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Abstract

Possibilistic logic is forty years old. Possibilistic
logic is a logic that handles classical logic formulas
associated with weights taking values in a linearly
ordered set or more generally in a lattice. Over the
decades, possibilistic logic has undergone numer-
ous developments at both theoretical and applied
levels. The ambition of this article is to review all
these developments while exposing the main ideas
behind them.

1 Introduction

Possibilistic logic is an offspring of possibility theory. Pos-
sibility theory offers a setting for the representation of epis-
temic uncertainty due to incomplete information. This theory
was pioneered by the economist G. L. S. Shackle who intro-
duced a calculus of degrees of potential surprise (degrees of
impossibility in modern language); it was independently re-
discovered by L. A. Zadeh who focused on the idea of graded
possibility in relation with the modeling of linguistic infor-
mation, and finally developed in [Dubois and Prade, 1988]
jointly using the dual pair of possibility and necessity mea-
sures associated with a possibility distribution.

Possibilistic logic [Dubois er al., 1994] (in its basic form)
manipulates classical logic formulas associated with lower
bounds of necessity measures understood as certainty levels.
Then the modus ponens rule takes, semantically, the form:

N(p)>a,N(p — q)> 8 = N(q) >min(q, 3),

where N is a necessity measure, p and ¢ are logical formulas,
and «, 8 € [0,1]. This corresponds to the old intuition (dat-
ing back to Theophrastus [Rescher, 1976]) that the strength of
a conclusion reflects the strength of the weakest premise(s).
This weighted inference rule appears for the first time (in En-
glish) in [Prade, IJCAI’1983,130-136] (equation 56). How-
ever it is only in the second half of the 1980s that the first
elements of a full-fledged possibilistic logic have begun to be
developed, starting with [Dubois ef al., 1987].

Incomplete information is everywhere and properly han-
dling epistemic uncertainty is important. As we shall see,
possibilistic logic, by stratifying knowledge in certainty lev-
els, offers a simple setting, close to classical logic, for dealing
with uncertainty and inconsistency, but possibilistic logic can

also take other forms, such as possibilistic networks or ma-
trices. What’s more, possibilistic logic inherits its versatility
from the great representational power of possibility theory.

This article offers an up-to-date and as complete as possi-
ble survey of possibilistic logic developments in the last 40
years. There have already been several surveys that are all
partly or fully outdated. Some surveys either focus on rela-
tions with modal logic [Dubois and Prade, 2018], or offer a
more applied perspective [Dubois and Prade, 2019]. Besides,
there are also longer and more detailed introductions (but now
incomplete) [Dubois et al., 1994; Dubois and Prade, 2014].
The present survey, with a renewed structure, offers a fresh
look at possibilistic logic.

The paper is organized in two main parts. The first part
presents the main theoretical aspects of possibilistic logic and
insists on representational issues. The second part reviews
a series of areas of Al research to which possibilistic logic
has been applied and can still contribute. More precisely,
the first part, after having restated what possibility and ne-
cessity measures are, recalls the syntax, the semantics and
the proof theory of basic possibility theory where only con-
straints of the form N (p) >« are handled. Then the main fea-
tures of the possibilistic matrix calculus, and of possibilistic
(Bayesian-like) networks, are presented. Then various types
of extensions of possibilistic logic are reviewed: i) for han-
dling inconsistency; ii) for dealing with symbolic certainty
levels (whose precise value remains unknown); iii) for intro-
ducing new kinds of weights for dealing with time, sources,
agents, reasons, or ill-known certainty levels, thanks to the
use of generalized possibility and necessity functions taking
their values on a Boolean or on a pseudo-complemented dis-
tributive lattice rather than a linear scale; iv) for coping with
bipolar information (i.e., having positive and negative com-
ponents) thanks to the notion of guaranteed possibility, an-
other set function of possibility theory; v) for handling not
only conjunctions, but also negations and disjunctions of the
constraints present in basic possibilistic logic. The first part
ends with a brief discussion of the link with related calculi:
Spohn’s ranking functions and Markov logic. The second part
surveys the use of possibilistic logic in default reasoning, in
belief revision, information fusion, in description logics, in
logic programming, in preference modeling and decision, in
argumentation, and in machine learning. A short subsection
is also devoted to databases applications due to close concerns
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with knowledge representation.

2 Theoretical and Representational Issues

This first part deals with the basics of possibilistic logic and
related representation settings, before presenting various ex-
tensions of possibilistic logic, and finally discussing relations
with other frameworks.

