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Abstract
Recent Foundation Model-enabled robotics
(FMRs) display greatly improved general-purpose
skills, enabling more adaptable automation than
conventional robotics. Their ability to handle
diverse tasks thus creates new opportunities to
replace human labor. However, unlike general
foundation models, FMRs interact with the phys-
ical world, where their actions directly affect
the safety of humans and surrounding objects,
requiring careful deployment and control. Based
on this proposition, our survey comprehensively
summarizes robot control approaches to mitigate
physical risks by covering all the lifespan of FMRs
ranging from pre-deployment to post-accident
stage. Specifically, we broadly divide the timeline
into the following three phases: (1) pre-deployment
phase, (2) pre-incident phase, and (3) post-incident
phase. Throughout this survey, we find that there is
much room to study (i) pre-incident risk mitigation
strategies, (ii) research that assumes physical
interaction with humans, and (iii) essential issues
of foundation models themselves. We hope that
this survey will be a milestone in providing a high-
resolution analysis of the physical risks of FMRs
and their control, contributing to the realization of
a good human-robot relationship.

1 Introduction
Since the emergence of foundation models, robotics has
shown dramatic improvements in general-purpose and highly
adaptable manipulation skills, indicating that it has entered a
new era called Foundation Model-enabled robotics (FMRs).
FMRs leverage large-scale pre-trained neural network mod-
els that integrate language, vision, and action modalities, en-
abling robots to generalize across diverse tasks [Firoozi et al.,
2023]. They comprise large language models (LLMs) and
vision-language models (VLMs) for language comprehension
and visual understanding, enhancing high-level task planning

† Corresponding Authors.

Figure 1: Motivation of our survey. Studies on conventional robotics
and Deep Learning-based robotics (before foundation models) were
mainly based on closed environments where physical risks are ex-
cluded or minimized by restricting the entry of humans and objects,
e.g., inside a factory. Foundation Model-enabled robotics (FMRs)
are expected to be utilized in an open world where physical risks in-
evitably exist because humans and robots are always in close prox-
imity and physically interacting, e.g. a restaurant. Hence physical
risk control is becoming more important in the era of FMRs.

for long-horizon tasks [Liang et al., 2023]. Additionally, they
include robot transformers that integrate perception, decision-
making, and action generation to process multimodal inputs
and generate low-level motion commands for end-to-end con-
trol [Brohan et al., 2022].

In contrast to conventional robotic engineering, which gen-
erally controls robots based on human-crafted rules, FMRs
learn to control themselves from enormous amounts of data
with a statistical approach. This paradigm shift has enhanced
generalizability and long-horizon reasoning [Zawalski et al.,
2024], enabling FMRs to show promising advantages over
classical methods in adapting to diverse tasks and unstruc-
tured environments. They have been successfully applied to
various fields, including task planning [Ahn et al., 2022], vi-
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sion language guided manipulation [O’Neill et al., 2023], tac-
tile perception [Zhao et al., 2024a], locomotion [Bohlinger et
al., 2024], and navigation [Moroncelli et al., 2024]. (➢ Sec-
tion 2)

While we could enjoy economic benefits by replacing hu-
man labor with robots in various applications, we cannot
completely avoid the risk of FMRs causing physical dam-
age to surrounding humans or objects. As FMRs are en-
gaged in more challenging tasks and environments, often re-
quiring contact with people and objects, such as housework,
surgery or nursing care, the risk of causing physical damage
increases. Of course, even in such an environment, it is possi-
ble to mitigate some risks through the establishment of social
rules and education, e.g., do not play near robots. However,
we cannot completely eliminate accidents because of our mis-
perception of the environment (e.g. robots in blind spots)
or unexpected environmental changes (e.g., sudden hardware
failures). (➢ Section 3)

Based on the premise that FMRs cannot completely elimi-
nate the risk of causing physical damage, this survey compre-
hensively summarizes robot control approaches against phys-
ical risks by covering all the lifespan of FMRs, from pre-
deployment to post-accident stage. Specifically, our study
conducts this survey of physical risk controls by dividing the
timeline into the following three phases: (1) pre-deployment
phase, i.e., risk prevention phase when learning from data, (2)
pre-incident phase, i.e., before an incident happens after de-
ployment, and (3) post-incident phase, i.e., the recovery and
improvement stage. (➢ Figure 3 and Section 4)

We emphasize that many classic robotic studies discussed
safety control within a closed environment where humans
could intervene and prevent hazardous incidents, such as in-
side a factory or laboratory. In such an environment, if a
robot causes an incident, pressing the emergency stop but-
ton will solve the problem. In contrast, our survey focuses on
the safety of FMRs assumed to act in an open world, where
bigger physical risks often exist because humans and robots
are always in close proximity and physically interacting, e.g.
inside a home or a cafe. In this case, we need to consider
how to recover or treat robots as well as surrounding humans
and objects because “life still goes on” for both robots and
humans after the incident. We also emphasize that prior sur-
veys of FMRs focused on only some partial sections within
the first two phases of safety control, i.e., pre-deployment
and pre-incident phase in light of our classification scheme,
and so have been insufficiently organized in detail [Bom-
masani et al., 2021; Hu et al., 2023; Firoozi et al., 2023;
Xiao et al., 2023]. In other words, they only summarized par-
tial sections of the mitigation strategies of physical risks be-
fore an incident, and generally have not covered post-incident
recovery actions. (➢ Figure 2)

Throughout this survey, we have found that there is much
room to study (i) pre-incident risk mitigation strategies, (ii)
research that assumes physical interaction with humans, and
(iii) essential issues of foundation models themselves. We
emphasize that social measures such as legislation or insur-
ance schemes are also important aspects to enhance mitiga-
tion of physical damage. (➢ Section 5)

Figure 2: Scope of our survey. FMRs are expected to be utilized in
an open world where humans and robots are interacting with each
other. Based on this proposition, our study conducts a comprehen-
sive suvey on physical risk control by categorizing the lifespan of
FMRs into (1) pre-deployment phase, (2) pre-incident phase after
deployment, and (3) post-incident phase. In contrast, prior surveys
of FMRs mainly focused on partial sections of the first two phases.

