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Abstract
Achieving good health and well-being through
lower mortality rates of non-communicable dis-
eases and early warning of health risks are key
goals of United Nations (UN). Wearable internet of
things (IoT) are one of the most promising technol-
ogy to achieve these goals through their ubiquitous
monitoring of key health indicators and in-situ data
processing. However, small form-factor of wear-
able devices constrains the battery capacity, thus
requiring frequent recharging or battery replace-
ments, which lowers their adoption rate and bene-
fits. Augmentation of battery energy by scavenging
ambient sources, such as light, is a promising solu-
tion to improve operating lifetime of IoT devices.
However, ambient energy sources are highly uncer-
tain, making energy management (EM) challeng-
ing. To handle these challenges, this paper presents
a novel uncertainty-aware EM approach. First,
we develop a conformal prediction-based method
for future energy harvest (EH) that provides small
uncertainty regions with provable coverage guar-
antees (true output vector is within the region).
The EH uncertainty regions are then leveraged in
an EM algorithm that uses overhead-aware sam-
pling to evaluate the quality of multiple decisions
with varying EH before making a decision using a
lightweight machine learning model. Experiments
on two diverse real-world datasets with 10 users
show that conformal prediction achieves more than
90% coverage with tight prediction intervals; and
the EM algorithm produces decisions that are, on
average, within 2 Joules of an optimal Oracle.

1 Introduction
The United Nations (UN) good health and well-being so-
cial development goal (SDG) aims to reduce premature
mortality from non-communicable diseases (goal 3.4) and
strengthen the capacity for early warning and health risk re-
duction (goal 3.D). Achieving these goals will require de-
velopment of low-cost and pervasive technologies that can
monitor key health parameters and provide real-time analyt-
ics to users [WHO, 2022; Latif et al., 2018; Amu et al., 2023;

Hussein et al., 2022a; Hussein et al., 2025]. Wearable Inter-
net of Things (IoT) devices offer great potential to achieve
the SDGs by enabling continuous monitoring of symptoms in
free-living environments and provide early warning on health
risks [Hussein et al., 2024a]. Wearable devices can also help
in chronic disease management through monitoring of symp-
toms [Atzori et al., 2010; Espay et al., 2016; Daneault, 2018;
Hussein et al., 2025]. However, widespread adoption of
wearable devices in health settings has been limited due to
small battery capacities and the need for frequent recharg-
ing [Hussein et al., 2022b; Mamun et al., 2022].

Energy harvesting and management are promising tech-
nologies to improve the self-sustainability of IoT de-
vices [Kansal et al., 2007; Odema et al., 2021; Tuncel et al.,
2020]. Indeed, usage of renewable energy sources aligns with
the goal of ensuring access to affordable, reliable, sustain-
able and modern energy SDG 7.1. Reducing dependency on
the grid for recharging of wearable devices will lead to wider
adoption, thus improving health outcomes. It can also lower
the cost of maintenance by minimizing battery replacements.
However, ambient energy sources are highly uncertain with
wide variations across locations, time, seasons, and user be-
havior [Kansal et al., 2007]. Accounting for EH variations at
runtime is critical to ensure device sustainability.

Attaining self-sustainability in IoT devices requires accu-
rate forecasting of future energy availability and effective
management of the device’s energy resources. Predicting fu-
ture energy supply is essential to capture the variability of
energy sources within the system. Energy management (EM)
algorithms must incorporate the uncertainty in future energy
to support optimal decision-making, thereby promoting self-
sustainability and improving application performance [Hus-
sein et al., 2024b]. To address these needs, this paper presents
novel techniques for energy prediction with formally guaran-
teed uncertainty bounds and uncertainty-aware EM.

An effective energy harvest (EH) predictor must meet two
essential requirements: it should deliver high prediction ac-
curacy relative to the ground-truth, and it should generate un-
certainty bounds for each prediction that ensure both high
coverage (the true value falls within the interval) and nar-
row prediction intervals (tight uncertainty bounds). To fulfill
these requirements by design, we introduce an upper-bound
calibrated multi-target conformal prediction (UC-MTCP) ap-
proach aimed at producing compact uncertainty regions for
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EH prediction vectors while maintaining coverage guaran-
tees. The core concept of UC-MTCP is to extend the idea
of single-target conformal prediction [Romano et al., 2019]
to multiple target variables, each corresponding to a future
EH interval, and apply an upper bound correction step during
calibration to construct tight uncertainty regions. We provide
theoretical guarantees for coverage of UC-MTCP.

