local search, a candidate solution D is a vertex
subset of V , and N [D] is the vertex set that dominated by D.
V D
und = V \N [D] is the set of vertices that do not dominated

by D. The scoring function used in our proposed algorithm is
defined as score(v) = |V D

und| − |V D′

und|, where D′ = D \ {v}
if v ∈ D, and D′ = D∪{v} otherwise. Obviously, if v ∈ D,
score(v) ≤ 0, and if v /∈ D, score(v) ≥ 0.

3 Reduction Method
The reduction method is an effective technique to deal with
various NP-hard problems, such as the MDS [Xiong and
Xiao, 2024], the MWDS [Chen et al., 2023], and the max-
imum weighted clique problem [Wang et al., 2020]. It aims
to reduce the search space by determining the values of some
variables (the states of some vertices in the MDS). In this
section, we propose a dominate propagation-based reduction
method (DPRM). First, we review previous reduction meth-
ods for the MDS. Then, we present the dominate propagation-
based reduction rules and provide detailed information about
the DPRM algorithm.

3.1 Previous Reduction Methods for MDS
In the last decades, various kernelization methods have been
designed for special types of graphs for the MDS, such as
planar graphs [Guo and Niedermeier, 2007; Chen et al.,
2007] and graph classes of bounded expansion [Drange et al.,
2014]. Given a graph, these kernelization methods compute
an equivalent but smaller kernel whose size can be bounded
by a function of a specified parameter. The kernelization
methods remain challenging to apply to the general graph for
the MDS, because it belongs to the class W[2], which for-
malizes the intractability of the problem from the perspective
of parameterized complexity [Downey and Fellows, 1995;
Guo and Niedermeier, 2007].

To address the general graph for the MDS, numerous ef-
fective reduction methods have been developed. Alber et al.
[2004] introduced two neighborhood relationship checking-
based reduction rules, namely RLNSV and RLNPV. To fur-
ther improve these rules, they incorporated several simple
reduction rules, resulting in RLNSV imp and RLNPV imp,
with time complexities of O(|V |3) and O(|V |4), respec-
tively [Alber et al., 2006]. Very recently, Xiong and Xiao
[2024] formalized the MDS as the extended minimum dom-
inating set problem and proposed three reduction rules, de-
noted as EMDSP reduce, which has a time complexity of
O(|V | × |E| × ∆), where ∆ denotes the largest degree of a
given graph. Additionally, a representative reduction method
for the MDS utilizes three inference rules to fix a portion of
the vertices quickly for large-scale graphs [Cai et al., 2020;
Zhu et al., 2024]. This method can be viewed as a specific
case of the above five methods, which has a time complexity
of O(|V |).

3.2 Dominate Propagation-Based Reduction
Method

In this section, we propose a dominate propagation-based re-
duction method (DPRM) to further improve the reduction ef-
fectiveness for the MDS. Our method is built upon the “use-
fulness” of the vertices in a graph G. The criterion is whether
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the vertices in N [v] need v to be dominate. If so, v is use-
ful, otherwise it is useless. We use Vin to denote these use-
ful vertices and Vout to denote the useless vertices, respec-
tively. In addition, for the vertices that can be confirmed to
be dominated, we mark them as ignorable vertices, and their
set is denoted as Vignore. These vertices do not need to check
again whether they should be dominated in the reduction pro-
cess. The introduction of Vignore can help further expand the
size of Vin and Vout. Formally, for any S ⊆ V \ Vout, if
V \ Vignore ⊆ N [S], then V ⊆ N [S]. Moreover, we guaran-
tee there is an optimal solution Sopt such that Vin ⊆ Sopt and
Vout ⊆ V \ Sopt.

After the reduction procedure, vertices in Vin are fixed in
the candidate solution, vertices in Vout are fixed out from the
candidate solution, and only vertices in V \ (Vin ∪ Vout) can
be operated (i.e., to be added or removed) during the local
search. Based on these vertex sets, we define three important
relationship of vertex sets (or vertices), which can help us
develop the corresponding reduction rules.
Definition 2. Strong Cover Relationship. Given an undi-
rected graph G = (V,E), a fix-in vertex set Vin, an ig-
nored vertex set Vignore, two vertex sets VS , VS′ ⊆ V and
VS ∩ VS′ = ∅, if N [VS′ ] \ (N [Vin] ∪ Vignore) ⊆ N [VS ] \
(N [Vin] ∪ Vignore), then VS strongly covers VS′ , denoted as
VS

△

VS′ .
Definition 3. Strong Ignore Relationship. Given an undi-
rected graph G = (V,E), a fix-out vertex set Vout, and two
vertex sets VS , VS′ ⊆ V , if N [VS′ ] \ Vout ⊆ N [VS ], then VS

strongly ignores VS′ , denoted as VS ▶ VS′ .
Definition 4. Unique Dominate Relationship. Given an
undirected graph G = (V,E), a fix-out vertex set Vout, an
undominated vertex v ∈ V and one vertex in its closed neigh-
borhood vadj ∈ N [v], if N [v] \ {vadj} ⊆ Vout, then vadj
uniquely dominates v, denoted as vadj ≻ v.