2 Robotics and Foundation Models
2.1 Conventional Robotics Engineering
Conventional robotics has driven innovation for long, predat-
ing the rise of data-driven techniques. While modern robotics
increasingly rely on deep learning and large-scale data, classi-
cal theories and engineering remain essential. In particular, it
focuses on five pivotal directions: (1) innovative mechanical
design [Sugiura et al., 2024], (2) precise motion control [Sun
et al., 2018], (3) advanced perception systems [Mahler et al.,
2019], (4) planning and decision-making strategies [La Valle,
2011; La Valle, 2011; Hansel et al., 2023], (5) adaptive
learning and optimization methodologies [Zhang et al., 2024;
Saveriano et al., 2023].

Robotics relies on robust mechanics and precise motion
control for seamless interaction with the physical world. En-
gineers continually refine structures and control strategies to
enhance performance, versatility, and user integration [Sug-
iura et al., 2024; Yamamoto et al., 2019; Zhu et al., 2019;
Yamamoto et al., 2019; Hossain, 2023; Zhu et al., 2019]. On
the other hand, perception, planning, and adaptive learning
drive robotic intelligence for open-world deployment. Ad-
vanced perception enables environmental awareness, while
planning and decision-making allow navigation in complex
scenarios [Chen et al., 2019]. Adaptive learning techniques,
including imitation learning, reinforcement learning, and
deep learning-based approaches help robots acquire skills
and adapt to changing task conditions [Zhang et al., 2024;
Saveriano et al., 2023]. Together, these elements bridge me-
chanical capability with intelligent autonomy, enabling robots
to operate effectively in dynamic environments.

2.2 Foundation Model-enabled Robotics (FMRs)
Despite advances in perception, planning, and adaptive learn-
ing, traditional methods often struggle with scalability, gener-
alization, and handling of multimodal information in complex
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environments. Even after the advent of Deep Learning-based
Robotics, in which neural-network models within robot sys-
tems are trained on a specific target task, performance im-
provements were limited, so robots were still expected to
stay in closed environments. Foundation models [Firoozi et
al., 2023] are large scale neural-network models which are
pre-trained on broad data in self-supervised approaches and
can be adapted to a wide range of downstream tasks by fine-
tuning or prompting. They were firstly proposed in the natural
language processing domain [Devlin et al., 2019], eventually
spreading to wide range of modalities including image, video,
and audio because of their remarkable performance and gen-
eralizability [Dosovitskiy et al., 2021; Arnab et al., 2021;
Baevski et al., 2020].

FMRs have recently emerged as large-scale pre-trained
models that integrate language, vision, and action modalities,
enabling robots to generalize across diverse tasks [Firoozi et
al., 2023]. They comprise large language models (LLMs)
and vision-language models (VLMs) for language compre-
hension and visual understanding, enhancing high-level task
planning for long-horizon tasks [Liang et al., 2023]. Addi-
tionally, they include robot transformers that integrate per-
ception, decision-making, and action generation to process
multimodal inputs and generate low-level motion commands
for end-to-end control. Several studies such as RT-1 and RT-X
[Brohan et al., 2022; O’Neill et al., 2023] have trained mod-
els with massive number of demonstration samples collected
from the real world to realize generalization across different
morphologies. π0 [Black et al., 2024] pre-trained a vision-
language-action model on a diverse crossembodiment dataset
with a variety of dexterous manipulation tasks, followed by
fine-tuning with high quality data to enable complex multi-
stage tasks, such as folding multiple articles of laundry or
assembling a box.

3 Potential and Risks
Given their performance and adaptability, FMRs are poised
to be used in an increasing number of real-world applica-
tions, thus speeding up the general adoption of robots in so-
ciety. FMRs will no longer be confined to closed environ-
ments where physical risks are excluded or minimized by re-
stricting the entry of humans and objects, such as factories
or warehouses. Instead, FMRs will be able to perform activ-
ities in an open world where humans and robots are always
in close proximity and physically interacting, e.g. inside a
home, restaurant, or a public square. They are expected to re-
duce or replace many types of repetitive but complex manual
labor, allowing people to pursue more engaging and reward-
ing activities. In countries with low birth rates and increasing
aging populations, FMRs could help stabilize the workforce,
creating a good impact on their economies.

While FMRs are expected to perform a wide variety of
tasks in our open world, they will add many risks to our soci-
ety, such as malicious usage (e.g. fraud), unintentional phys-
ical damage to humans or objects, environmental destruction
due to their high power consumption and resource usage, or
privacy information leakage caused by security vulnerabili-
ties. This survey focuses on the risks of FMRs causing un-

intentional physical damage to humans or objects. As FMRs
are engaged in more challenging tasks that often require con-
tact with people and objects such as housework, surgery or
nursing care, risks of physical damage increase. Of course,
even in such an environment, it is possible to reduce certain
risks through the establishment of social rules and education,
e.g., do not play near robots. However, we cannot completely
eliminate accidents because of misperception of the environ-
ment (e.g. robots in blind spots) or unexpected environmental
changes (e.g., sudden hardware failures).

4 Control of Physical Risks
This section comprehensively summarizes robot control ap-
proaches against physical risks by covering all the lifespan of
FMRs ranging from pre-deployment to post-accident stage.
Specifically, we summarize physical risk control approaches
by dividing the timeline of FMRs into the following three
phases: (1) pre-deployment phase, i.e., risk mitigation phase,
(2) pre-incident phase, i.e., a situation before an incident hap-
pens after deployment, and (3) post-incident phase, i.e., re-
covery and improvement stage. Although some of the sur-
veyed papers include studies that do not use foundation mod-
els, we cite them as technologies that are expected to be uti-
lized in future research of FMRs.