2.1 Possibility Theory

In possibility theory, the available information is represented
by possibility distributions. A possibility distribution is a
mapping 7 from a set U, understood as a set of mutually ex-
clusive states, values, or alternatives (one of which being the
actual world, if U is exhaustive), to a totally ordered scale
S, with top denoted by 1 and bottom by 0. Different types
of scales may be used from a finite scale S = {1 = A\; >
... Ap > Apy1 = 0} in the qualitative case, to the unit inter-
val § = [0, 1] in the quantitative case, see [Dubois and Prade,
2016] for other options. 7(u) = 0 means that u is rejected
as impossible; 7(u) = 1 means that state u is fully possible.
The larger 7(u), the more possible u. The consistency of the
epistemic state described by 7 is expressed by the normal-
ization condition Ju, w(u) = 1 that makes sure that at least
one u is fully possible. When information is all-or-nothing,
m is the characteristic function of some subset E' of U and
m(u) € {0,1}. Complete information corresponds to situa-
tions where F is a singleton. S is assumed to be equipped
with an order-reversing map n: n(0) = 1, n(1l) = 0, here
denotedn(A) =1— A\ VA€ S.

A possibility measure II and a dual necessity measure N
are associated with a possibility distribution 7: VA C U,
I(A) = sup, e m(u); N(A) = 1-I1(A°) = inf, ¢ 4 1-7(u)
with A¢ = U\ A. When the possibility distribution reduces to
aclassical subset E C U, we have: i) TI(A) = 1if ANE # 0,
and 0 otherwise; ii) N(A) = 1if E C A, and 0 otherwise.
TI(A) (resp. N(A)) evaluates to what extent event A is con-
sistent with 7 (resp. A is implied by 7). By normalization,
I(U) = N(U) = 1and I1(0) = N(0) = 0.

Possibility measures are characterized by the “maxitivity”
property II(A U B) = max(II(A),II(B)), and necessity
measures are “minitive”: N(A N B) = min(N(A), N(B)).
Due to the normalization of 7, min(N(A), N(A°)) = 0 and
max(II(A),II(A¢)) = 1, or equivalently II(A) = 1 when-
ever N(A) > 0, namely something somewhat certain should
be first fully possible, i.e. consistent with the available in-
formation. Moreover, one cannot be somewhat certain of
both A and A¢, without being inconsistent. We only have
N(AU B) > max(N(A), N(B)), which goes well with the
idea that one may be certain about the event A U B, without
being really certain about more specific events like A or B.
Possibility and necessity depart from a probability P, which
is self-dual, and such that P(A°) = 0 = P(A) = 1, while
N(A°) =04 N(A) =1 (butII(A°) =0 =TI(A4) = 1).

Certainty-qualified statements of the form “A is certain to
degree «” can be represented by the constraint N(A) > a.
The largest, so the least restrictive, possibility distribution
7 that obeys this constraint is given by [Dubois and Prade,
1988]: m(4,0)(u) = Lif u € A, 7(4,q)(u) = 1—a otherwise.

If & = 1 we get the characteristic function of A. If « = 0, we
get total ignorance. It is a key building-block of the semantics
of possibilistic logic.

2.2 Basic Possibilistic Logic

A basic possibilistic logic (BPL for short) formula is a pair
(p, o) where p is a classical closed logic formula and « a cer-
tainty level in S\ {0}, viewed as a lower bound of a necessity
measure: (p, «) means semantically N(p) > «. Due to the
minitivity of necessity measures, a BPL base, i.e., a set of
BPL formulas, can be put in an equivalent clausal form.

Syntactic aspects Here we focus on the case where p in
(p, ) is a proposition; for (basic) possibilistic first order
logic, see [Dubois et al., 1994].

Axioms and inference rules. The BPL axioms [Dubois et
al., 1994] are those of propositional logic, where each axiom
schema has certainty 1. Its inference rules are:

-if B < athen (p, @) = (p, B) (certainty weakening)

-(—pVgq,a), (p,a)F (¢, a), Ya € (0, 1] (modus ponens).

Moreover the following inference rule is valid:

-(-pVaq,a),(pVrp)F (¢Vrmin(a,S)) (resolution)

The following inference rule, we call formula weakening
holds also as a consequence of a-3-resolution.

-if pF g then (p, @) F (q, @), Yo € (0,1]

Inference and consistency. Let K = {(p;,a;),i =
1,...,m} be a set of BPL formulas. Then, proving K
(p, ) amounts to proving K, (—-p,1) F (L,a) by re-
peated application of resolution rule. Moreover, note that
K F (p,a)iff K, F (p,«) iff (K,)* F p, where K, =
{(pi,;) € K,a; 2 a} and K* = {p; | (pi, ) € K}.
The certainty levels stratify the knowledge base K into nested
level cuts K, i.e. K, C Kgif 8 < a. A consequence (p, «)
from K can only be obtained from formulas in K.

The inconsistency level of K is defined by inc(K) =
max{«a|K F (L, a)}. Formulas (p;, «;) in K such that cv; >
inc(K) are safe from inconsistency. Indeed, if o > inc(K),
(K4)* is consistent, and K* consistent < inc(K) = 0.

The complexity of the inference in BPL remains similar to
the one of classical logic [Lang, 2001].