Then we propose our reduction rules used in DPRM, and
the detailed proofs can be found in the supplementary mate-
rial.

Fix-I Reduction Rule 1. For two vertices v, v′ ∈ V \
(N [Vin] ∪ Vignore), if {v} ▶ {v′}, then Vignore = Vignore ∪
{v}.

Fix-Out Reduction Rule 2. For a vertex v ∈ V \Vout and
another vertex v′ ∈ V \ (Vin ∪ Vout), if {v}

△

{v′}, then
Vout = Vout ∪ {v′}.

Fix-In Reduction Rule 3. For an undominated vertex v ∈
V and its closed neighbor vadj ∈ V , if vadj ≻ v, then Vin =
Vin ∪ {vadj}.

To facilitate understanding the above three reduction rules,
we provide an illustrative example in Figure 1. First,
we initialize Vin = Vout = Vignore = ∅. Be-
cause {v7}

△

{v6, v9, v10}, {v2}

△

{v1, v3}, {v7} ▶
{v6, v9, v10}, and {v2} ▶ {v1, v3}, we can obtain Vout =
{v1, v3, v6, v9, v10} based on the Fix-out Reduction Rule
2 and Vignore = {v2, v7} based on the Fix-I Reduc-
tion Rule 1. Then, we can deduce v7 ≻ v10, so we
put {v7} into Vin according to Fix-in Reduction Rule 3.
After that, N [Vin] = {v2, v3, v5, v6, v7, v8, v9, v10}. So
we can deduce {v4}

△

{v5, v8}, {v1}

△

{v4}, result-
ing in Vout = {v1, v3, v6, v9, v10} ∪ {v5, v8} ∪ {v4} =

Figure 1: An example for the first three reduction rules, where Vin =
{v2, v7}, Vout = {v1, v3, v4, v5, v6, v8, v9, v10}.

Figure 2: An example for the fourth reduction rule, where Vin =
{v1, v2}, Vout = {v3, v4}.

{v1, v3, v4, v5, v6, v8, v9, v10} according to Fix-out Reduc-
tion Rule 2. Then, v2 ≻ v1, so Vin = Vin ∪ v2. As a result,
all vertices are added into Vin or Vout.

The time complexity of the Fix-I Reduction Rule 1, Fix-
Out Reduction Rule 2, and the Fix-In Reduction Rule 3 are
O(|E| × ∆), O(|E| × ∆), and O(|V | + |E|), respectively,
where ∆ is the largest degree in G. These three reduction
rules cover the all scenarios in which rules applied in EMDSP
[Xiong and Xiao, 2024], which is the state-of-the-art exact al-
gorithm for the MDS. Key differences between the above re-
duction rules and EMDSP reduce, along with their respective
time complexity derivation procedures, are provided in the
supplementary material. Despite the above reduction rules,
we further propose another new reduction rule.

Fix-Out-Set Reduction Rule 4. For two vertices v1, v2 ∈
V , a vertex set VS′ ⊆ V \ Vout and |VS′ | > 1, if {v1, v2}

△

VS′ , then

Vout = Vout ∪
⋃

v′∈CSet

VS′ \N [v′]

where CSet = {v′ ∈ VS′ \N [Vin] | N [v′] ⊆ (VS′ ∪ Vout ∪
{v1, v2})}.

The time complexity of the above reduction rule is
O(|V |2×∆2). The detailed derivation procedure is provided
in the supplementary material. We also provide a small exam-
ple to illustrate this reduction rule in Figure 2. Obviously, this
square example cannot be reduced by the first three reduction
rules. But it can be reduced by the Fix-Out-Set Reduction
Rule 4 as follows: First, the Vin, Vout, and Vigore are initial-
ized as ∅. Additionally, we can obtain {v1, v2}

△

{v3, v4},
and CSet = {v3, v4}. After that, according to the Fix-Out-
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Algorithm 1: DPRM
Input: An graph G = (V,E)
Output: ⟨Vin, Vout⟩

1 Vin := Vout := Vignore := ∅;
2 repeat
3 foreach v ∈ V Vin

und \ Vignore do
4 if ∃v′ ∈ N(v) ∩ V Vin

und \ Vignore, {v} ▶ {v′}
then

5 Vignore = Vignore ∪ {v};

6 foreach v ∈ V \ Vout do
7 if ∃v′ ∈ N(v)∩ (V \ (Vin ∪ Vout)), {v}

△

{v′}
then

8 Vout = Vout ∪ {v′};

9 foreach v ∈ V \ V Vin

und do
10 if ∃v′ ∈ N [v], N [v] \ Vout = {v′} then
11 Vin := Vin ∪ {v′};