Forecasting future EH alone is not adequate to ensure the
sustainable operation of IoT devices. This is due to the ne-
cessity of integrating both the predictions and their associ-
ated uncertainty bounds into the EM algorithm to determine
the appropriate energy allocation or budget for each decision
interval. To address this, we design a constrained optimiza-
tion problem that derives energy allocation bounds, aiming to
fulfill application requirements, maximize application perfor-
mance, and preserve energy sustainability, while incorporat-
ing uncertainty in EH predictions.

The EM algorithm employs overhead-aware sampling to
evaluate multiple EM decisions in each decision interval. The
sampling process is designed to span the entire uncertainty
region without surpassing the overhead budget allocated for
EM. Finally, EM decisions must be combined to obtain a sin-
gle energy budget that closely approximates the optimal deci-
sions of an Oracle with access to ground-truth future EH val-
ues. To achieve this, we employ a lightweight machine learn-
ing model that takes candidate decisions from the sampling
step and outputs a decision that aims to mimic the Oracle’s
performance for each time horizon.

We assess the effectiveness of the proposed approach us-
ing EH and activity data drawn from two diverse real-world
datasets [Alemdar et al., 2013; Sztyler et al., 2016]. To gen-
erate ground truth EH data, activity information is combined
with solar irradiation data under both outdoor and indoor con-
ditions. The evaluation demonstrates that our proposed ap-
proach yields decisions that are on average within 2 Joules (J)
of those made by an optimal Oracle. End-to-end implemen-
tation on an IoT device shows that our approaches consume
about 88 mJ in the worst-case scenario with lower energy in
typical scenarios. Compared to baselines, the proposed ap-
proaches also achieve at least 25% improvement in the utility.
Deployment Plan: Our immediate next step is to deploy the
wearable IoT devices in real-world settings. The first step will
validate the EH prediction and management approaches in
outdoor settings that have lower degree of uncertainty. Once
validated in outdoor conditions, the wearable devices will
be deployed in health settings, such as movement disorder
monitoring, to validate the proposed approach with user data.
These validations will be the next step for deployment of the
EM and health algorithms across the world.
In summary, this paper makes the following contributions:

• A novel upper-bound calibrated multi-target conformal
prediction (UC-MTCP) method, enabling reliable un-
certainty quantification and guaranteed coverage across
multiple future energy harvesting (EH) time steps. To
our knowledge, this is the first application of UC-MTCP
with such upper-bound calibration for EH forecasting.

• A novel energy management (EM) strategy that incor-
porates uncertainty in EH predictions to make informed,

optimized runtime decisions.
• Extensive experiments on two real-world activity

datasets featuring both indoor and outdoor EH scenar-
ios. Results demonstrate that our method outperforms
existing baselines by at least 25% in application quality.

2 Problem Setup and Related Work
Problem Setup: We focus on a wearable IoT system com-
posed of multiple sensors and harvesters, as illustrated in
Figure 1. We assume that the device integrates a recharge-
able battery for energy supply. Additionally, we consider that
wearable devices in this study utilize EH from body motion
and ambient light as a means to supplement the battery.

Next, we consider an EM framework where decisions are
made over a fixed time horizon of one day, with each day
partitioned into T equal-length time intervals [Huynh et al.,
2008]. The objective is to develop an EH prediction function
f that, given a set of input features X , produces multiple EH
predictions spanning intervals t through t + H , where H is
the number of future time intervals. Beyond generating these
predictions, the function f must also output reliable uncer-
tainty bounds that satisfy user-specified coverage guarantees
at runtime. The purpose of the EM policy π is to take EH
predictions from f as input and determine an energy budget
for interval t that enhances application performance while en-
suring energy sustainability through energy-neutral operation
(ENO) [Kansal et al., 2007]. In doing so, the policy π must
incorporate uncertainty by strategically sampling from within
the uncertainty region when making decisions.

Related Work: Precise prediction of future EH plays a crit-
ical role in enabling optimal energy allocation. Prior re-
search has explored both analytical and machine learning
techniques to tackle this challenge [Yamin and Bhat, 2023;
Cammarano et al., 2012; Piorno et al., 2009; Wan et al., 2011;
Tuncel et al., 2020], with an emphasis on generating single-
point predictions of future EH. Although these methods offer
estimations, they lack uncertainty quantification (UQ), which
is a crucial requirement for reliable EM decisions in wearable
IoT systems, particularly within health applications.