4.1 Pre-deployment Phase
Hardware and Software for Safety
Ensuring safety in robotic systems requires both robust hard-
ware design and software-based safety limits. While physi-
cal mechanisms contribute to risk mitigation, software con-
straints play a crucial role in preventing hazardous behav-
iors and enforcing operational safety [Zacharaki et al., 2020].
Safety-focused hardware includes force-limiting mechanisms
such as series elastic actuators that absorb shocks and re-
strict excessive forces [Bodo et al., 2023], collision detec-
tion sensors with safety prioritized control to stop the robot
motion immediately upon contact [Haddadin et al., 2008],
and artificial skin to enable robots to autonomously sense the
surroundings for enhanced safety while working near people
[Bergner et al., 2022]. Additionally, the use of compliant ma-
terials and soft robotics components helps reduce the risk of
damage or injury during physical interactions [Truby et al.,
2019]. Safety standards like ISO/TS 15066 [Matthias and
Reisinger, 2016] highlight the necessity of mechanical and
electrical safety features, including emergency stop buttons
and torque-limiting mechanisms [Lee et al., 2009].

Software-based safety mechanisms complement hardware
solutions by enforcing predefined constraints to prevent dan-
gerous operations. Common approaches include velocity and
torque limits that curb motor outputs to avoid excessive force
application [Haddadin et al., 2007; Ferraguti et al., 2022;
Haddadin et al., 2007], virtual fences that restrict the robot’s
movement within designated safe areas, and fault monitor-
ing systems that detect anomalies and trigger protective re-
sponses when necessary [Guiochet et al., 2017]. Admittance
control and other safety-aware algorithms dynamically adjust
the robot’s behavior based on external forces to enhance safe
operation in unpredictable environments [Sun et al., 2024b].
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Pre-deployment
Phase (§4.1)

Design Hardware & Software

Force-limiting Mechanisms e.g. [Bodo et al., 2023]
Soft Materials e.g. [Truby et al., 2019]
Collision Detection Sensors e.g. [Haddadin et al., 2008]
Artificial Skin e.g. [Bergner et al., 2022]
Software Constraints e.g. [Haddadin et al., 2007; Sun et al., 2024b]

Dataset &
Training

Curation of Datasets Real-world Datasets e.g. [Shah et al., 2023; O’Neill et al., 2023]

Simulation (*1)
Simulation Datasets e.g. [Puig et al., 2023]
Sim-to-Real e.g. [Ha et al., 2024; Zhang et al., 2024]
Cyber-Physical System e.g. [Zhu et al., 2022; Mandlekar et al., 2018]

Training with Formal
Safety Guarantees

Robust and Constrained Reinforcement Learning
e.g. [Kitamura et al., 2025; Russel et al., 2020]

Evaluation

Simulation (*1) Cyber-Physical System e.g. [Zhou et al., 2024b; Zhu et al., 2022]

Red-Teaming (Against
Adversarial Attacks)

Visual Pertubation e.g. [Chen et al., 2024b; Cheng et al., 2024]
Language Instruction Attacks e.g. [Zhao et al., 2024b]
Backdoor Attacks e.g. [Jiao et al., 2024; Liu et al., 2024a]
Automated Red Teaming e.g. [Karnik et al., 2024]

Pre-Incident
Phase (§4.2)

Runtime Monitoring
Pre-trained LLM / VLM as a Detector e.g. [Zhou et al., 2024a]
Pre-trained Video Models as a Simulator e.g. [Huang et al., 2024]
Specialized Failure Classifier e.g. [Liu et al., 2024c]

Measure Against Out-of-distribution Uncertainty Estimation e.g. [Matsushima et al., 2020b]
Test-time Adaption / Training e.g. [Piriyajitakonkij et al., 2024]

Post-Incident
Phase (§4.3)

Recovery of Robots
Dynamic Replanning e.g. [Shirasaka et al., 2024]
Teleoperation e.g. [Firoozi et al., 2023]
Reset Policy e.g. [Kim et al., 2024]

First Aid Measurement Rescue Robotics e.g. [Schmidgall et al., 2024; Li et al., 2024]

Human-in-the-loop Improvement Weighted Imitation Learning e.g. [Liu et al., 2023]
Human-in-the-loop Reinforcement Learning e.g. [Luo et al., 2024]

Figure 3: Categorization of physical risk control approaches for FMRs. (*1) Simulation plays a critical role as both a training environment
and an evaluation framework. For simplicity, we integrated both of the contents into one subsection as “Simulation” in §4.1.

Together, these hardware and software measures form a ro-
bust safety framework, ensuring mechanical reliability and
controlled operation for safe robotic deployment. Together,
these hardware and software considerations create a compre-
hensive safety framework, ensuring both mechanical robust-
ness and controlled operational behavior for reliable and safe
robotic deployment.

Curation of Datasets
In the era of FMRs, curation of large-scale datasets with a
wide variety of tasks is important for pre-training FMRs to in-
crease generalization skills. Empirical evidence suggests that
domain generalization abilities improve significantly when
larger models are (pre-)trained on larger and more diverse
datasets, indicating the reduction of risk of out-of-distribution
(➢ Measure Against Out-of-distribution).

Real-world datasets are often the most intuitive and ac-
curate source of information required for high performing
FMRs. However, creating large scale and high quality real-
world datasets for robotics is challenging due to its cost
[Khazatsky et al., 2024; O’Neill et al., 2023]. For exam-
ple, collecting a good set of demonstration data requires in-

tense labour and skilled operators. The scaling cost increases
proportional to the diversity of tasks, skills, objects, envi-
ronments and embodiments. BREMEN [Matsushima et al.,
2020a] introduces a deployment-efficient model-based rein-
forcement learning approach that achieves policy learning
with significantly fewer environment interactions by training
a model of the environment and using offline optimization to
update policies without excessive real-world data collection.