12 until no vertices are added into Vin, Vout and Vignore;
13 if V \ (Vin ∪ Vout)| < M then
14 apply Fix-out-Set Reduction Rule 4 thoroughly;
15 apply Fix-In-Set Reduction Rule 3 thoroughly;
16 else
17 sample N vertex pairs from V \ (Vin ∪ Vout);
18 apply Fix-out-Set Reduction Rule 4 for the above

vertex pairs;
19 apply Fix-In-Set Reduction Rule 3 thoroughly;
20 return ⟨Vin, Vout⟩

Set Reduction Rule 4, Vout = Vout ∪ {{v3, v4} \ N [v3]} ∪
{{v3, v4} \ N [v4]} = {v3, v4}. Then, we will get v1 ≻ v1,
v2 ≻ v2. As a result, Vin = {v1, v2}.

3.3 The DPRM Algorithm

We present the DPRM algorithm in Algorithm 1. The DPRM
algorithm begins by initializing Vin, Vout and Vignore. Then,
it entering a loop that sequentially applies the Fix-I Reduc-
tion Rule 1, Fix-Out Reduction Rule 2, and Fix-In Reduction
Rule 3 (Lines 2-12). For each vertex v, we traverse each of
its neighbors v′ and check whether v and v′ satisfy the con-
ditions specified by the three reduction rules (Lines 4, 7, and
10). This loop continues until no vertices are added to Vin,
Vout, and Vignore (Line 12).

Afterward, since Fix-Out-Set Reduction Rule 4 have a
higher time complexity, we apply this reduction rule as fol-
lows: If the number of remaining vertices is less than M after
the reduction, we thoroughly apply the Fix-Out-Set Reduc-
tion Rule 4 and Fix-In Reduction Rule 3 (Lines 13-15). Oth-
erwise, we randomly select N pairs of vertices and treat each
of them as the {v1, v2} of the two reduction rules. Then we
conduct these two reduction rules for the selected N vertex
pairs (Lines 17-19). Based on our preliminary experiments,
we set M as 1000 and N as 10000.

4 Two-Phase Initialization Method
In this section, we first review previous initialization methods
adopted by the local search algorithms for the MDS. Then,
our two-phase initialization method is presented.

4.1 Previous Initialization Methods for MDS
The initialization procedure commonly used by previous lo-
cal search algorithms for the MDS is typically a greedy ap-
proach, denoted as Initgreedy [Fan et al., 2019; Cai et al.,
2020]. This method greedily adds vertices with the largest
score to the candidate set until all the vertices are dominated.
Furthermore, Zhu et al. [2024] integrate a perturbation pro-
cess into Initgreedy , resulting in a perturbation initialization
method denoted as Initperturb. In DmDS [Zhu et al., 2024],
both Initgreedy and Initperturb are conducted, and the best ini-
tial solution obtained from these two methods is selected.

4.2 Two-Phase Initialization Procedure
The classic Initgreedy method adds the vertex with the largest
score at each iteration. These high-score vertices are usu-
ally located in dense areas of the graph, which often leads to
the neglect of vertices in sparse areas. In fact, how to domi-
nate these vertices is critical to the initialization process. This
is because vertices in sparse areas tend to dominate a small
number of neighbors, meaning that a larger number of ver-
tices is needed to dominate the same number of vertices in
sparse areas compared to dense areas.

Different from previous methods, our initial solution prior-
itizes the addition of vertices that can dominate sparse areas.
Specifically, we adopt k-shell decomposition [Kitsak et al.,
2010] to partition the graph into different areas. There are
several cluster sets CS = {V1, V2, . . . , Vn} in the k-shell de-
composition, and each set Vi is associated with a shell value
denoted as shell(Vi), where a higher shell(Vi) value indi-
cates Vi is located in a denser area. At the beginning, CS is
initialized as an empty set, then the k-shell algorithm itera-
tively removes a set of vertices from the graph. In the ith it-
eration, the minimum degree of all the vertices is recorded as
dmin, and vertices with the degree value not higher than dmin

are removed from the given graph and then they are stored in
Vi until the degree value of all the remaining vertices is larger
than dmin. Then, the set of removed vertices Vi is added to
CS. After that, the shell value of the current vertex subset
Vi ∈ CS is set to dmin, i.e., shell(Vi) = dmin. The shell
decomposition process continues until all vertices have been
removed from the graph. Its time complexity is O(|V |+ |E|).

