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Abstract

Among the most popular games played worldwide,
Bridge stands out for having had little Al progress
for over 25 years. Ginsberg’s Partition Search al-
gorithm (1996) was a breakthrough for double-
dummy Bridge play, allowing a program to rea-
son about sets of states rather than individual states.
Partition Search supports the current state of the art
for both bidding and cardplay. In the time since,
virtually no progress has been made in Bridge
bidding. Inspired by Ginsberg’s idea, this paper
presents Setrograde Analysis, a new set-based al-
gorithm for perfectly solving Bridge hands. Us-
ing this approach, we have solved all 7-trick (28-
card) hands — 103° states, which can be reduced
to 10'7 unique states using preexisting techniques.
This was done by considering five orders of magni-
tude fewer sets than the traditional state-based Ret-
rograde Analysis algorithm. This work suggests
that the entire 13-trick (52-card) state space can
be solved with modern technology using this new
approach. The 7-trick computation represents the
largest endgame database to date in any game.

1 Introduction

Some of the early high-performance game-playing pro-
grams relied on Retrograde Analysis and endgame databases
[Strohlein, 1970] for strong play. The most notable example
is Checkers, where 39 trillion (4 x 10*®) endgame positions,
all those with 10 or fewer pieces, were used as part of the
CHINOOK program [Schaeffer et al., 1992], and for solving
Checkers [Schaeffer et al., 2007]. Endgame databases are
also used widely in Chess programs [Chess, 2024], as well
as in many other games (e.g., for solving Awari [Romein and
Bal, 2003]).

Endgame databases are most effective in games where
there are far fewer positions at the end of the game than
elsewhere. As a result, they have not been applied in
games that do not have this property. For instance, Sturte-
vant (2003) noted that in 3-player Chinese Checkers a win-
ning arrangement of a single player’s pieces in the game
has approximately 1023 possible permutations of the other

player’s pieces, making it infeasible to store all the varia-
tions of even a single winning configuration. While in Chi-
nese Checkers each player has a unique endgame configu-
ration (the other side’s piece locations are irrelevant), in Go
the locations of both side’s pieces in a terminal state are im-
portant. Hence these games require significantly different
analysis [Berlekamp and Wolfe, 1994]. In a 4-player trick-
based card game such as Bridge, the last two tricks have
(522) (520) (428) (426) = 1.9 x 10'2 possible deals of the cards,
but only 16 ways for each deal to play out. It is trivial to
solve but storing all states (as done in Checkers) is difficult.

These numbers suggest it might be impractical to build an
effective Bridge endgame database for, say, 7 tricks (1030
states; 1017 unique states). This statement is only true un-
der the assumption that every unique endgame state must be
computed and stored independently. The contribution of this
paper is to show how to avoid this assumption by representing
an endgame state as a member of a set. This idea, along with
other symmetry reduction techniques, makes it feasible to
use Retrograde search to compute all 28-card double-dummy
(DD) endgames — and store the solutions in just 1.4TiB of
storage — something that was historically hard to imagine.

This paper describes our set-based approach to endgame
databases, making the following contributions.

* We present a new set-based Retrograde Analysis al-
gorithm, Setrograde Analysis, inspired by the ideas in
Ginsberg’s Partition Search [Ginsberg, 1996]. Whereas
standard Retrograde Analysis computes a value for ev-
ery state, Setrograde Analysis generalizes a state into
a set where all members have the same game value.
The powerful generalization step allows the algorithm
to solve fewer states. Replacing states with sets leads to
a large degree of problem reduction, by mapping a large
endgame state-space to a smaller set-space.

e Setrograde Analysis is demonstrated using 28-card
Bridge deals. The set database contains 5 orders of mag-
nitude (OOM) fewer sets than there are states in a tra-
ditionally generated database. The database was con-
structed using 3 OOM less computing resources than
would be needed for a traditional 28-card database. The
7-trick Setrograde database represents 2 x 10'7 (200
quadrillion) unique states stored in 1.4TiB. Consider ret-
rograde computations found in the literature. The 7-
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piece chess endgame databases have 4 x 104 positions
using 18TiB [Chess, 2024]. Pentago, with 3 x 10'® po-
sitions, was strongly solved with 3.7TiB used to store
just the top 17 ply of the tree [Irving, 2014]. Ru-
bik’s Cube pattern databases with 5.8 x 10'? entries
were stored using 2.6TiB of disk [Hu and Sturtevant,
2019]. This Bridge computation is the largest endgame
database computed to date.