GNM [Shah et al., 2023] is a recent notable effort which
successfully integrated six different large-scale navigation
datasets, formulated a unified navigation interface based on
waypoints, and deployed it on different mobile platforms.
Another significant effort on manipulation tasks is RT-X
[O’Neill et al., 2023], which is a joint collaboration among
34 laboratories with the goal to establish a standardized data
format across 60 existing datasets with 22 robot embodi-
ments. To further aid diversity in task and modality volumes,
RH20T [Fang et al., 2023] collected over 110k manipulation
episodes, covering more than 140 contact-rich skills, includ-
ing well calibrated RGB, depth, force-torque, tactile, propri-
oception, audio and language instruction.
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Simulation
Simulation plays a pivotal role in robotics given the risks
and costs associated with physical testing of robots, such
as potential damage to the robot, harm to humans, or unin-
tended environmental impacts. It offers a safe and controlled
environment to design, test, and refine robotic systems be-
fore their deployment in real-world scenarios [Rohmer et al.,
2013; Huck et al., 2023; Kargar et al., 2024]. This is espe-
cially important in the era of FMRs, which is a probabilistic-
based approach at its core aimed at a wide variety of tasks.

One of the critical applications of simulation is Sim-to-
Real (Sim2Real) policy learning, which enables robots to de-
velop and validate control policies in simulated environments
[Bohlinger et al., 2024]. Sim2Real helps mitigate safety con-
cerns by enabling extensive testing under diverse and chal-
lenging conditions, allowing us to identify potential failures,
refine safety constraints, and ensure robust real-world per-
formance [Zhao et al., 2020]. Advanced simulation frame-
works like NVIDIA Isaac Sim, Isaac Lab [Mittal et al., 2023],
and Genesis [Genesis-Authors, 2024] help bridge the “real-
ity gap” with accurate physics modeling, and high-fidelity
graphics, which is essential for safety assurance in the pre-
deployment phase.

Additionally, the robot in the simulator can receive control
inputs from the physical world, creating a seamless cyber-
physical system [Zhou et al., 2024b]. This integration not
only allows real-world devices, such as controllers or sensors,
to interact with the virtual robot for testing and development
in a simulation environment [Zhu et al., 2022], but also facil-
itates the training of robot control policies through imitation
learning. Demonstrations can be provided via teleoperation
[Mandlekar et al., 2018], enabling the robot to learn complex
tasks in a safe and scalable manner within the simulation.

Simulation is also used to generate greater amounts of
training data. Simulation can efficiently create diverse range
of domain randomized data which is expected to promote
generalization ability of models in FMRs. Generative sim-
ulations Genesis [Genesis-Authors, 2024], Gen2Sim [Katara
et al., 2024], and FACTORSIM [Sun et al., 2024a] have
emerged as a promising solution by automating the creation
of diverse, scalable environments and facilitating broader
coverage of training conditions. Habitat 3.0 [Puig et al.,
2023] and AI2THOR [Kolve et al., 2017] are another line
of effort for interactive environment frameworks focusing on
scene realism for both navigation and manipulation tasks.

Red-teaming (Against Adversarial Attacks)
Red-teaming is the practice of simulating an enemy team at-
tempting to perform some type of attack or other hostile ac-
tion to the organization (i.e., blue team). It is common prac-
tice in the fields of defense, security and IT operations, where
militaries and system administrators test their own systems
in search of weak points that could be exploited. Recent
LLM developers also organize red-teaming to assess the mod-
els’ vulnerabilities by comprehensive stress-testing [Lin et
al., 2024]. In the case of FMRs, the practice is not yet as
common, but it is expected to popularize as they continue to
improve and the range of tasks they can perform reaches hu-
man or above level. As a pioneering example, [Karnik et al.,

2024] uses automated red teaming techniques with VLMs to
generates diverse and challenging instructions. Experimental
results show that state-of-the-art models frequently fail or be-
have unsafely on the tests, underscoring the shortcomings of
current benchmarks.

One promising technique for stress-testing FMRs in red-
teaming is adversarial attacks [Costa et al., 2024]. It is well
known that models utilizing deep neural networks (DNNs)
are vulnerable to small input perturbations. Because FMRs
are based on LLMs and VLMs, which themselves rely on
DNNs, many similar problems have been reported. In the
case of FMRs, it is especially important to understand which
types of attacks they are vulnerable to, since these models not
only make recognition errors but also act in the real world.

For example, as a direct attack on FMRs, [Chen et al.,
2024b] reports that both global perturbation attacks on Dif-
fusion Policy and adversarial patches in a physical environ-
ment are effective in online and offline settings. [Cheng et
al., 2024] investigates the robustness of VLAs against vari-
ous visual attacks such as Gaussian noise, changes in bright-
ness, Adversarial Patches that modify part of an image, and
Visual Prompts (e.g., adding the word “Stop” into images
to control behavior). [Jiao et al., 2024; Liu et al., 2024a;
Wang et al., 2024] show vulnerabilities to backdoor attacks
that use everyday objects (e.g., a yellow CD) as triggers to
degrade behavior. [Zhao et al., 2024b] have proposed to add
adversarial suffixes to language inputs.