The complete two-phase initialization method is shown in
Algorithm 2. At first, the algorithm proceeds with the k-shell
decomposition procedure and stores all vertex subsets with
a shell value less than del thre in the candidate set CSsp,
where del thre is a parameter (Lines 1–2). The initial solu-
tion D is set to an empty set (Line 3). In the following, there
are two phases, including the priority phase (Lines 4–9) and
the greedy phase (Lines 10–12). In the first phase, if CSsp is
not empty, the algorithm iteratively selects a vertex subset Vi

with the smallest shell value, breaking ties randomly (Line
5). For each vertex vp ∈ Vj ∩ V D

und, the algorithm selects an
added vertex from N [vp] \ Vout with the largest score value,
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Algorithm 2: Inittp
Input: A graph G = (V,E), fix-in set Vin, fix-out set Vout

Output: An initial solution D
1 applying k-shell decomposition to obtain a cluster set CS;
2 CSsp := {Vi ∈ CS | shell(Vi) < del thre};
3 D := Vin;
4 while CSsp ̸= ∅ do
5 select a vertex subset Vj with the minimum shell value;
6 foreach vp ∈ Vj ∩ V D

und do
7 select a vertex vadd ∈ N [vp] \ Vout with the largest

score value;
8 D := D ∪ {vadd};

9 CSsp := CSsp \ {Vj};

10 while V D
und ̸= ∅ do

11 select a vertex vadd ∈ V \ Vout with the largest score
value;

12 D := D ∪ {vadd};

13 return D;

and then adds it into D (Lines 7–8). The vertex subset Vi is
removed from CSsp (Line 9). In the second phase, a vertex
with the largest score value and outside the Vout is iteratively
added until all the vertices are dominated (Lines 10–12). Fi-
nally, the algorithm returns an initial solution D (Line 13).

5 The NuMDS Algorithm
We present a novel multi-stage search mechanism, followed
by introducing our proposed algorithm namely NuMDS.

5.1 Multi-Stage Search Mechanism
Previous local search algorithms for the MDS and MWDS
have commonly employed a unified search approach through-
out the entire search procedure [Chalupa, 2017; Fan et al.,
2019; Cai et al., 2020; Chen et al., 2023]. However, this
type of search pattern lacks the flexibility to adapt various
search approaches based on the current search state. The lo-
cal search usually faces two main challenges, including slow
convergence speed during the early stages of the search and
difficulty in escaping from local optima during the later stages
of the search. To deal with these challenges, we propose a
multi-stage local search mechanism that incorporates differ-
ent search manners at different stages of the search. In the
early stages of the search, we employ a greedy manner to ac-
celerate the convergence speed of the search. If improving
the quality of current solution becomes gradually challeng-
ing, we adopt two kinds of manners sequentially, including
random and exploitation search manners.

During the local search, we use a variable unimprove
to measure the current state of the search, which is defined
as the number of consecutive steps during the local search
where the best solution has not been improved. As the
value of unimprove increases, it indicates that improving
the quality of the current solution is pretty hard. Moreover,
we define a hybrid scoring function to evaluate each vertex
in the candidate solution D, formally expressed as follows:
∀v ∈ D, scorehybrid(v) =

age(v)
|score(v)|+1 , where the age value

of vertex v is defined as the number of steps for which the ver-
tex has not been operated (i.e., to be added or removed). This
function considers both the diversification effect and the di-
rect impact of operating a vertex in D. Its goal is to prioritize
selecting vertices that have not been operated for a long pe-
riod while simultaneously resulting in few undominated ver-
tices.

The proposed mechanism modifies the vertex removal pro-
cedure of the local search to align with three search manners.
Thus, how to define search manner is a key issue. We employ
three variations of the best from multiple selections heuris-
tic (BMS) [Cai, 2015] by adjusting the parameter settings
to match the respective search manners. The BMS strategy
works as follows, i.e., randomly sampling a certain amount
of vertices and then selecting the best one among them. In
the following, we give three search manners.

Greedy Search Manner. If unimprove < thre, the al-
gorithm randomly samples t1 vertices from D \ Vout and re-
moves the one with the smallest score value, breaking ties
with the largest age value.

Random Search Manner. If thre ≤ unimprove < 2 ×
thre, the algorithm removes a random vertex from D \ Vout.

Exploitation Search Manner. If unimprove ≥ 2× thre,
the algorithm randomly samples t1 vertices from D \ Vout,
and removes the one with the largest scorehybrid value,
breaking ties randomly.

Where thre and t1 are two parameters. Note that the score-
based vertex removal procedure indicates a greedy manner,
which limits the total number of undominated vertices. Re-
garding the transition to the second and third search manners,
the algorithm gradually enhances the exploration capability
of the search. As the value of unimprove increases, the
search procedure naturally shifts its inclination from explo-
ration to exploitation, i.e., from the random search manner
to the exploitation search manner. Specifically, for the third
search manner, removing vertices with the largest scorehybrid
value can be beneficial for escaping from local optima.

5.2 Details of the NuMDS
The proposed algorithm NuMDS is presented in Algorithm
3. First, the DPRM is applied to generate the Vin and Vout,
and unimprove is initialized as 0 (Lines 1–2). Subsequently,
the proposed initialization method is employed to obtain an
initial solution, which serves as the starting point of the fol-
lowing local search procedure (Line 3). In each iteration, the
algorithm begins by checking whether the undominated ver-
tex set V D

und is empty. If so, the algorithm iteratively removes
some redundant vertices (Lines 6–8). The best solution Dbest

is updated by D and unimprove is reset to 0 (Line 9). Lastly,
the algorithm utilizes the BMS heuristic to remove a vertex
with the largest score value, resulting in an unfeasible candi-
date solution smaller than Dbest (Lines 10–11).