Studies have also investigated the use of ensemble methods
to generate reliable prediction intervals by leveraging both the
mean (µ) and variance (σ) estimators [Roy and Larocque,
2020; Shrestha and Solomatine, 2006]. While these meth-
ods aim to form effective prediction intervals, they frequently
result in overly conservative bounds and often fall short of
ensuring the required coverage, which is an essential aspect
for practical EM applications. Consequently, there is still a
pressing need for approaches that can deliver compact uncer-
tainty regions while offering provable coverage guarantees.

We propose leveraging the conformal prediction (CP)
framework [Vovk et al., 2005] to address the shortcomings
of existing EH prediction approaches, particularly in the
area of UQ. CP offers a distribution-free UQ framework for
constructing prediction intervals that provide finite-sample,
distribution-free coverage for any given predictive model
[Vovk et al., 2005; Romano et al., 2019; Romano et al., 2020;
Tibshirani et al., 2019; Regression, 2017; Ghosh et al., 2023a;
Ghosh et al., 2023b; Shi et al., 2024; Shahrokhi et al., 2025].
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Sensors & 
Harvesters

Wearable devices

Challenges
• Small batteries
• Limited operating time
• Lower adoption rates

Energy harvesting 
wearable devices

Energy harvest 
prediction w/ MTCP

Monte Carlo 
sampling for EM

EM decisions for 
sustainable op.

UN SDG Goals

Goal 3: Health
• 3.4: Reduction of mortality 
from non-communicable 
diseases

• 3.D Early warning and 
management of risks

Goal 7: Clean Energy
• 7.1: Universal access to 
reliable and modern energy

• Improved energy efficiency 
for devices

Figure 1: Overview of our uncertainty-aware EM approach with
alignment of UN goals.

CP constructs prediction intervals by calculating a nonconfor-
mity score between predictions and ground truth, evaluating
these scores on calibration data, and using a quantile thresh-
old derived from a specified error rate (say 5%). Driven by
the need for compact uncertainty regions in EH predictions,
this work explores the under-studied application of CP in the
context of multi-target regression tasks.

EM for wearable IoT devices has been extensively ex-
plored in prior work [Kansal et al., 2007; Vigorito et al.,
2007; Basaklar et al., 2022; Geisler et al., 2017; Bhat et al.,
2017]. Existing methods for EM include linear programming,
model predictive control, and reinforcement learning. The
EM algorithms aim to maximize device performance while
maintaining ENO. However, these methods overlook the un-
certainty in future EH during decision-making, making them
ill-equipped to adapt to abrupt changes in EH patterns (e.g.,
transitions from cloudy to sunny days). The proposed work
addresses the limitations of prior approaches by reasoning
about uncertainty in multiple future decision intervals, result-
ing in enhanced robustness compared to baseline strategies.

3 Uncertainty Quantification for EH
This section provides a brief background on conformal pre-
diction (CP) followed by our proposed use-inspired CP ap-
proach for uncertainty quantification in EH with guarantees.

3.1 Background on Conformal Prediction
Conformal Prediction (CP) [Romano et al., 2019; Vovk et
al., 2005; Romano et al., 2020; Gibbs et al., 2023; Tibshi-
rani et al., 2019] is a general framework for uncertainty quan-
tification that provides rigorous coverage guarantees for any
black-box predictive model. Given a pre-trained predictive
model f , n new calibration examples with p input features
and a univariate target {(Xi, Yi)}ni=1 where each feature vec-
tor Xi belongs to the input space X ⊆ Rp, and each target
variable Yi belongs to the output space Y ⊆ R (which were
not used during training), the goal is to construct a prediction
set for a new test input Xn+1 such that the corresponding
target variable Yn+1 is contained within the set with a user-
specified confidence level α (say 5%). The CP framework
requires a non-conformity scoring function S : X × Y → R
that quantifies the discrepancy between the predicted value
f(Xi) and the corresponding true output Yi (e.g., absolute
residual) S(Xi, Yi) = |Yi − f(Xi)|. Instead of producing a
single-point prediction f(Xn+1), CP constructs a prediction
interval/region R(Xn+1) ⊆ R that confidently ensures that
the true output Yn+1 falls within it with a probability of at

least 1 − α on average, as shown in Equation 1, providing a
marginal measure of reliability for the model’s predictions.

P[Yn+1 ∈ R(Xn+1)] ≥ 1− α. (1)
For the tasks that involve predicting multiple continuous

target variables simultaneously – also known as multi-target
regression – the target variable is extended to Yi ∈ Rd, where
d is the number of targets. Instead of constructing a single
prediction interval, CP now constructs a d-dimensional pre-
diction region R(Xi) ⊆ Rd, ensuring that the true response
vector Yi is contained within this region with high probabil-
ity. This is the focus of this work as we need to quantify the
uncertainty for EH prediction for horizon H > 1.