On the other hand, despite these demonstrated vulnerabil-
ities, [Zhao et al., 2024b] reports that many current FMRs
have discrete action spaces, making standard attacks less ef-
fective. Still, in cases where attackers have access to internal
features, using these features can increase the success rate
of adversarial attacks, indicating the need for continued re-
search on countermeasures. Because FMRs generally rely on
LLMs and VLMs, it is necessary to verify the effectiveness
of methods proven to work well in those models. Another
challenge in research on adversarial attacks against FMRs is
the lack of standard evaluation metrics. Although vulnera-
bilities have been studied in various components—ranging
from simulations and real-world settings to planning vision
modules—research on FMRs is still in its early stages, and
a unified evaluation strategy remains insufficient. In partic-
ular, because the environments in which robots are expected
to operate can be extremely diverse and because the dynam-
ics of different robots vary, further validation is required to
determine how generalizable the current findings are. As an
earlier example of such attempts, [Lu et al., 2024] proposes
Harmful-RLbench, which evaluates the planning capabilities
of LLMs in an environment featuring 25 distinct task scenar-
ios. Moreover, [Zhao et al., 2024b] develops VIMA-bench,
an evaluation benchmark covering 13 types of robotic manip-
ulation tasks.

Training with Formal Safety Guarantees
Safe controller design during the pre-deployment phase has
been extensively studied in the field of robust control the-
ory. Since the exact knowledge of the environment is un-
known before deploying the robot, robust design accounts for
environmental uncertainty and incorporates conservative risk
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management into the robot controller.
Robust model predictive control and H∞ optimal

control [Bemporad and Morari, 2007; Zames, 1981;
Doyle, 1982] are the representative robust control methods
in linear dynamical systems, where the system is modeled as
x(t+1) = Ax(t)+Bu(t). Here, x(t) ∈ Rn and u(t) ∈ Rm rep-
resent the system state and input signal, respectively. These
robust controllers guarantee safety satisfaction even when the
dynamics matrices (A,B) perturb from the nominal matrices.

However, linear models are unsuitable for modeling the
recent nonlinear and high-dimensional input systems that
FMRs aim to control (➢ Section 2.2). Robust reinforcement
learning (RL) offers an alternative framework, capable of ad-
dressing robust nonlinear control problems when combined
with function approximation techniques [Moos et al., 2022].
However, robust RL alone is insufficient to achieve both high
performance and safety, as ensuring safety typically involves
solving constraint satisfaction problems (e.g., obstacle avoid-
ance in self-driving systems [Altman, 1999]). While the RL
community has recently begun exploring the combination of
safety constraints and robustness [Mankowitz et al., 2020;
Russel et al., 2020], theoretical results in this area remain
limited. A recent result by [Kitamura et al., 2025] presents an
algorithm for computing a robust and constrained controller
in a tabular Markov decision process setting. However, it
does not account for the challenges posed by nonlinear dy-
namics, which are crucial for FMRs. In short, the theoretical
question: “When and how can we realize robust constrained
control in FMRs?” remains largely unanswered.

4.2 Pre-Incident Phase
Runtime Monitoring
Runtime monitoring is one of the fundamental tools for en-
suring safety in robot policies. The monitoring systems are
sometimes called “critics” of the policy analogical to actor-
critic of reinforcement learning [Sutton and Barto, 2018].

Recently, LLMs, VLMs, and video prediction models have
been utilized as critics of robot policies. Firstly, VLMs
are utilized to detect success (or failure) in policy rollouts.
For example, [Kanazawa et al., 2023] proposes to lever-
age VLMs to detect state change of objects in cooking tasks,
which is useful for executing task plans. Secondly, VLMs are
used for constraint monitoring. Code-as-monitor [Zhou et al.,
2024a] leverages VLMs for generating programs for mon-
itoring robot policy rollouts from robot image observations
and descriptions of constraints generated by LLMs. Thirdly,
[Huang et al., 2024; Escontrela et al., 2023] utilized log-
likelihood of pre-trained video prediction models as a reward
signal for the robot’s actions to monitor in real time whether
the state transitions in the environment are being properly
learned.

Another approach to runtime monitoring involves training
a failure classifier using human intervention data. Specif-
ically, these methods leverage robot demonstration data to
train a world model, enabling the learning of latent repre-
sentations. By utilizing these latent representations along
with human intervention flags, a failure detector can be
trained [Liu et al., 2024c]. Such methods are particularly ef-
fective as automated safety validators when robots are operat-

ing in parallel within an environment and sequentially learn-
ing policies [Liu et al., 2024d].

Measure Against Out-of-distribution
After deploying a trained model in real-world scenarios, we
may encounter out-of-distribution (OOD), in which robot in-
puts fall outside the data distribution used to train a model.
Measures against this situation are crucial for safety when de-
ploying robots in real-world scenarios. Specifically, the test
data Dtest is sampled from a distribution Ptest , which in-
variably differs from the training distribution Ptrain . This
discrepancy highlights the challenge of distributional shifts.

A key research to mitigate this risk is improving dis-
tributional robustness by optimizing the worst-case perfor-
mance across various potential distributional shifts, thus en-
suring dependable OOD performance [Ben-Tal et al., 2012;
Duchi and Namkoong, 2020]. However, since Ptest is not di-
rectly accessible and the model f is learned from a finite set
of training samples Dtrain, there is no guarantee that f will
make accurate predictions during testing. Uncertainty esti-
mation focuses on determining when and where the model
individual predictions can be trusted, and, conversely, where
confidence is lacking [Matsushima et al., 2020b; Garnelo
et al., 2018b; Garnelo et al., 2018a; Kingma, 2013]. Be-
sides, causal inference is leveraged to address the root cause
of poor generalization under distributional shifts. Learned
models often rely on spurious correlations present in Dtrain,
rather than capturing the invariant cause-and-effect relation-
ships that drive the underlying process [Peters et al., 2015;
Arjovsky et al., 2020; Pearl, 2009] In recent years, con-
cepts such as test-time adaption/training [Wang et al., 2021;
Sun et al., 2020; Piriyajitakonkij et al., 2024; Park et al.,
2024] have been introduced into robotics research. Test-time
adaptation allows a model to adjust its internal parameters or
normalization statistics using the unlabeled data encountered
during deployment, while test-time training leverages auxil-
iary self-supervised tasks to update the model during infer-
ence.