After that, the local search turns to begin a swap proce-
dure, involving removing two vertices and adding two other
vertices (Lines 13–22). Specifically, during the vertex remov-
ing procedure, the first removal vertex is selected using the
BMS strategy to choose a vertex with the largest score value,
whereas the second removal vertex is selected according to
the proposed three search manners (Lines 13–17). During the
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Algorithm 3: NuMDS
Input: A graph G = (V,E)
Output: the best obtained solution Dbest

1 ⟨Vin, Vout⟩ := DPRM(G);
2 unimprove := 0;
3 D := Dbest := Inittp(G,Vin, Vout);
4 while elapsed time < cutoff do
5 if V D

und = ∅ then
6 while there exist vertices in D whose score is 0 do
7 select a vertex v1 ∈ D \ Vin with

score(v1) = 0;
8 D := D \ {v1};

9 Dbest := D and unimprove := 0;
10 select a vertex v2 ∈ D \ Vin with the largest score

among t2 samples, breaking ties by the largest age;
11 D := D \ {v2};
12 continue;

13 remove a vertex v1 ∈ D \ Vin with the largest score
among t2 samples, breaking ties by the largest age
value;

14 D := D \ {v1};
15 choose a search manner based on the unimprove value;
16 select a vertex v2 based on the corresponding manner;
17 D := D \ {v2};
18 select a vertex u1 ∈ V D

und \ Vout with the largest score
value, breaking ties by the largest age value;

19 D := D ∪ {u1};
20 if V D

und = ∅ then
21 select a vertex u2 ∈ V D

und \ Vout with the largest
score value, breaking ties by the largest age value;

22 D := D ∪ {u2};

23 unimprove := unimprove+ 1;

24 return Dbest;

Parameter Range Final value

t1 {5, 10, 15, 20} 10
t2 {35, 40, 45, 50} 45
del thre {4, 6, 8, 10} 6
thre {2000, 2500, 3000} 2500

Table 1: Tuned parameters of NuMDS.

vertex adding procedure, if undominated vertices exist, two
vertices with the largest score value are sequentially added
(Lines 18–22). In case multiple vertices have the same score
for these two procedures, ties are broken by favoring the ver-
tex with the largest age value. At the end of each iteration,
unimprove is increased by 1 (Line 23). The local search
terminates when the current run time reaches the predefined
cutoff time (Line 4). Finally, the best solution Dbest is re-
turned (Line 24).

6 Experiments
We conduct extensive experiments to evaluate the perfor-
mance of NuMDS. According to previous studies [Cai et
al., 2020; Zhu et al., 2024], DmDS [Zhu et al., 2024]
and FastDS [Cai et al., 2020] significantly outperform other

heuristic algorithms for the MDS. Thus, we first select these
two algorithms as our competitors. Besides, we compare
NuMDS with the state-of-the-art MWDS solver DeepOpt-
MWDS [Chen et al., 2023]. The source codes of all algo-
rithms are kindly provided by the authors. All the algorithms
are implemented in C++ and compiled by g++ with -O3 op-
tion. All experiments are conducted on Intel Xeon Gold 6238
CPU @ 2.10GHz with 256GB RAM under CentOS 7.9. For
all comparative algorithms, we use the parameters specified
in the corresponding literature. Note that the experiments in
DmDS were conducted on a significantly more powerful CPU
than ours. To achieve the results reported in the literature, we
set the time limit to 1800 seconds. For each instance, all al-
gorithms are executed 10 times with the random seeds from
1 to 10.

We collect all instances that have already been tested by
DmDS [Zhu et al., 2024] and FastDS [Cai et al., 2020], com-
prising 4 standard benchmarks and 4 real-world benchmarks.
The selected benchmarks are presented as follows.

UDG. This benchmark is widely used in many algorithms
for the MDS [Hedar and Ismail, 2010b; Potluri and Singh,
2011; Cai et al., 2020; Zhu et al., 2024]. UDG comprises 12
families, and each family contains 10 instances.

T1. This benchmark consists 54 families, with each family
containing 10 instances of the same size. Each instance has
two weight functions [Romania, 2010] and we set the weight
of each vertex to 1.

DIMACS. This benchmark is sourced from the Second DI-
MACS Implementation Challenge (1992-1993) 2. It has been
extensively tested in various significant combinatorial opti-
mization problems, including 61 instances.

BHOSLIB. This benchmark is generated from RB model
[Xu et al., 2007], containing 41 instances.