This work improves on Retrograde Analysis, with com-
putation and storage reductions allowing endgame database
technology to scale to unprecedented levels. Using Setro-
grade with modern compute, our plan is to solve all 52-card
endgames. These databases can be used to solve DD prob-
lems, but that is not our goal. Setrograde databases have the
advantage that large sets of DD problems can be queried in
a single operation, accelerating the exhaustive evaluation of
state spaces that would be otherwise intractably large. Once
complete, these databases open the door to evaluating and im-
proving bidding strategies for double-dummy Bridge.

2 Background and Related Work

Double-dummy problems are the perfect-information variant
of Bridge card play. A deal of n cards (with n as a multiple of
4) has an exact integer evaluation under perfect play, ranging
from 0 to % — the number of tricks won. See Fig. 1 (left) for
a one-suit, two-card deal; the four players around the table
are referred to as North, South, East and West.

The idea behind Retrograde Analysis is to solve a game
from the end towards the start. In the example of Bridge, this
works by enumerating all deals where each player has one
card (1 trick), solving them, and then storing the results. Then
one can move backwards in the game to consider all deals
where each player has two cards (2 tricks). For a given 2-trick
deal, taking the maximum result of all successor 1-trick deals
(already computed) produces the correct result. Given suf-
ficient computational and storage resources, one could con-
tinue to obtain the 3-trick results, and so on. Most often the
algorithm is expressed as solving depth d (where d is the num-
ber of tricks in Bridge or the number of pieces on the board as
in Chess) given the precomputed results from depth d—1. The
computational cost and storage requirements typically grow
exponentially in d. There are numerous enhancements to the
basic algorithm that can improve its performance [Sturtevant
and Saffidine, 2017]. Retrograde Analysis is typically used
to compute and store the value for all states up to a given
depth d, producing a comprehensive database (often called
an endgame database or tablebase).

Since evaluations are discrete, n-card deals may be
grouped into consistent sets, meaning that all states in the
set share the same evaluation. Partition Search [Ginsberg,
1996] is a forward minimax solver with a set-based backup
heuristic that generates a consistent set at each state in the
search. Ginsberg showed a branching factor reduction by us-
ing these sets as transposition table entries. DD solvers based
on Partition Search remain a state-of-the-art tool for modern
mechanical Bridge players.

Bridge deals are colloquially described by the number of
cards in each suit, and the ranks of relevant high cards. A low-
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Figure 1: #98 wins two tricks regardless of the locations of lower
cards in the perfect-information deal (left) and set of deals (right); x
refers to any low card. Play proceeds clockwise starting with North
(N) until each player has played one card (East, South, West). The
highest card wins. The winning player is next-to-play.

valued card, with rank that does not affect the result, can be
referred to as x. This notion is formalized in the set represen-
tation we use. Any card denoted x is interchangeable with any
other x, and is strictly lower than a ranked card. For example,
Fig. 1 (right) shows a set containing 6!/(2!)3 = 90 states that
Partition Search might discover by generalizing Fig. 1 (left).

Partition Search maintains consistent sets by heuristically
backing up cards that can be proven to never win by rank.
Available DD solvers rely on expert heuristics for move or-
dering, set generation, and early search cutoffs. For Retro-
grade searching, this paper presents a more general algorithm
for proving consistent sets and a framework in which the need
for expert knowledge is eliminated.

There have been previous attempts at set-based search al-
gorithms in games, but they bear little resemblance to our
approach and they have not been applied (or are even rele-
vant) to backward search. Setrograde Analysis is designed
to strongly solve large state-spaces (finding the perfect play
result for all reachable states) using Retrograde Analysis.
Previous approaches have aimed at weakly solving state-
spaces using a top-down approach. Retrograde search has
seen success in board games including Checkers [Schaeffer
et al., 2007], Chinese Checkers [Sturtevant, 20201, and Chess
[Chess, 2024]. Retrograde Analysis has been applied to a
subset of Skat endgames [Furtak, 2013]. Most of the set-
wise approaches that we know of, including Proof-Set Search
[Miiller, 20031, Method of Analogies [Adelson-Velsky er al.,
1988], and even Partition Search [Ginsberg, 1996], have been
designed for top-down search, and targeted toward weak so-
lutions [Haglund and Hein, 2014; Beling, 2017]. Set-based
search has been applied successfully in planning [Edelkamp
et al., 2015] and concurrent work on board games [Considine,
2025] using Binary Decision Diagrams.

3 Overview

This section provides a high-level overview of a set-based ap-
proach to Retrograde Analysis. The ideas are illustrated using
examples from Bridge.

3.1 State-Space Reduction

This section is specific to the game of Bridge, but is important
for illustrating the search-space reductions that are possible in
Bridge and in set-based search.