3.2 Upper-bound Calibrated Multi-Target CP
We propose a lightweight upper-bound calibrated multi-target
conformal prediction (UC-MTCP) approach designed to con-
struct uncertainty regions for EH with guaranteed theoreti-
cal and empirical coverage. Our approach has minimal com-
putational overhead which is a critical need for resource-
constrained devices.

Given a user-specified error rate, α, and a prediction hori-
zon H , UC-MTCP employs the Conformalized Quantile
Regression (CQR) [Romano et al., 2019] method to con-
struct base prediction intervals for each target horizon h ∈
{1, . . . ,H}. The adjusted error rate for each target is defined
as β = α/H . The prediction interval for each target is con-
structed as:

Rh(X) = [L,U ] = [q̂hβ/2(X), q̂h1−β/2(X)],

where q̂hβ/2(X) and q̂h1−β/2(X) represent the lower and upper
quantile estimates for the h-th target variable, respectively.

Beyond achieving target coverage, it is important to have
an upper bound that is as low as possible to avoid excessive
energy allocation. This is particularly important when the ac-
tual energy harvest is significantly lower than the predicted
upper bound. By adjusting the upper bound, we can mitigate
the risk of energy failure caused by an overestimated alloca-
tion relative to the true energy harvest.

Motivated by this practical need, we incorporate an excess-
aware upper bound calibration step, which regulates the
base upper bound by exploiting overly conservative single-
target horizon predictions where the empirical coverage sig-
nificantly exceeds the target coverage level. To achieve this,
we evaluate the base model Rh on a new upper-bound cal-
ibration dataset Dcal2 = {(Xi, Yi)}, (which was not used
for training and base CP calibration). For each target h and
error rate β, the process begins by computing standard CP
intervals. This involves constructing [L(Xi), U(Xi)] for all
Xi ∈ Dcal2 using Rh and identifying valid cases set Dvalid

Dvalid = {(Xj , Yj) : L(Xj) ≤ Yj ≤ U(Xj) ∀ j ∈ Dcal2}
For these valid cases, we compute the absolute difference

between the ground truth EH and upper bound as

Ej = |Yj − U(Xj)| for all j ∈ Dvalid

Next, the empirical coverage for the upper-bound calibra-
tion dataset Dcal2 is determined as
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ĈUB =

∑|Dcal2|
i=1 1

[
L(Xi) ≤ Yi ≤ U(Xi)

]
|Dcal2|

If the empirical coverage exceeds the desired level
(
i.e.

ĈUB > (1− β)
)
, the excess is computed as

excess = max(0, ĈUB − (1− β))

An adjustment factor (AF ) is then derived as the
“excess”-th percentile of the computed errors

AF = percentile({Ej}|Dvalid|
j=1 ,excess× 100)

Finally, for a new test input Xtest with a base prediction
interval [L(Xtest), U(Xtest)], the adjusted prediction interval
Rh = [L(Xtest), U

′(Xtest)] : U ′(Xtest) = U(Xtest)−AF .
Given the domain knowledge of the non-negativity con-

straint of EH (energy is not negative), we further reduce the
uncertainty regions. Specifically, the prediction interval for
each target variable is adjusted to fall in the positive region:

R+
h(Xtest) =

[
max{0, L(Xtest)},max{0, U ′(Xtest)}

]
,

This constraint leads to tighter uncertainty regions while
maintaining the required coverage levels. The final
constrained H-dimensional uncertainty region becomes:
R+(Xtest) =

∏H
h=1 R+

h(Xtest)

Coverage Guarantee of UC-MTCP: The following theorem
provides the marginal coverage guarantee for our UC-MTCP
approach: the true EH values lie within the predicted uncer-
tainty region with a high probability of at least (1−α). Proof
is presented in the Appendix.

THEOREM 1. Given that all targets h ∈ {1, · · · , H}
preserve the base single target CP coverage at error rate β =
α/H , then for a new test input Xtest, the uncertainty regions
from UC-MTCP R+(Xtest) covers the true target Ytest ∈ RH

with a probability of at least 1− βH , where βH = α

P[Ytest ∈ R+(Xtest)] ≥ 1− α (2)

4 Uncertainty-Aware Energy Management
4.1 Problem Formulation
The EM problem uses the following formulation introduced
in [Kansal et al., 2007] to achieve energy-neutral operation:

max . Q(EA) =

T−1∑
t=0

βt ln

(
Et

A

ME

)
s. t. (3)

Et+1
B = Et

B + ηEt
H − Et

A − Eo, 0 ≤ t ≤ T − 1 (4)

Et+1
B ≥ Emin 0 ≤ t ≤ T − 1 (5)

ET
B ≥ Etarget (6)

Objective: The goal of the EM problem is to determine the
energy allocation (budget) Et

A for each interval t such that
the total quality of service Q is maximized. The quality Q
is captured by the sum of logarithms of energy allocation Et

A
scaled by a constant factor ME at each interval. The scaling

Overhead 
budget

Solve EM 
problem

Sample EH

Time

En
er
gy Aggregate EM 

decision samples
Overhead 
budget > 0?