4.3 Post-incident Phase
Recovery of Robots
In the post-incident phase, FMRs play a vital role in au-
tonomously detecting, assessing, and mitigating more haz-
ardous risks [Chen et al., 2024a]. These systems leverage
real-time monitoring and fault detection to identify anoma-
lies, such as hardware malfunctions or environmental changes
[Shirasaka et al., 2024]. Once a risk is detected, founda-
tion models enable dynamic replanning to adjust trajectories
or control policies, ensuring safe operation. However, when
autonomous recovery is insufficient, errors can also be ad-
dressed through human intervention, such as teleoperation,
ensuring flexibility and safety in complex scenarios [Liu et
al., 2024b].

Additionally, learning-based reset mechanisms play a cru-
cial role in preventing robots from entering non-reversible
states during reinforcement learning, improving safety, and
reducing the need for manual intervention. For instance, a re-
set policy can reduce the number of entering non-reversible
states, and manual resets to learn a task, while enhancing
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safety and improving learning efficiency [Eysenbach et al.,
2018]. Similarly, reset-based deep ensemble methods en-
hance sample efficiency in safe RL by overcoming the lim-
itations of the vanilla reset method [Kim et al., 2024].

Foundation models also demonstrate the potential to re-
solve deadlocks in multi-agent robotic systems (MRS) by
using high-level planners such as LLMs or VLMs [Garg et
al., 2024], ensuring smooth collaboration among agents. In
safety-critical situations, the system may communicate risks
to operators, ensuring effective recovery when autonomous
methods fall short [Eder et al., 2014]. By integrating proac-
tive monitoring, adaptive planning, and contextual decision-
making, foundation models enhance reliability and safety
across dynamic environments [Firoozi et al., 2023].

First Aid Measurement

When humans and objects are physically damaged by robots,
immediate first aid measures are extremely important. In this
situation, two types of first aid measures are possible. One is
to call for help from rescue people/robots, the other is to call
for help from the nearby robot that caused the damage itself
to conduct basic first aid treatment.

Rescue robots [Delmerico et al., 2019] are designed to help
search and rescue people in the event of a disaster or emer-
gency situation. They have been actively studied since before
the advent of FMRs. Recently, several studies have devel-
oped robot models for human rescue by learning from data
to improve quality and expand activity to more challenging
situations, such as surgical robot systems or assistants [Yue et
al., 2023; Schmidgall et al., 2024], and robot-assisted pedes-
trian evacuation in fire scenarios [Li et al., 2024]. However,
there is no guarantee that such specialized robots will always
be near humans in emergency situations in our open world.
Therefore, it will be necessary for robots that do not special-
ize in emergency rescue tasks to have the functionality to pro-
vide temporary aid, such as checking life signs, automatic call
for an ambulance or rescue people/robots, provide useful in-
formation to nearby people, or stop bleeding with bandages.

Human-in-the-loop Improvement

Human-in-the-loop improvement aims to build a continuous
improvement mechanism or pipeline that collects effective
feedback from humans for model training by leveraging hu-
man intervention history or demonstrations. There are some
pioneering studies on human-in-the-loop improvements that
are expected to be applied to FMRs in the future. One such
approach involves continuous human monitoring of policy
deployment, where a human intervenes to stop the robot when
a failure is imminent. The data immediately prior to the inter-
vention is then used as negative examples for weighted imita-
tion learning [Liu et al., 2023]. The positive success data and
negative failure data obtained through intervention in a sub-
optimal policy are also highly compatible with RL. There are
methods that leverage this by storing both successful policy
rollouts and intervention data in an RL replay buffer, enabling
the policy to learn from failures through reinforcement learn-
ing [Luo et al., 2024].

5 Conclusion and Discussion
Our survey comprehensively summarized robot control ap-
proaches against physical risks by covering all the lifespan of
FMRs ranging from pre-deployment to post-accident stage.

From this survey, we found that there is much room for fu-
ture work of FMRs on the following three points. (i) Con-
sidering that there are a myriad of environments and task
varieties in the real world, we need to pay more attention
to risk mitigation before an actual incident happens (e.g.,
stress-testing as broadly as possible with red-teaming, pro-
mote generalizability of FMRs to prevent OOD, detection
and intervention in failures at the earliest stage). (ii) Accel-
erating research that assumes physical interactions with hu-
mans in more realistic world settings (e.g., improving learn-
ing methods to strictly observe social rules, or research in the
post-incident phase such as continuous improvement mech-
anisms and prevention of more hazards after an incident).
(iii) While we can easily adapt pre-trained foundation models
to a specific task with a small number of samples by fine-
tuning or prompting, it becomes important to tackle essential
issues of foundation models themselves when applying them
to robotics (e.g., how to ensure the quality of large-scale pre-
training datasets to prevent malfunction of trained models in
robots, or how well do LLMs or VLMs understand the phys-
ical world in terms of predicting hazards, such as collision
prediction between humans and robots through monitoring
their motions and surrounding environment).

We also emphasize that in addition to the technical aspects,
social measures such as legislation, insurance schemes, and
ethical guidelines are important to enhance aftercare of phys-
ical damage in practice. We hope that this study will be a
milestone in providing a high-resolution analysis of the phys-
ical risks of FMRs and their control, contributing to the real-
ization of a good human-robot relationship.
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efficiency in robotics: The control barrier functions ap-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

proach. IEEE Robotics & Automation Magazine, pages
139–151, 2022.

[Firoozi et al., 2023] Roya Firoozi, Johnathan Tucker,
Stephen Tian, Anirudha Majumdar, Jiankai Sun, Weiyu
Liu, Yuke Zhu, Shuran Song, Ashish Kapoor, Karol
Hausman, et al. Foundation models in robotics: Ap-
plications, challenges, and the future. IJRR, page
02783649241281508, 2023.

[Garg et al., 2024] Kunal Garg, Jacob Arkin, Songyuan
Zhang, Nicholas Roy, and Chuchu Fan. Large language
models to the rescue: Deadlock resolution in multi-robot
systems. arXiv preprint arXiv:2404.06413, 2024.