Semantic aspects The semantics of BPL [Dubois er al.,
1994] is expressed in terms of possibility distributions, and
necessity measures on the set () of interpretations w of the
language. The base K is semantically associated with the
possibility distribution, which is a fuzzy set of interpretations:
7k (w)=min]*; max([p;](w), 1— ;)
where [p;] is the characteristic function of the models of
pi» namely [pi](w) = 1if w F p; and [p;](w) = 0
otherwise. This is in agreement with certainty qualifica-
tion: Intuitively, this means that any interpretation that is a
counter-model of p;, is all the less possible as p; is more
certain; mx 1is obtained as the min-based conjunction of
the possibility distribution representing each formula. As
expected, Nk (p;) > «;fori=l,...,m, where Nk is de-
fined from mg. The semantic entailment is defined by
K F (p,a) if and only if Vw, 7x (w) < T((p,a)}(w). BPL is
sound and complete [Dubois et al., 1994] wrt this semantics:
K+ (p,a)iff K E (p, «).
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Note that the sole use of the (locally optimal) resolution rule
Prob(-pV q) > a,Prob(pVr) > S F Prob(qgVr) >
max(0, a+ 8 —1), cannot insure the completeness of a prob-
abilistic counterpart of BPL.

Moreover, we have inc(K) = 1 —max,eq 7k (w), which
acknowledges the fact that the normalization of 7x is equiv-
alent to the classical consistency of K*.

2.3 Matrix Form

The representation of a rule “if p then q” is more naturally
assessed in terms of conditioning than in logical terms using
material implication that allows for contraposition. The con-
ditioning II(q | p) of ¢ by p, in possibility theory, obeys the
identity
I(p A gq) =TI(q | p) xT1(p)
where % is min or the product, depending on whether we
choose to be within a qualitative or quantitative framework.'
For » = min, the greatest, least restrictive solution of the
above equation is I1(q | p) = H(p A q) if TI(p A q) < TI(p),
II(q | p) = 1 otherwise. For x = product, the (quanti-
tative) conditioning looks like a probabilistic conditioning:
(pAq)

I(q | p) = ~Ti(p)~ Provided that II(p) # 0 and corresponds

to Dempster’s rule of conditioning in Shafer evidence the-
ory. Conditional necessity is defined by duality: N(q|p) =
1 — II(—q|p).

Using qualitative conditional possibility, a matrix calcu-
lus (see [Dubois and Prade, 1986][2020] for thorough stud-
ies) can be developed using the max-min matrix product ®

(noticing that I1(¢) =max(I1(pAq),II(—=pAq))): lil_ll_[((ﬁqg)} _
(glp)  I(q|-p) TI(p)
II(—q|p) H(ﬁth)} ® [H(ﬂp):|' ® preserves the nor-

malisation condition max(II(p), II(-p)) = 1.

Such a matrix product can be applied to a set of m parallel
uncertain rules of the form “if a}(z) is P} and - - - and a¥ ()
is PF then b;(x) is Q;” (i = 1,--- ,m) that relates variables
pertaining to the attribute values of some item x, and where
the P/’s and Q; are classical subsets in the corresponding
attribute domains. Then, it has been shown that the result
of their joint application (including the fusion of the results
obtained from each rule) can be put under the form of a min-
max matrix product [Dubois and Prade, 2020]; see [Baaj et
al., 2021] for the general case. The output of this min-max
product is a possibility distribution over a collection of mutu-
ally exclusive alternatives (induced by weighted conclusions
on the Q;’s).

Besides, the conditional view can be closely related to pos-
sibilistic logic, since N (q|p) = N(—-pV q) if N(g|p) > 0.

2.4 Possibilistic Networks

As with joint probability distributions, a joint possibility dis-
tribution associated with ordered variables X1,..., X,, can
be decomposed in terms of conditional possibility distribu-
tions using a chain rule, using * = min, or product:

7'('()(1,...7 Xn) :T((Xn | Xl,..., Xn_l)*...*ﬂ'(Xg ‘Xl)*ﬂ'(Xl)

'In this latter case possibility and necessity can be interpreted as
upper and lower probability, see, e.g., [Dubois and Prade, 2020].

In a way similar to Bayes nets, independence enables the
simplification of the decomposition. However there exist sev-
eral definitions of conditional possibilistic independence be-
tween variables in qualitative possibility theory, one being
symmetric: II(z, y|z) = min(II(x|z), II(y|z)) and a stronger
one, being asymmetric: II(x|z) = II(z|z,y). In the quan-
titative setting, product-based independence between vari-
ables (Vx,y, z, (z|y,z) = II(z|z) where II(y,z) > 0)
is symmetric since it is equivalent to Yz, y, z, II(z,y|z) =
II(z|z) - TI(y|z). Efficient algorithms exist for inference in
possibilistic networks. [Ben Amor et al., 2003], [Levray et
al., 2020].

Possibilistic nets and BPL bases are compact representa-
tions of possibility distributions. A remarkable feature of
this framework is that possibilistic nets can be directly trans-
lated into BPL bases and vice-versa, both when conditioning
is based on minimum or on product [Benferhat er al., 2002a].

Hybrid representations formats have been introduced
where local BPL bases are associated to the nodes of a graph-
ical structure rather than conditional possibility tables [Ben-
ferhat and Smaoui, 2007].