EH 
Predictions

Features

Yes

EM decision 
using ML model

No

Update overhead budget
Each
Interval

Figure 2: Overhead-aware sampling for energy management.

factor ensures that the quality is positive only when the device
has sufficient energy allocated to achieve a minimum level of
performance through sampling and data processing.
Constraints: The EM problem is constrained by the battery
dynamics through EH and minimum battery levels. Specif-
ically, the first constraint in Equation 4 captures the device
battery dynamics whereby the battery level at the beginning
of any interval t+1 is given by the battery level in t, stochas-
tic EH Et

H with efficiency η, energy decision Et
A in interval

t, and EM overhead Eo. The next constraint specifies that the
device battery level must always be greater than or equal to
Emin to account for any emergency situations, such as falls.
Finally, Equation 6 ensures ENO operation for the device by
constraining the battery level at the end of a horizon(ET

B) to
be greater than a target value of Etarget.
Solution Approach: Concave logarithmic objective and lin-
ear constraints result in a convex optimization problem to
achieve ENO in wearable devices [Boyd and Vandenberghe,
2004]. Common approaches to solve the problem include
interior-point methods [Boyd and Vandenberghe, 2004] or
with iterative solvers. It is useful to leverage iterative solvers
in wearable devices since they can be fine-tuned to balance
accuracy and decision-making overhead. Consequently, we
propose to utilize the iterative gradient projection (IGP) algo-
rithm [Karakoç et al., 2020] to solve the EM problem.

Even with an iterative algorithm, it is not practical to obtain
optimal EM decisions at runtime due to lack of knowledge
and uncertainty in future EH. However, an upper bound on the
quality of EM decisions can be obtained by solving the EM
problem offline with actual EH values. The optimal solutions
are used as an Oracle policy to evaluate the effectiveness of
real-world EM policies that use estimates of future EH.

4.2 Overhead-Aware Sampling of EH Uncertainty
The EM algorithm on the wearable device must carefully han-
dle the uncertainty in EH so that the EM decisions maximize
the application QoS while maintaining ENO. Algorithm 1
and Figure 2 show the overhead-aware sampling to handle
the uncertainty in future EH. The algorithm takes EH predic-
tions and uncertainty regions from UC-MTCP, EM budget,
and current battery level as inputs at the beginning of each
interval t. The uncertainty region must be sampled uniformly
to ensure that the EM decisions are not skewed by a small
region of the EH predictions. The EM algorithm must also
balance the granularity of sampling with the overhead of per-
forming EM evaluation. Therefore, the EM algorithm starts
with an energy budget for decision-making and samples the
uncertainty region randomly until the budget is used.

Each H-dimensional sample from the uncertainty region
provides prediction of future EH for intervals t to t + H .
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Algorithm 1: Overhead-Aware Sampling for EM
Decision-Making

1 Input: UC-MTCP EH uncertainty region for intervals t to
t+H , Overhead budget Eo, Features X and Battery Et

B

2 MEA ← Initialize decision matrix
3 while Eo ≥ 0 do
4 [Êt

H , . . . , Êt+H
H ]← Sample from uncertainty region

5 [Ẽt
A, . . . , Ẽ

T−1
T ]← Solve EM problem with EH

samples
6 MEA ← [MEA ; [Ẽ

t
A, . . . , Ẽ

T−1
T ]]

7 Eo ← Eo − EIGP

8 end
9 Use MEA and X as input for ML model to obtain EM

decision
10 return EM decision

These predictions are used in the EM problem to obtain po-
tential energy allocations for intervals t to T − 1. The deci-
sions are then stored in a matrix so that all potential decisions
can be used to make the final EM decision. The EH sampling
and EM evaluation are executed until the energy budget for
EH sampling is exhausted. Finally, the matrix with candidate
EM decisions from the EH sampling is provided as input to
the proposed ML model for making the final EM decision.