[Garnelo et al., 2018a] Marta Garnelo, Dan Rosenbaum,
Christopher Maddison, Tiago Ramalho, David Saxton,
Murray Shanahan, Yee Whye Teh, Danilo Rezende, and
SM Ali Eslami. Conditional neural processes. In ICML,
pages 1704–1713. PMLR, 2018.

[Garnelo et al., 2018b] Marta Garnelo, Jonathan Schwarz,
Dan Rosenbaum, Fabio Viola, Danilo J Rezende, SM Es-
lami, and Yee Whye Teh. Neural processes. arXiv preprint
arXiv:1807.01622, 2018.

[Genesis-Authors, 2024] Genesis-Authors. Genesis: A uni-
versal and generative physics engine for robotics and be-
yond, December 2024.

[Guiochet et al., 2017] Jérémie Guiochet, Mathilde Machin,
and Hélène Waeselynck. Safety-critical advanced robots:
A survey. Robotics and Autonomous Systems, 94:43–52,
2017.

[Ha et al., 2024] Huy Ha, Yihuai Gao, Zipeng Fu, Jie Tan,
and Shuran Song. Umi on legs: Making manipulation poli-
cies mobile with manipulation-centric whole-body con-
trollers. arXiv preprint arXiv:2407.10353, 2024.

[Haddadin et al., 2007] Sami Haddadin, Alin Albu-Schäffer,
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Asfour. Reinforcement learning for safety testing: Lessons
from a mobile robot case study, 2023.

[Jiao et al., 2024] Ruochen Jiao, Shaoyuan Xie, Justin Yue,
Takami Sato, Lixu Wang, Yixuan Wang, Qi Alfred Chen,
and Qi Zhu. Exploring backdoor attacks against large
language model-based decision making. arXiv preprint
arXiv:2405.20774, 2024.

[Kanazawa et al., 2023] Naoaki Kanazawa, Kento Kawa-
harazuka, Yoshiki Obinata, Kei Okada, and Masayuki
Inaba. Recognition of heat-induced food state changes
by time-series use of vision-language model for cooking
robot. In ICoIAS, 2023.

[Kargar et al., 2024] Seyed Mohamad Kargar, Borislav Yor-
danov, Carlo Harvey, and Ali Asadipour. Emerging trends
in realistic robotic simulations: A comprehensive system-
atic literature review. IEEE Access, 12:191264–191287,
2024.

[Karnik et al., 2024] Sathwik Karnik, Zhang-Wei Hong,
Nishant Abhangi, Yen-Chen Lin, Tsun-Hsuan Wang,
and Pulkit Agrawal. Embodied red teaming for au-
diting robotic foundation models. arXiv preprint
arXiv:2411.18676, 2024.

[Katara et al., 2024] Pushkal Katara, Zhou Xian, and Kate-
rina Fragkiadaki. Gen2sim: Scaling up robot learning in
simulation with generative models. In ICRA, pages 6672–
6679. IEEE, 2024.

[Khazatsky et al., 2024] Alexander Khazatsky, Karl Pertsch,
Suraj Nair, Ashwin Balakrishna, Sudeep Dasari, Siddharth
Karamcheti, Soroush Nasiriany, Mohan Kumar Srirama,
Lawrence Yunliang Chen, Kirsty Ellis, et al. Droid: A
large-scale in-the-wild robot manipulation dataset. arXiv
preprint arXiv:2403.12945, 2024.

[Kim et al., 2024] Woojun Kim, Yongjae Shin, Jongeui Park,
and Youngchul Sung. Sample-efficient and safe deep
reinforcement learning via reset deep ensemble agents.
NeurIPS, 36, 2024.

[Kingma, 2013] Diederik P Kingma. Auto-encoding varia-
tional bayes. arXiv preprint arXiv:1312.6114, 2013.

[Kitamura et al., 2025] Toshinori Kitamura, Tadashi
Kozuno, Wataru Kumagai, Kenta Hoshino, Yohei Hosoe,
Kazumi Kasaura, Masashi Hamaya, Paavo Parmas, and
Yutaka Matsuo. Near-Optimal Policy Identification in
Robust Constrained Markov Decision Processes via
Epigraph Form. In ICLR, 2025.

[Kolve et al., 2017] Eric Kolve, Roozbeh Mottaghi, Winson
Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti, Matt
Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, et al.
Ai2-thor: An interactive 3d environment for visual ai.
arXiv preprint arXiv:1712.05474, 2017.

[La Valle, 2011] Steven M. La Valle. Motion planning. IEEE
Robotics & Automation Magazine, 18(2):108–118, 2011.

[Lee et al., 2009] Woosub Lee, Junho Choi, and Sungchul
Kang. Spring-clutch: A safe torque limiter based on a
spring and cam mechanism with the ability to reinitialize
its position. In IROS, pages 5140–5145, 2009.

[Li et al., 2024] Chuan-Yao Li, Fan Zhang, and Liang Chen.
Robot-assisted pedestrian evacuation in fire scenarios
based on deep reinforcement learning. Chinese Journal
of Physics, 92:494–531, 2024.

[Liang et al., 2023] Jacky Liang, Wenlong Huang, Fei Xia,
Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs
for embodied control. In ICRA, pages 9493–9500. IEEE,
2023.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Lin et al., 2024] Lizhi Lin, Honglin Mu, Zenan Zhai, Ming-
han Wang, Yuxia Wang, Renxi Wang, Junjie Gao, Yixuan
Zhang, Wanxiang Che, Timothy Baldwin, et al. Against
the achilles’ heel: A survey on red teaming for generative
models. corr abs/2404.00629 (2024), 2024.