Thus, the BPL setting offers multiple equivalent repre-
sentation formats: set of prioritized logical formulas, pos-
sibilistic networks, but also set of conditionals of the form
II(p A q¢) > II(p A —q) (< N(q|p) > 0), all semantically
equivalent to preorders on interpretations (i.e., to possibility
distributions). There are algorithms for translating one format
in another [Benferhat et al., 2002al.

Besides, possibilistic networks have been investigated
from the standpoint of causal reasoning, using the concept
of intervention, that comes down to enforcing the values of
some variables so as to lay bare their influence on other ones
[Benferhat, 2010].

2.5 Handling Inconsistency

The inconsistency level inc(K) of a BPL base K provides
a tool for handling inconsistency. However it suffers from a
“drowning effect” since all the formulas below inc(K) are
lost even if they are not involved in some inconsistent sub-
base. There are different ways to enlarge the set of conse-
quences that can be inferred from K [Benferhat er al., 1999al.

One way to do it while preserving a consistent set of con-
sequences is the following. Given a BPL base K, we build
its paraconsistent completion K° made of bi-weighted for-
mulas: for each formula (p,«) in K, we compute a triple
(p, B, ) where 3 (resp. ) is the highest degree with which p
(resp. —p) is supported in K (p is said to be supported in K
at least at degree (3 if there is a consistent sub-base of (K3)*
that entails p).

The subset of formulas of the form (p,3,0) in K° are
not paraconsistent, and leads to safe conclusions. We can
still get a larger set of consistent conclusions from K as
follows. We need two evaluations: i) the undefeasibility
level of a consistent set S of formulas: UD(S) = min{f |
(p,B,7) € K°andp € S} ; ii) the unsafeness level of a
consistent set .S’ of formulas: US(S) = max{~|(p,8,7) €
K°and p € S}. Then an entailment -gg, named safely sup-
ported consequence relation, is defined by K° gg ¢ if and
only 3 a minimal consistent subset .S that classically entails
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¢ such that UD(S) > US(S). It can be shown that the set
{q | K° Fgs ¢} is classically consistent. See [Dubois and
Prade, 2015] for details, discussions and other approaches to
the handling of inconsistency in the BPL setting, including
quasi-possibilistic logic where the use of resolution after the
introduction of a disjunction is forbidden (to get rid of the ex
falso quodlibet sequitur).

2.6 Symbolic Possibilistic Logic

There may exist several reasons for handling the certainty
levels of BPL formulas in a symbolic manner: in particular,
keeping track of the impact of some levels in the computation,
or acknowledging that their value is unknown. The latter con-
cern leads to consider that the values of certainty levels asso-
ciated to formulas (still assumed to belong to a totally ordered
scale) are unknown, while the relative ordering between some
of them may be partially known. In [Benferhat and Prade,
2005] this is encoded by means of a possibilistic-like many-
sorted propositional logic, where formulas are clauses with
special literals that refer to the levels. Constraints about the
ordering of some of the levels translate into logical formulas
of the corresponding sort and are gathered in a distinct auxil-
iary knowledge base. The inference process is characterized
by the use of “forgetting variables” for handling the symbolic
levels, and hence an inference process is obtained by means
of a DNF compilation of the two knowledge bases.

When the ordering of the weights is completely known, this
encoding provides a way of compiling a possibilistic knowl-
edge base in order to be able to process inference from it in
polynomial time [Benferhat and Prade, 2006].

In an approach that ties in with the previous one for han-
dling partial knowledge on the relative strength of certainty
levels, two syntactic inference methods are proposed: one
calculates the necessity degree of a possibilistic formula using
the notion of minimal inconsistent sub-base, while the other is
inspired from ATMS (Assumption-based Truth Maintenance
System), using nogoods and labels [Cayrol et al., 2018].

2.7 Lattice-Based Extensions of Possibilistic Logic

There exist several extensions of possibilistic logic where
weights are certainty levels combined with sets such as time
periods [Dubois et al., 19911, sets of sources, or groups of
agents [Belhadi er al., 2016; Dubois and Prade, 2024a] that
lead to use a pseudo-complemented distributive lattice struc-
tures. When the sets are replaced by a unique singleton (i.e.,
we consider one time instant, one source, or one agent), basic
possibilistic logic is restored.

We take the example of multi agent possibilistic logic for
explaining the idea. Now (propositional) formulas are asso-
ciated with a subset of agents: Each formula (p, A) means
that at least all the agents in A believe that p is true. Such
a Boolean weighting introduces a noticeable difference: the
supremum of two proper subsets may be the whole uni-
verse (while the supremum of two non top levels is never
the top level in a totally ordered scale). This is why the
explicit strengthening rule (p, A), (p,B) + (p,A U B) is
needed beside inference rules for subset weakening, modus
ponens and resolution, at the syntactic level. Soundness

and completeness theorems hold with respect to a seman-
tics in terms of set-valued possibility and necessity func-
tions: IL(p) = U,r, m(w) where m(w) is the maximal
subset of agents that find the interpretation w possible, and
N(p) = [II(=p)]° = Nye_p[m(w)]® (Where © denotes the
set complementation.