4.3 Lightweight ML Model for Oracle Tracking

The EM algorithm running on wearable IoT devices must
make an overall energy allocation decision using the indi-
vidual candidate decisions as a result of the EH sampling.
A naive approach is to randomly choose a decision from the
overhead-aware sampling. However, random decisions do not
adequately account for the uncertainty in EH or error with re-
spect to the Oracle. Therefore, the proposed approach trains
a lightweight ML model that aims to follow Oracle decisions.

Input Features: As described above, the overhead-aware
sampling of EH provides potential EM decisions for intervals
t to T −1. In particular, different levels of EH uncertainty are
considered in each row of the decision matrix, thus they can
be used as a key feature for decision-making. We utilize the
average of EM decisions as features since the sampling may
differ in each interval due to changes in overhead budget. The
ML model also utilizes the features used to UC-MTCP in EM
decision-making since they provide insight into past EH val-
ues. Overall, the ML model utilizes EH prediction features
X and Êt+1

A − Êt+H
A , where Êt+1

A represents the average of
potential EM decisions as features in EM decision-making.

Training Target: The goal of the ML model is to obtain de-
cisions that are close to the Oracle without knowledge of fu-
ture EH. Consequently, we utilize the Oracle decisions as the
training target for the ML model. The Oracle is obtained of-
fline using actual EH values in the EM problem formulation.

Model Structure: We note that EM decisions can be ob-
tained with any supervised learning algorithm. Fully con-
nected neural networks are used in this work due to their low
overhead and strong performance in diverse scenarios.

5 Experimental Results
5.1 Experimental Setup
Wearable IoT Device Model: Our device model centers on a
wearable IoT device that includes with five energy harvesters
and various sensors. It incorporates piezoelectric sensors po-
sitioned at four locations on the knees and elbows to harvest
motion energy. Furthermore, the device has an SP3-37 [Flex-
SolarCells, 2013] flexible photovoltaic (PV) cell for light EH.
Datasets: We leverage activity data from two publicly avail-
able datasets: 1) the ARAS dataset [Alemdar et al., 2013] and
2) the Mannheim dataset [Sztyler et al., 2016] for evaluation
in both indoor and outdoor environments. Activity data for
four users from two houses over 30 days are included in the
ARAS dataset, while data from six users for two weeks are
included in the Mannheim dataset.

The user activity data for both datasets are limited in dura-
tion to perform a comprehensive evaluation of the proposed
approach in different conditions. Therefore, both datasets are
extended to cover a six-year period (2015–2020) by shuffling
and augmenting the original activity data. Typical EH levels
from motion and ambient light irradiance are combined with
the activity data to obtain ground truth EH values for each
interval [Tuncel et al., 2020; Andreas and Stoffel, 1981].
Data Splitting: The energy dataset is divided into three sets:
training (2015), validation (2016), and testing (2017–2020).
Proposed CP Parameters: The UC-MTCP configuration in-
cludes the base CQR prediction model architecture, predic-
tion horizon H , and error rate α = 0.1 corresponding to a
0.9 expected marginal coverage level. The neural network
model is composed of three layers, each containing 64 units.
For each prediction horizon H ∈ {2, 3, 4, 5}, and each target
h ∈ {1, ...,H}, we set the error rate to β = 0.1/H .
Proposed EM Parameters: The EM parameters consist of
the decision intervals, battery constraints, and ML model
structure. The EM horizon covers a full 24-hour period, seg-
mented into 24 decision intervals corresponding to each hour
of the day. The battery’s energy goal is defined as 100 J, with
a minimum energy threshold of 10 J. The framework employs
a discount factor γ of 0.99. The QoS ME is set to eight. The
ML model is implemented as a fully connected neural net-
work comprising three hidden layers, each with 32 neurons.
Evaluation Metrics: The UC-MTCP framework is assessed
based on the coverage and the size or area of the resulting un-
certainty region. Subsequently, we analyze the effectiveness
of individual EM decisions by benchmarking them against
the Oracle. The evaluation metric for both the proposed EM
methods is the mean absolute error (MAE) relative to the Ora-
cle. Lastly, the cumulative quality of service Q over the hori-
zon is used as a measure of overall performance.

5.2 Baseline Methods for Comparison
Baseline Point Prediction Method: EM algorithms typi-
cally use point predictions of EH to guide decisions through
iterative algorithms. Although various point prediction tech-
niques can be applied, this approach adopts a simple and com-
putationally efficient strategy by using the average of actual
EH values from the past three days as the point forecast.
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Figure 3: Comparison of coverage for Ensemble and UC-MTCP un-
certainty regions for ARAS and Mannheim datasets across all users
in Horizon 4. Similar results are observed for all other prediction
horizons for both datasets.