[Liu et al., 2023] Huihan Liu, Soroush Nasiriany, Lance
Zhang, Zhiyao Bao, and Yuke Zhu. Robot learning on
the job: Human-in-the-loop autonomy and learning dur-
ing deployment. In Robotics: Science and Systems (RSS),
2023.

[Liu et al., 2024a] Aishan Liu, Yuguang Zhou, Xianglong
Liu, Tianyuan Zhang, Siyuan Liang, Jiakai Wang, Yanjun
Pu, Tianlin Li, Junqi Zhang, Wenbo Zhou, et al. Compro-
mising embodied agents with contextual backdoor attacks.
arXiv preprint arXiv:2408.02882, 2024.

[Liu et al., 2024b] Haokun Liu, Yaonan Zhu, Kenji Kato,
Atsushi Tsukahara, Izumi Kondo, Tadayoshi Aoyama,
and Yasuhisa Hasegawa. Enhancing the llm-based robot
manipulation through human-robot collaboration. RA-L,
9(8):6904–6911, 2024.

[Liu et al., 2024c] Huihan Liu, Shivin Dass, Roberto Martı́n-
Martı́n, and Yuke Zhu. Model-based runtime monitoring
with interactive imitation learning. In ICRA, 2024.

[Liu et al., 2024d] Huihan Liu, Yu Zhang, Vaarij Betala,
Evan Zhang, James Liu, Crystal Ding, and Yuke Zhu.
Multi-task interactive robot fleet learning with visual
world models, 2024.

[Lu et al., 2024] Xuancun Lu, Zhengxian Huang, Xinfeng
Li, Wenyuan Xu, et al. Poex: Policy executable embod-
ied ai jailbreak attacks. arXiv preprint arXiv:2412.16633,
2024.

[Luo et al., 2024] Jianlan Luo, Charles Xu, Jeffrey Wu, and
Sergey Levine. Precise and dexterous robotic manipula-
tion via human-in-the-loop reinforcement learning, 2024.

[Mahler et al., 2019] Jeffrey Mahler, Matthew Matl, Vishal
Satish, Michael Danielczuk, Bill DeRose, Stephen
McKinley, and Ken Goldberg. Learning ambidex-
trous robot grasping policies. Science Robotics,
4(26):eaau4984, 2019.

[Mandlekar et al., 2018] Ajay Mandlekar, Yuke Zhu, Ani-
mesh Garg, Jonathan Booher, Max Spero, Albert Tung,
Julian Gao, John Emmons, Anchit Gupta, Emre Orbay,
et al. Roboturk: A crowdsourcing platform for robotic
skill learning through imitation. In CoRL, pages 879–893.
PMLR, 2018.

[Mankowitz et al., 2020] Daniel J Mankowitz, Dan A
Calian, Rae Jeong, Cosmin Paduraru, Nicolas Heess,
Sumanth Dathathri, Martin Riedmiller, and Timothy
Mann. Robust Constrained Reinforcement Learning for
Continuous Control with Model Misspecification. arXiv
preprint arXiv:2010.10644, 2020.

[Matsushima et al., 2020a] Tatsuya Matsushima, Hiroki Fu-
ruta, Yutaka Matsuo, Ofir Nachum, and Shixiang
Gu. Deployment-efficient reinforcement learning via
model-based offline optimization. arXiv preprint
arXiv:2006.03647, 2020.

[Matsushima et al., 2020b] Tatsuya Matsushima, Naruya
Kondo, Yusuke Iwasawa, Kaoru Nasuno, and Yutaka Mat-
suo. Modeling task uncertainty for safe meta-imitation
learning. Frontiers in Robotics and AI, 7:606361, 2020.

[Matthias and Reisinger, 2016] Björn Matthias and Thomas
Reisinger. Example application of iso/ts 15066 to a col-
laborative assembly scenario. In Proceedings of ISR
2016: 47st international symposium on robotics, pages 1–
5. VDE, 2016.

[Mittal et al., 2023] Mayank Mittal, Calvin Yu, Qinxi Yu,
Jingzhou Liu, Nikita Rudin, David Hoeller, Jia Lin Yuan,
Ritvik Singh, Yunrong Guo, Hammad Mazhar, Ajay Man-
dlekar, Buck Babich, Gavriel State, Marco Hutter, and
Animesh Garg. Orbit: A unified simulation framework for
interactive robot learning environments. RA-L, 8(6):3740–
3747, 2023.

[Moos et al., 2022] Janosch Moos, Kay Hansel, Hany Ab-
dulsamad, Svenja Stark, Debora Clever, and Jan Peters.
Robust Reinforcement Learning: A Review of Foun-
dations and Recent Advances. Machine Learning and
Knowledge Extraction, 4(1):276–315, 2022.

[Moroncelli et al., 2024] Angelo Moroncelli, Vishal Soni,
Asad Ali Shahid, Marco Maccarini, Marco Forgione,
Dario Piga, Blerina Spahiu, and Loris Roveda. Integrat-
ing reinforcement learning with foundation models for
autonomous robotics: Methods and perspectives. arXiv
preprint arXiv:2410.16411, 2024.

[O’Neill et al., 2023] Abby O’Neill, Abdul Rehman, Abhi-
nav Gupta, Abhiram Maddukuri, Abhishek Gupta, Ab-
hishek Padalkar, Abraham Lee, Acorn Pooley, Agrim
Gupta, Ajay Mandlekar, et al. Open x-embodiment:
Robotic learning datasets and rt-x models. arXiv preprint
arXiv:2310.08864, 2023.

[Park et al., 2024] Daehee Park, Jaeseok Jeong, Sung-Hoon
Yoon, Jaewoo Jeong, and Kuk-Jin Yoon. T4p: Test-time
training of trajectory prediction via masked autoencoder
and actor-specific token memory. arXiv 2403.10052, 2024.

[Pearl, 2009] Judea Pearl. Causality. Cambridge University
Press, 2009.

[Peters et al., 2015] Jonas Peters, Peter Bühlmann, and
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