We have now two types of normalization leading to a richer
view of (in)consistency: one which means that each agent
finds at least one w possible (Va, 3w, a € m(w), i.e. no agent
is inconsistent). This condition is weaker than the condition
Jw, w(w) = All (All is the set of all agents), which means
that there is an interpretation that all agents believe possible,
expressing a collective consistency condition. For instance,
the base K = {(p, A), (—p, A°)} violates the latter condition,
but not the former.

This extends to the general case where propositions are
both associated with a certainty level and a set of agents.
Then formulas are of the form (p, a/A) where A is a sub-
set of agents and o € (0, 1], which reads “at least all agents
in A believe p at least at level o”. Then the semantics is in
terms of fuzzy set-valued possibility and necessity functions:
The symbolic weight /A represents a fuzzy set of agents a
with membership grades « if agent a € A, and 0 otherwise.

A logic for reasoning about reasons [Dubois and Prade,
2024a] handles pairs of the form (p,x) where p and x are
two propositional logical formulas expressed in two distinct
languages, p is called a claim, and x a reason. The formula
(p, x) thus reads “z is a reason for p”. (p,x) is weaker than
(—z V p, 1) (the former does not entail the latter). The truth
of (p, x) means that all the situations where x is true are rea-
sons to believe p. The semantics of the reason-based logic is
isomorphic to the one of the previous multi-agent logic; an
extension can accommodate the strength of reasons [Dubois
and Prade, 2024a]. The logic of reasons is akin to the logic of
supporters [Lafage et al., 1999], but a bit simpler.

Interval-based possibilistic logic [Benferhat er al., 2011;
Benferhat et al., 2015] is another lattice-based extension of
possibilistic logic, where the possible values of ill-known cer-
tainty levels are restricted by intervals.

Let us finally mention a way to remain with a linearly or-
dered structure while enriching the scale. In BPL, only the
smallest weight of the formulas used in a proof is retained;
no difference is made for instance between a proof with only
one weak premise and a proof with several weak premises of
the same strength. This can be captured by using a new reso-

-, =,

lution rule (—a V b,d@); (a V¢, 8) F (bV ¢, dB) where & and
E are lists of weights, and 07’5 is the list obtained by concate-
nation. We can then rank-order the proofs according to their
strength using a lexicographic ordering of the vectors (once
they have been completed with 1’s for making them of equal
length); this is outlined in [Dubois and Prade, 2019].

2.8 Bipolar Possibilistic Logic

In possibility theory there are two other set functions: 1)
a measure of guaranteed possibility or strong possibility
(see,e.g., [Dubois and Prade, 2014]) : A(A) = infyeca 7(u)
which estimates to what extent all states in A are possible
according to evidence. A(A) can be used as a degree of
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evidential support for A, and its dual conjugate V is such
that V(A) = 1 — A(A®) = sup, g4 1 — 7(u). V(A) eval-
uates the degree of potential or weak necessity of A, as it
is 1 only if some state u out of A is impossible. Thus, the
functions A and V are decreasing wrt set inclusion (in full
contrast with II and N which are increasing). They satisfy
the characteristic properties A(AU B) = min(A(A), A(B))
and V(AN B) = max(V(A4), V(B)).

Thus the constraint A(p) > +, syntactically denoted [p, 7],
expresses that any model of p is at least possible with de-
gree . This can be represented by the fuzzy set dp, ,1(w) =
0ifw = —p, and dpp ,1(w) = vifw = p. A set of con-
straints P = {[g;,v;]|j = 1,k} is then represented by the
possibility distribution §p(w) = max;—1 x d[g, ~,](w) by cu-
mulating the guaranteed possibilities. Note that dp is ob-
tained as the max-based disjunctive combination of the rep-
resentation of each formula in P. This contrasts with 7 (in
Section 2.2) obtained as a min-based conjunctive combina-
tion. Thus, a possibility distribution can be represented from
above by means of necessity-based constraints, and from be-
low by means of guaranteed possibility-based constraints. At
the syntactic level, necessity-based constraints are naturally
associated with a weighted CNF decomposition, while A-
based constraints leads to a weighted DNF decomposition.
The latter is governed at the inference level by the following
counterpart of the resolution rule

[=p A g, Al e Ar,A]) g Ar,min(y, )]

A A-based constraint [p, ] naturally fits with the expression
of positive information, i.e., interpretations that are models of
p are possible for sure at least at degree -, while a N-based
constraint (p, «) corresponds to a negative expression stating
that the counter-models of p are somewhat impossible (their
possibility is at most 1 — o). Thus more positive information
increases 0p by making more interpretations more actually
possible, while more negative information decreases mx by
restricting more the possible worlds [Benferhat ez al., 2008].