Baseline uncertainty region with Ensemble Method: The
ensemble approach employs a set of random forests to gener-
ate EH predictions. These individual forecasts are aggregated
to construct prediction intervals based on the mean (µ) and
variance (σ) of predictions. Specifically, the interval bounds
are calculated as: (µ ± σ). The overall uncertainty region
across all prediction horizons is then determined by taking
the H-dimensional intersection of the prediction intervals.
Random Choice Energy Decision (UC-MTCP-Random):
A simple baseline approach involves selecting the final EM
decision at random from the range of possible allocations
generated through EH sampling. Accordingly, UC-MTCP-
Random acts as a reference method by randomly picking an
energy allocation within the sampled range. This baseline is
used to emphasize the advantages of integrating ML-based
decision-making in the proposed framework.

5.3 Evaluation of the UC-MTCP Approach
An essential component of forecasting future EH is the ability
to effectively handle prediction errors and quantification of
the uncertainty. Ensuring that the achieved coverage aligns
with or surpasses a user-defined threshold is crucial for de-
pendable and precise energy allocation decisions. To this end,
we assess the coverage performance across various prediction
horizons H . Figure 3 presents the coverage results for both
the proposed UC-MTCP framework and the ensemble-based
method. For a consistent evaluation, both approaches enforce
the constraint that uncertainty regions remain non-negative,
reflecting the inherently non-negative nature of EH values. As
seen in Figure 3, the ensemble method falls short of the tar-
get 0.9 coverage level, whereas UC-MTCP consistently meets
this threshold across all users and datasets, demonstrating the
robustness and reliability of the proposed solution.

5.4 Evaluation of the Proposed EM Approach
This section analyzes benefits provided by accounting for
uncertainty using UC-MTCP in comparison to baseline ap-
proaches. We first compare the proposed EM against point
prediction and random choice methods. Then, we perform
additional comparisons against point prediction since most
prior EM methods use point predictions for EM.
Comparison of Error with Different EM Approaches:
Wearable device must provide reliable operation to the user
across multiple years as symptoms of a health condition
progress. Moreover, EH patterns fluctuate over the year due
to seasonal variations. Hence, it is important to demonstrate
that our method remains effective regardless of the time of
year or specific year of deployment. To evaluate this, we ex-
amine the accuracy of EM decisions across different years
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Figure 4: Yearly Mean Absolute Error (Mean and standard devia-
tion) of UC-MTCP, UC-MTCP-Random, and Point Prediction with
different users in ARAS dataset.
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Figure 5: Yearly Mean Absolute Error (Mean and standard devia-
tion) of UC-MTCP, UC-MTCP-Random, and Point Prediction with
different users in Mannheim dataset.

in Figures 4 and 5. These figures depict the average MAE
along with the standard deviation for each year of evalua-
tion for ARAS and Mannheim datasets, respectively. The
results reveal that EM decisions based on UC-MTCP con-
sistently outperform all baseline methods across every year
analyzed, highlighting its ability to adapt to evolving EH pat-
terns. This contrasts sharply with other methods that do not
integrate UC-MTCP into the EM process. Overall, the find-
ings emphasize the robustness of UC-MTCP in delivering ac-
curate forecasts and demonstrate the value of incorporating
uncertainty-aware predictions into EM decision-making.

Energy Management with Point Predictions: Most, if not
all, EM approaches utilize point predictions to make deci-
sions. We evaluate the performance of the proposed method
against the point prediction approach in Figure 6. This fig-
ure presents a comparison of the average energy allocation
and the absolute value of the average cumulative QoS for
both methods, using data from user one in the ARAS and
Mannheim datasets. Each bar corresponds to a specific EH
range, enabling analysis across scenarios with varying energy
availability – from low to high EH conditions. The results
reveal significant differences in energy efficiency and QoS
between the two approaches. Notably, the proposed method
achieves more consistent QoS across all percentiles compared
to point prediction. In contrast, the point prediction approach
often results in lower utility, even when consuming more en-
ergy. This inefficiency arises from its inability to handle un-
certainty, leading to over-allocation and, ultimately, battery
depletion. These findings underscore the critical role of in-
corporating uncertainty in EH for EM decisions.
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Figure 6: Average energy consumption and absolute of average cu-
mulative utility of UC-MTCP and point prediction with user one in
ARAS and Mannheim datasets. Lower cumulative values lead to
better quality since the logarithms are negative.