SNAP. The Stanford Large Network Dataset Collection
comprises a collection of real-world graphs ranging from 104

vertices to 107 vertices in size.
DIMACS10. This benchmark is sourced from the 10th DI-

MACS Implementation Challenge (2010) 3, containing many
challenging instances.

Network Repository. The Network Data Repository
[Rossi and Ahmed, 2015] is a comprehensive collection of
real-world graphs gathered from various domains.

The standard benchmarks have 168 instances, including
UDG, T1 and DIMACS and BHOSLIB, and the remaining
benchmarks have 260 real-world instances. In total, we se-
lect 428 instances. In detail, for the instances selection of
SNAP and DIMACS10, we follow the DmDS and FastDS
[Cai et al., 2020; Zhu et al., 2024]. Only instances with a
minimum of 30,000 vertices are chosen, resulting in a set of
53 instances. For the Network Repository, many previous
studies for the MDS and MWDS select vertices with more
than 105 and edges with more than 106 [Wang et al., 2018;
Cai et al., 2020; Chen et al., 2023], resulting in 65 instances.
In 2024, Zhu et al. [2024] add 142 additional instances from
NDR to test the performance of DmDS. Consequently, we di-
vided the instances in the Network Repository into two sets:

2ftp://dimacs.rutgers.edu/pub/challenges
3https://www.cc.gatech.edu/dimacs10/
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Benchmark #ins NuMDS DmDS FastDS DeepOpt-MWDS
#min(#avg) min(#avg) #min(#avg) #min(#avg)

UDG 12 12(12) 12(12) 11(9) 12(12)
T1 54 54(53) 44(29) 49(41) 47(43)
DIMACS 61 61(60) 55(47) 59(53) 59(55)
BHOSLIB 41 41(41) 33(13) 35(26) 26(17)
DIMACS10 31 23(24) 12(11) 10(10) 10(9)
SNAP 22 20(20) 14(11) 13(11) 16(13)
NDR1 65 62(61) 37(31) 32(27) 26(22)
NDR2 142 137(117) 58(70) 51(44) 45(42)

#total 428 410(388) 265(224) 260(221) 241(213)

Table 2: Experimental results on all benchmarks. #min and #avg denote the number of instances where the corresponding algorithm finds the
best minimum and average solutions among all algorithms.

NDR1 and NDR2. NDR1 consists of the 65 instances tested
by previous studies for the MDS, and NDR2 comprises the
142 additional instances added by DmDS.

We utilize the automatic configuration tool irace [López-
Ibáñez et al., 2016] to tune the parameters. For the training
set, we randomly selected 10% instances from each bench-
mark. The tuning process is given a budget of 4000 runs for
the training set with a time budget of 1000 seconds per run.
Table 1 presents the selected parameter values. For all com-
petitors, we used the parameters from the relevant literature
and optimized them for the newly added instances using the
irace tool.

Despite using irace for parameter tuning, we manually ana-
lyze the parameter sensitivity of NuMDS as follows. Initially,
we select 10% instances from each benchmark, resulting in a
total of 41 instances. We vary t1 with values 5, 10, and 15, t2
with values 40, 45, and 50, and thre with values 2000, 2500,
and 3000. In total, we tested 27 different parameter combi-
nations. NuMDS is executed within a cutoff time of 1800
seconds using random seeds of 1 to 10. According to our

Figure 3: Comparison of run time of NuMDS and its corresponding
competitor.

experiments, under the optimal parameter settings, the best
solution achieved is, on average, 0.0021% smaller than the
best solutions obtained using other parameter combinations.
Additionally, we selected del thre as 4 and 8. The initial so-
lution achieved with del thre set to 6 is, on average, 0.0017%
smaller than the initial solutions obtained with del thre set to
4 and 8. These results show that the performance our algo-
rithm is not sensitive to the parameters.

6.1 Results on All the Benchmarks
Results on all the benchmarks are summarized in Table 2. We
present the detailed results of NuMDS and all competitors in
the supplementary material.

Results on standard and real-world benchmarks
For all standard benchmarks, NuMDS can find the best solu-
tion for all the instances. Specifically, NuMDS outperforms
FastDS, DmDS, and DeepOpt-MWDS for 14, 24, and 24 in-
stances. Furthermore, among 168 standard instances, it only
fails to obtain the minimal average solution on only 2 in-
stances, while FastDS, DmDS, and DeepOpt-MWDS fail to
achieve the minimal average solution for 39, 67, and 41 in-
stances. As for the real-world instances, NuMDS performs
best on all the benchmarks. In detail, it obtains the 23 best
solutions (out of 31 instances) on DIMACS10 benchmark,

Figure 4: Critical difference analysis for all algorithms.