One can use either formulas based on A or formulas based
on N to represent the available information, whichever seems
more practical. If it makes sense to distinguish between pos-
itive information and negative information (for instance, ac-
tual examples of prices, and prices allowed by regulations),
we need to keep separate a K and a P knowledge base each
semantically associated with their respective distributions
(supposed to satisfy the consistency condition dp < 7g); see
[Dubois et al., 2000], [Benferhat et al., 2002b] for settings
for handling this latter case.

2.9 Generalized Possibilistic Logic

In basic possibilistic logic, only conjunctions of possibilis-
tic logic formulas are allowed. But since (p,«) is seman-
tically interpreted as N(p) > «, a possibilistic formula
can be manipulated as a propositional formula that is true
(if N(p) > o) or false (if N(p) < «). Then possibilis-
tic formulas can be combined with all propositional con-
nectives, including disjunction and negation. This is gen-
eralized possibilistic logic (GPL) [Dubois et al., 2017b;
Dubois and Prade, 2018]. GPL is a two-tiered propositional
logic, in which propositional formulas are encapsulated by

weighted modal operators interpreted in terms of necessity
and possibility measures.

GPL uses a finite scale of certainty degrees A, =
{0.2.2,.. 11 (k € N\ {0}); Af = Ay \ {0}. The lan-
guage of GPL, E’f\I, is built on top of a propositional language
L as follows: i) If p € £, a € A], then N,(p) € LE:
i) if p € L& € LK, then ~p and ¢ A 9 are also in
LY. Here N, (p) stands for (p, ), emphasizing the close-
ness with modal logic. So, an agent asserting N, (p) has an
epistemic state such that N(p) > « > 0. Hence ~N,(p)
stands for N (p) < «, which means N(p) < o — % and thus
II(-p) > 1 — a+ 1. In particular, IT; (p) = —N 1 (—p) if
k > 1. So, in GPL, one can distinguish between the absence
of sufficient certainty that p is true (=N, (p)) and the stronger
statement that p is somewhat certainly false (N, (—p)).

The semantics of GPL is as in BPL defined in terms of nor-
malized possibility distributions over propositional interpre-
tations, where possibility degrees in A;. A model of a GPL
formula N, (p) is any Ax—valued possibility distribution such
that N(p) > «. More generally, the set of possibility distri-
butions satisfying a formula in GPL has not always a largest
element, as in BPL.

GPL can be viewed as a fragment of the modal logic KD
without nested modalities, but modalities are graded. See
[Dubois et al., 2017b] for its axiomatics, soundness and com-
pleteness results, complexity studies. GPL is a powerful uni-
fying framework for various knowledge representation for-
malisms, including possibilistic logic with partially ordered
formulas, or a logic of conditional assertions. Reasoning
about explicit ignorance, or some multiple agent reasoning
tasks, such as the muddy children problem can be also han-
dled in GPL [Dubois and Prade, 2019].

Similarly, a generalized multi-agent possibilistic logic that
allows for the disjunction and negation of its formulas have
been recently studied and a similar construct also applies to
the logic of reasons [Dubois and Prade, 2024al. .

2.10 Relations to Other Frameworks

Spohn’s ranking functions are similar to possibility measures
but they are valued on positive integers. So, they use different
scales for grading (im)plausibility, which makes their expres-
sive powers somewhat different. Indeed, there is no logical
side for the ranking functions since there is no counterpart to
the weighted modus ponens, and Spohn’s conditioning, based
on addition, is inspired by infinitesimal probabilities, while
possibilistic logic uses only idempotent operations such as
max and min [Dubois and Prade, 2016].

Markov logic uses weighted formulas to compactly encode
a probability distribution, but the weights are not easy to inter-
pret. However one can always build a possibilistic logic base
that exactly captures a Markov logic network; see [Kuzelka
et al., 2015], [Dubois et al., 2017b].

3 Applications

Applications of possibilistic logic can be found in many areas
of Al research. Due to the limited space for references, we
selected a small sampling of references for each application.
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3.1 Uncertainty Handling and Default Reasoning

BPL was originally designed for propagating uncertainty in
inference engines for expert systems, taking advantage of the
matrix format [Farreny et al., 1986].

The ability of BPL to deal with inconsistency, using the
inconsistency level of a knowledge base is exploited in de-
fault reasoning. A default rule “generally, if p then ¢” is rep-
resented by the conditional II(p A ¢) > TI(p A ~q) <=
N(q|lp) > 0. Thus, N(q|p) > 0 expresses that in the con-
text where p is true, having ¢ true is strictly more possible
than ¢ false. Like with probability, this conditioning is not
monotonic. One may have that N(¢|p) > 0, while the oppo-
site conclusion N (—¢|p A p’) > 0 holds in a more restricted
context p A p'.