5.5 Implementation Overhead
We utilize the TI-CC2652R microcontroller [Texas Instru-
ments Inc., 2018] to evaluate the energy consumption and
execution time of the proposed algorithms: UC-MTCP, the
IGP algorithm, and the ML model. Both UC-MTCP and ML
models are implemented using multi-layer perceptrons. Ex-
perimental results indicate that UC-MTCP requires about 58
ms for execution, 0.6 mJ of energy per operation. The IGP
algorithm imposes a higher computational burden due to its
gradient-based approach. Each IGP evaluation takes around
300 ms and consumes 8.6 mJ of energy. The ML model takes
188 ms for a single inference while consuming 2.0 mJ energy.

These overheads are minor relative to the operational time-
lines and energy budgets typical of IoT systems. All algorith-
mic overheads are accounted for in the optimization formula-
tion given in Equation 4. In summary, the overhead of these
algorithms remains within feasible limits for deployment on
resource-constrained IoT devices, supporting their practical
applicability in real-world scenarios.

6 Social Impact and Deployment Plan
The proposed research will lead to significant social impact
in healthcare and energy sustainability across the world, es-
pecially in underdeveloped parts. The social impact will be
achieved through the key metrics defined in the following.
Societal Health Benefits: Prior studies have shown that
chronic diseases such as Parkinson’s disease or type 2 dia-
betes could be better managed in remote populations if pa-
tients had access to devices that provide continuous monitor-
ing of health parameters [Mattison et al., 2022]. However,
lack of sustainable energy and frequent battery recharging
lead to unreliable data [Phillips et al., 2018; Espay et al.,
2016; Maetzler et al., 2016]. The proposed approach pre-
cisely addresses this by enabling self-sustainable operation.

We also analyze the number of potential patients impacted
by chronic diseases in underdeveloped parts of the world,
as highlighted by UN SDG goals [Amu et al., 2023]. The
study in [WHO, 2022] estimates more than 47 million peo-
ple in Africa will suffer from chronic diseases like diabetes
by 2045. Recent studies have said that adverse outcomes
in patients can be better managed with wearable technol-
ogy and data analytics [Maha et al., 2024; Latif et al., 2018;
WHO, 2022]. The proposed approaches will make a direct

Patient cohorts Widespread deploymentPrototype & datasets

Activity 
datasets

Wearable 
prototype

Figure 7: Deployment plan for the proposed energy management
approach for health monitoring with wearable devices.

impact on this population by enabling continuous monitoring
of symptoms with health algorithms on wearable devices.
Energy Benefits: Widespread adoption of wearable devices
will increase demands of energy from the grid. While the
energy needs of each device are small, cumulative needs of
millions of devices can lead to increased demands from the
grid. To this end, the EH from body motion and ambient light
will greatly reduce energy needs and improve sustainability.

Assuming that each device has a battery of 100 J and we
deploy 50 million devices in the field, energy savings of 50 J
per device per day through ambient sources will lead to cu-
mulative energy savings of 21,000 units of energy per month.
This energy can be used to potentially power 1400 homes in
Eastern Africa for a month while reducing costs and carbon
emissions significantly [Dagnachew et al., 2023].

6.1 Deployment Plan
The current study focuses on employing datasets for EH and
validating a proof-of-concept on a wearable device prototype,
as shown in Figure 7. Utilizing prior datasets helps us in
evaluating the proposed approaches before deploying in real-
world scenarios. Based on positive results in this paper, we
plan to work with domain experts in healthcare and the WSU
School of Medicine to identify a cohort of patients to deploy
the wearable technology for health monitoring. After a suc-
cessful pilot study, we will work with wearable device man-
ufacturers to create products in commercial form-factors so
that they can be deployed to intended populations across the
world, especially in areas with greater societal needs. This
three step deployment plan from datasets to pilot studies to
commercial products will ensure that the devices provide re-
liable, sustainable, and accurate metrics to patients.

7 Conclusion
Wearable and IoT devices offer significant promise in areas
such as health monitoring and digital agriculture. Ambient
EH presents a promising approach to prolong battery life in
these systems. Effective EM, in turn, depends on accurate
forecasting of future EH as well the uncertainty tied to those
predictions. To address this, the paper introduces a novel EM
framework that utilizes conformal prediction (CP) to generate
uncertainty-aware EH forecasts across multiple future inter-
vals. To enhance decision-making, a lightweight ML model
is employed to select the optimal EM decision from a set of
CP-derived uncertainty regions. The proposed approach out-
performs baseline methods by ensuring reliable EM alloca-
tions, even under highly variable EH scenarios.
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