Benchmark #ins vs. Gurobi vs. BIBLP
#bet(#wor) #bet(#wor)

Standard 168 73(1) 72(1)
SNAP&DIMACS10 53 22(10) 43(0)
NDR1 65 31 (4) 62(0)
NDR2 142 86(6) 113(0)

#total 428 212(21) 290(1)

Table 3: Comparing NuMDS with BIBLP and Guribi. #bet and #wor
represent the number of instances where NuMDS achieve better and
worse minimal solutions, respectively.
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Benchmark #ins vs. NuMDS1 vs. NuMDS2 vs. NuMDS3 vs. NuMDS4 vs. NuMDS5 vs. NuMDS6 vs. NuMDS7
#bet(#wor) #bet(#wor) #bet(#wor) #bet(#wor) #bet(#wor) #bet(#wor) #bet(#wor)

Standard 168 0(0) 0(0) 0(0) 6(0) 0(0) 0(0) 8(0)
S&D 53 20(8) 19(2) 13(6) 17(5) 19(3) 12(6) 13(0)
NDR1 65 25(3) 13(3) 15(8) 23(5) 18(3) 16(8) 21(2)
NDR2 142 80(12) 45(12) 44(21) 83(3) 64(7) 61(7) 66(4)

#total 428 125(23) 77(17) 72(35) 129(13) 101(13) 89(21) 108(6)

Table 4: Comparing NuMDS with its seven alternative versions. #bet and #wor represent the number of instances where NuMDS achieves
better and worse minimal solutions, respectively. Due to space limitations, SNAP&DIMACS10 is represented by S&D.

Benchmark Infe rules RLNSV RLNSV imp EMDSP reduce DPRM
fix ratio time fix ratio time fix ratio time fix ratio time fix ratio time

Standard 0.18% <1 0.69% <1 1.31% <1 12.54% <1 13.32% <1
SNAP&DIMACS10 21.82% <0.1 32.67% 1.04 47.81% 1.94 56.15% 20.03 68.47% 6.11
NDR1 29.07% <0.1 36.75% 4.29 62.98% 18.3 67.94% 22.68 72.83% 30.27
NDR2 12.53% <0.1 16.10% 8.77 27.36% 8.22 32.74% 278.10 53.41% 39.64

Table 5: The average fix ratio and time consumption of five reduction methods on each benchmark.

Benchmark #ins vs. FastDS vs. DmDS
#bet(#wor) bet(#wor)

Standard 168 0(0) 0(0)
SNAP&DIMACS10 53 24(6) 19(3)
NDR1 65 25 (6) 25(6)
NDR2 142 81(9) 61(23)

#total 428 130(21) 105(32)

Table 6: Comparing FastDSDPRM and DmDSDPRM with FastDS and
DmDS. #bet and #wor represent the number of instances where
DmDSDPRM or FastDSDPRM achieves better and worse minimal so-
lutions, respectively.

20 best solutions (out of 22 instances) on SNAP benchmark,
62 best solutions (out of 65 instances) on NDR1 benchmark,
130 best solutions (out of 142 instances) on NDR2 bench-
mark. Every competitor fails to obtain over 50% best so-
lutions among 260 real-world instances. Moreover, when
NuMDS discards its training set in the parameter tuning pro-
cedure, it achieves 371 best solutions out of 387 instances,
while DmDS, FastDS, and DeepOpt-MWDS achieve 242,
236, and 217 best solutions, respectively.

Run time analysis
Then, we conduct a run time comparison between the
NuMDS algorithm and three comparison algorithms, focus-
ing on cases where both algorithms achieved the same best
and average solution values for all instances. The instances
where the run time of both NuMDS and the corresponding
competitors is below 0.1 seconds are excluded from the anal-
ysis. As shown in Figure 3, the run time obtained by NuMDS
is quite smaller than its competitors for the most instances.

Critical Difference Plots for All Algorithms
We use statistical analysis to evaluate the performance of the
NuMDS algorithm and its competitors by presenting the dif-
ference of the best solutions obtained by each algorithm in
Figure 4. First, we conduct the Friedman Test [Friedman,

1937] with the null hypothesis that the NuMDS algorithm
performs equally to all the competitors. If the null hypoth-
esis is rejected, we perform the Nemenyi post-hoc test for
pairwise comparisons. The results are then presented using
a critical difference diagram [Garcıa and Herrera, 2008]. A
lower rank indicates better performance. If the difference be-
tween algorithms is not statistically significant at a signifi-
cance level of 0.05, it indicates a connection between those al-
gorithms. According to the critical difference plots, NuMDS
consistently outperforms all the competitors.

6.2 Further Results with Exact Algorithms
In this part, we compare the NuMDS with the state-of-the-
art exact algorithms. According to the literature [Jiang and
Zheng, 2023; Xiong and Xiao, 2024], the state-of-the-art al-
gorithm for the MDS is BIBLP [Xiong and Xiao, 2024].
So we compare NuMDS with this algorithm. Moreover, we
also compare NuMDS with one of the most powerful com-
mercial mixed integer programming (MIP) solvers Gurobi
[Gurobi Optimization, 2021]. The version used is 10.0.3.