Then by laying bare the largest possibility distribution un-
derlying a consistent set of defaults II(p; A g;) > II(p; A —q;)
fori = 1, n, itis possible to stratify the set of defaults accord-
ing to their specificity (roughly speaking the most specific de-
faults receive the higher levels), and then to encode them by
possibilistic logic formulas [Benferhat er al., 1998]: each de-
fault is turned into a possibilistic clause (—a;Vb;, N (—a;Vb;)),
where N is computed from the greatest possibility distribu-
tion induced by the set of constraints modeling default knowl-
edge base. This encoding takes advantage of the fact that
when new sure information is received, the level of inconsis-
tency of the base cannot decrease, and if it strictly increases,
some inferences that were safe before are now drawn in the
new inconsistency level of the base and are thus no longer al-
lowed, hence a non monotonic consequence mechanism takes
place. This approach has been proved to be in full agreement
with a postulates-based approach to nonmonotonic reasoning
[Benferhat et al., 1997]. This is also equivalent with a prob-
abilistic modeling of conditionals in terms of a special type
of probability distributions named big-stepped probabilities
[Benferhat ez al., 1999b].

3.2 Belief Revision

Nonmonotonic reasoning and belief revision can be closely
related, so PL finds application also in belief revision. Indeed,
comparative necessity relations (which can be encoded by
necessity measures) are nothing but the epistemic entrench-
ment relations that underly well-behaved belief revision pro-
cesses. This enables the PL setting to provide syntactic re-
vision operators that apply to possibilistic knowledge bases,
including the case of uncertain inputs [Benferhat ez al., 2010;
Qi and Wang, 2012]. In BPL, the epistemic entrenchment
is made explicit through the certainty levels of the formulas.
Besides, in a revision process it is expected that all formulas
independent of the validity of the input information should
remain in the revised state of belief; this idea may receive a
precise meaning using a definition of possibilistic causal in-
dependence between events [Dubois et al., 1999a].

3.3 Information Fusion

The combination of possibility distributions can be equiva-
lently performed in terms of PL bases: The syntactic coun-
terpart of the pointwise combination of two possibility distri-
butions 71 and 7o into a distribution 71 ® 72 by any mono-
tonic combination operator ® such that 1 ® 1 = 1, can be

computed, following an idea first proposed in [Boldrin and
Sossai, 1997]. Namely, if the BPL base K7 is associated with
71 and the base Ky with 7o, a BPL base K;g2 semantically
equivalent to m; ® 7y is given by : {(p;,1 — (1 — ;) ®
1) st (piyai) € K1}U{(g, 1 =1® (1= 5;)) s:t. (g5, 55) €
Ko} UA{pi Vgj,1 = (1 — i) ® (1 = B5)) sit. (pi, i) €
Kl,(qj',ﬂj) S K2} For ® = min,we get K1go = K1 U
Ky with T, Uk, = min(m,72) as expected (conjunctive
combination). For ® = max (disjunctive combination),
we get I'ige = {(pi V ¢;, min(ay, 3;)) st (pi,a;) €
K4, and (¢4, 8;) € K»}. With non idempotent & operators,
some reinforcement effects may be obtained. See, e.g., [Kaci
et al., 2000] for further studies on possibilistic logic merg-
ing operators. Besides, this approach can be also applied to
the syntactic encoding of the merging of classical logic bases
based on Hamming distance (where distances are computed
between each interpretation and the different classical logic
bases, thus giving birth to counterparts of possibility distribu-
tions); see, e.g., [Benferhat and Kaci, 2003] where a A-based
representation is used. See [Benferhat and Sossai, 2006] for
an illustrative example.

3.4 Description Logic

The possibilistic handling of uncertainty in description logic
was first proposed in [Qi et al., 2007]. It has computational
advantages, in particular in the case of the possibilistic DL-
Lite family where the extension of the expressive power of
DL-Lite is done without additional extra computational costs
[Benferhat et al., 2013]; then it is also convenient to use the
min operation for the fusion of possibilistic DL-Lite bases.

A tractable method for computing a single possibilistic re-
pair for a partially preordered weighted ABox that may be
inconsistent with respect to the TBox has been proposed in
[Belabbes and Benferhat, 2022].

3.5 Logic Programming

Various proposals have been made for providing a possibilis-
tic handling of uncertainty in logic programming and answer-
set programming [Alsinet et al., 2002; Nicolas et al., 2006;
Nieves et al., 2007; Hué et al., 2014; Bauters et al., 2015].

Besides, a remarkable application of GPL is its capabil-
ity to encode answer set programs, using a 3-valued scale
Ao ={0,1/2,1}. Then, we can discriminate between propo-
sitions we are fully certain of and propositions we consider
only more plausible than not. It is enough to encode non-
monotonic ASP rules (with negation as failure) within GPL
and lay bare their epistemic semantics. For instance, the ASP
rule a < b A notc is encoded as N1 (b) A I (—¢) — Ni(a)
in GPL. See [Dubois et al., 2017b].

3.6 Databases

Provenance calculus, based on two operations forming a
semi-ring, combines and propagates annotations associated
with data. This calculation, when based on max and min op-
erations, exactly corresponds to query evaluation when data
are labeled with levels of certainty, as in BPL [Dubois and
Prade, 2024b].

BPL has been recently shown to be of interest in database
design where the presence of tuples in the database is possible
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only to some extent, and where functional dependencies are
certain only to some extent [Link and Prade, 2019].

3.7 Preference Modeling and Qualitative Decision

A BPL formula (p, @) can represent a goal p with a prior-
ity level a. Preferences such as “I prefer p to ¢ and g to r”
(where p, ¢, » may not be mutually exclusive) can be repre-
sented by the possibilistic base P = {(pVqVr, 1), (pVg,1—
v), (p,1—5)} withy < 8 < 1, as a set of more or less imper-
ative goals. Other formats such as conditionals, possibilistic
networks, A-based representation are also of interest for rep-
resenting preferences [Benferhat ef al., 2001]. Moreover the
expression of preferences may be bipolar: stating situations
that are more or less strongly rejected, and situations that are
guaranteed to be satisfactory to some extent. Let us mention
the representational equivalence [Benferhat et al., 2004] be-
tween qualitative choice logic (QCL) and actual (guaranteed)
possibility logic.

Possibilistic logic formulas with symbolic weights have
been used in preference modeling [Ben Amor et al., 2018].
Then, interpretations (corresponding to the different alterna-
tives) are compared in terms of symbolic vectors acknowledg-
ing the satisfaction or the violation of the formulas associated
with the different (conditional) preferences, using suitable or-
der relations.

Possibility theory provides a setting for qualitative decision
under uncertainty where pessimistic and optimistic decision
criteria have been axiomatized. The counterpart of these cri-
teria, when knowledge and preferences are under the form of
two distinct BPL bases, is given by [Dubois et al., 1999b]:

- the pessimistic utility wu.(d) of decision d is the maximal
aeSst K,NdFpp, Py(a),

- the optimistic utility u*(d) of d is the maximal v(a) € S
st. Koy NdAN Py # L,

where S is a finite bounded totally ordered scale, v the or-
dered reversing map of this scale; K, is a set of classical logic
formulas gathering the pieces of knowledge that are certain at
a level at least v, and where P is a set of classical logic for-
mulas made of a set of goals whose priority level is strictly
greater than 5. An optimal pessimistic decision leads for sure
to the satisfaction of all goals in P, () with a priority as low as
possible, using only a part K, of knowledge which is which
has high certainty. An optimal optimistic decision maximizes
the consistency of all the more or less important goals with
all the more or less certain pieces of knowledge.

3.8 Argumentation

A possibilistic defeasible logic programming language which
combines features from argumentation theory and logic pro-
gramming, also incorporating the treatment of possibilistic
uncertainty has been proposed in [Alsinet et al., 2008].
Possibilistic logic can be used for representing the men-
tal states of the agents (beliefs possibly pervaded with uncer-
tainty, and prioritized goals), for revising belief bases and for
describing the decision procedure for selecting a new offer in
argumentation-based negotiation [Amgoud and Prade, 2004].
The logic of reasons [Dubois and Prade, 2024a] which han-
dles formulas (p,z) expressing that “z is a reason for p”,

where negation can be applied to p, = and (p, z), offers a
rich setting for argumentative reasoning.

3.9 Machine Learning

The learnability of possibilistic logic theories have been in-
vestigated in [Persia and Ozaki, 2020], showing that many
polynomial time learnability results for classical logic can be
transferred to the respective possibilistic extension.

Bipolar possibilistic logic offers a graded setting for ex-
tending the framework of version space learning [Prade and
Serrurier, 2008].

BPL can be also applied to inductive logic programming
(ILP). Indeed having a stratified set of first-order logic rules
as an hypothesis in ILP is of interest for learning both rules
covering normal cases and more specific rules for exceptional
cases [Serrurier and Prade, 20071, [Kuzelka et al., 20171.

A cascade of min-max product of matrices representing
possibilistic if-then rules has a structural resemblance with a
min-max neural network. Such a cascade can be shown to
be equivalent to a min-max neural net, each matrix product
corresponding to a layer, and the activation function used be-
ing the identity. See [Baaj er al., 2021] for details. Moreover
[Baaj and Marquis, 2025] offers a very comprehensive neuro-
symbolic possibilistic approach.

3.10 Other Applications

Other applications may be found for modeling desires using
A functions [Dubois et al., 2017al, or for expressing agents’
goals by possibilistic logic in Boolean games when agents
may have incomplete knowledge of each other’s preferences
[Clercq et al., 2018].

Still another application is the encoding of control access
policies [Benferhat er al., 2003]. A formal description of se-
curity policies is necessary to check if security properties are
satisfied or not. Access control rules, guaranteeing the prop-
erties of confidentiality and integrity, are encoded in terms of
stratified knowledge bases. The stratification reflects the hi-
erarchy between roles and is useful for dealing with conflicts.

4 Conclusion

This paper has reviewed a large amount of works on the de-
velopment of possibilistic logic and its applications. Possi-
bilistic logic is well-suited for the representation of incom-
plete information and more or less entrenched accepted be-
liefs. It remains close to classical logic and offers a rich, sim-
ple and versatile setting for qualitative reasoning under un-
certainty. Possibility, as probability, deserves consideration.
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