Note that the Gurobi is conducted on the instances reduced
by DPRM. The time limit of the two exact algorithms are set
to 1800 seconds, and we compare them with NuMDS under
the cutoff time of 1800 seconds and seed 1. We summary the
compared results in Table 3. As shown in Table 3, NuMDS
clearly outperforms the two algorithms.

6.3 Analysis on the Proposed Strategies
First, we evaluate the proposed strategies by comparing
NuMDS with its seven alternative versions: (1) NuMDS1 re-
places the DPRM with the Infe-rules; (2) NuMDS2 substi-
tutes the DPRM with the RLNSV imp; (3) NuMDS3 sub-
stitutes the DPRM with the EMDSP reduce; (4) NuMDS4
eliminates the multi-stage mechanism and instead adopts the
same second vertex selection method as DmDS [Zhu et al.,
2024] and FastDS [Cai et al., 2020]. Specifically, in each it-
eration of the NuMDS, the second removal vertex is selected
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Benchmark #ins Inittp Initgreedy Initperturb
#win(#time) #win(#time) #win(#time)

realworld 260 209(4.75) 47(14.45) 50(16.18)

Table 7: Comparing Inittp with Initgreedy and Initperturb on the reduced instances, where #win denotes the number of minimal results
that each algorithm achieved, and #time is the average time consumption of each algorithm on the 260 real-world instances.

Benchmark #ins Inittp Initgreedy Initperturb
#win(#time) #win(#time) #win(#time)

realworld 260 232(5.36) 33(16.4) 29(16.21)

Table 8: Comparing Inittp with Initgreedy and Initperturb on the original instances, where #win denotes the number of minimal results
that each algorithm achieved, and #time is the average time consumption of each algorithm on the 260 real-world instances.

randomly. NuMDS5, NuMDS6, and NuMDS7, each remov-
ing one of the search modes: greedy search, random search,
and exploitation search, respectively. Table 4 shows that both
DPRM and the multi-stage mechanism are indispensable in
the proposed NuMDS.

Then, we present the fix ratio and time consumption among
DPRM, RLNSV [Alber et al., 2004], RLNSV imp [Alber
et al., 2006], the inference rules used in FastDS [Cai et al.,
2020] (referred to as Infe-rules), and the EMDSP reduce in
Table 5. We don’t present the comparison result of RLNPV
and RLNPV imp due to their extremely long time consump-
tion on real-world instances, making them unsuitable to be
applied in local search algorithms. Specifically, both RLNPV
and RLNPV imp have a time consumption exceeding 1800
seconds on 87% real-world instances.

Table 5 shows that the fix ratio achieved by the
DPRM reduction method is consistently better than that of
other reduction techniques, except when compared to the
EMDSP reduce on standard instances. When compared
to Infe rules, RLNSV, and RLNSV imp on real-world in-
stances, DPRM significantly outperforms these algorithms in
terms of fix ratio. Although the DPRM method has a longer
time consumption than these algorithms, its run time remains
within an acceptable range. Moreover, when we compare
DPRM to EMDSP reduce on real-world instances, DPRM
also shows an improvement on all benchmarks. Overall,
DPRM demonstrates robust performance in both fix ratio and
time consumption.

Subsequently, we investigate the impact of DPRM on
the local search performance. We incorporate DPRM
into FastDS and DmDS, resulting in FastDSDPRM and
DmDSDPRM, and compare the best solutions obtained by
these two algorithms with the best solution obtained by the
original algorithms. The results are presented in Table 6. It
is evident that DPRM greatly enhances the performance of
FastDS and DmDS.

After that, we conduct experiments to evaluate the perfor-
mance of two-phase initialization method. First, we compare
Inittp with Initgreedy and Initperturb. Then, we don’t use
any reduction rules and directly evaluate the performance of
the three initialization procedures. Note that the instances
in the standard benchmark are significantly small, and the
impact of the initial solution on the local search procedure

can be omitted. Therefore, we only focus on the real-world
benchmarks. As shown in Tables 7 and 8, Inittp outperforms
previous initialization methods in terms of both initial solu-
tion quality and time consumption. It demonstrates the good
performance regardless of whether the reduction process is
employed. The reduced time consumption is a result of the
vertex selection procedure in the priority phase, which only
needs to transverse the neighbors of specific vertices, rather
than traversing all vertices not in the candidate solution.

7 Conclusion
This paper proposes an efficient local search algorithm
NuMDS for the MDS, which comprises three key ideas. First,
a dominate propagation-based reduction method is presented
to fix portion of vertices. Then, we develop an efficient two-
phase initialization method to start the search procedure from
a good point. Finally, a multi-stage local search procedure
is proposed, which adapts some suitable search manners. Ex-
tensive experimental results clearly demonstrate the effective-
ness of NuMDS.
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and Thomas Stützle. The irace package: Iterated racing for
automatic algorithm configuration. Operations Research
Perspectives, 3:43–58, 2016.
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