A 28-card endgame database contains the solution to all
CHEEH () = 2 x 10% ways to distribute the cards
from a standard deck. Additionally, there are 5 trump suits
to consider (clubs, diamonds, hearts, spades, and no trump).
Hence there are 1030 deals represented in a 28-card database.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Cards  States Upper Bound Setrograde Lower Bound
4  3x107 2 x 10? 7 x 10t 2 x 10t
8 9x10'2 8x10* 8 x 103 5 x 102
12 4x10"7  3x107 5 x 10° 7 x 103
16 3x10* 1x10'° 3% 107 6 x 10*
20 7x10%** 3 x10'2 1% 10° 4 x 10°
24 5x 10  8x 10" 2 x 1010 2 x 108
28 1x10%° 2x10'7 7 x 101! 7 x 108
32 6x10% 3x10' - 2 x 107
36 1x10% 4 x10% - 4 % 107
40 5x10% 4x10% - 4 % 107
44 4 %10  4x10% - 3 x 107
48 3x10%%  2x10% - 9 x 10°
52 3x10%° 1x10% - 2 x 10°

Table 1: State-space size and reductions for Bridge.

A well-known optimization used in card-game transposi-
tion tables is to represent cards using relative ranks instead
of absolute ranks [Haglund and Hein, 2014]. If there are
8 spade cards in play, the lowest one is always represented
as a 2, the next lowest as a 3, and so on. Thus, (183) possi-
ble deals (1,287) are reduced to 1 representative deal. This
does not affect card-play mechanics, but it reduces the num-
ber of 24-card states by roughly 12 OOM. For the 28-card
database, several minor symmetry-related optimizations (not
discussed here) can be applied to remove approximately one
more OOM, leaving 2 x 10'7 (200 quadrillion) unique states
that must be evaluated and stored.

Table 1 provides the number of states given the number
of cards remaining. Upper Bound is the number of states a
state-based Retrograde solver would need to both solve and
store (after rank and symmetry reductions). Setrograde is the
number of sefs stored in our set-based database. Lower Bound
is a bound on the number of sets in a complete DD database,
assuming an approach that partitions the state-space by the
distribution of suits between the players. The data in this table
is discussed in more depth later in the paper.

3.2 Set-Space Reduction

Retrograde Analysis (Alg. 1) works by iterating over all states
at depth d (lines 3-4, 12-13), computing a state’s value based
on the successor states at depth d — 1 (line 5), and storing
it in the database (line 7). Applying the same approach to
28-card Bridge would require repeatedly iterating over more
than 1017 states, requiring storage of ~ 107 bytes or 100
petabytes depending on possible compression approaches.

Our set-based approach, Setrograde Analysis, builds a
database of consistent sets. Alg. 1 shows a naive version
of the algorithm. As with Retrograde Analysis, it iterates
through all states at depth d (lines 3-4, 12-13). Each state is
queried in the database to see if it matches any of the sets that
have already been computed (line 5). If such a set is found,
the state’s value is known. Otherwise, a search routine finds
a consistent set containing the new state (line 9), and adds it
to the database (line 10).

We highlight here some of the challenges in creating a fast
Setrograde algorithm:

Algorithm 1 Retro/Setrograde Analysis

1: ford <~ 1..D do

2 EDBy« ()

3: s <« firstState(d)

4:  while s # null do

5: v  databaseLookup(s,d)

6 if algorithm = retroGrade then
7 EDBy[s] + v

8 else if £ DB,[s] = undefined then
9: t < generalizeToSet(s, v)
10: EDBy[t] + v
11: end if
12: s < nextState(s, d)
13 end while
14: end for

1. Generalization. This additional routine (line 9) is per-
formed at every state. The cost of this operation must be
less than the cost of performing the Retrograde operation
for each of the states encompassed by the set returned.

2. Querying. It is more complex to look for a state in a
database of sets than to look for a state in a database
of states (line 5). databaseLookup performs multiple
queries at each state. Without a fast and scalable imple-
mentation, queries become a computational bottleneck.

3. Iteration. Iterating over all members of a large state-
space will be expensive even if the cost per state is small.
To scale computation, we must be able to iterate through
the set-space without considering each state in the (much
larger) state-space.

Each of these are briefly described. Generalization and it-
eration are then illustrated using Bridge.

Generalization: In Retrograde Analysis, when a state is
reached that is not in the database, it will have its value com-
puted and added to the database. Instead, Setrograde Anal-
ysis finds a generalization of the state (a set) in which all
states have the same value (consistent). It does this using a
generate-and-test approach, where sets are generated until the
best consistent set (along some metric) is found. In Bridge,
this is done by replacing some cards with x’s.

Generalization is illustrated in Bridge in Section 3.3. If
all possible ways of generalizing a state are considered, this
function would be very expensive. In practice the cost is re-
duced by considering only a subset of generalizations.

Querying: In Retrograde Analysis, a ranking or perfect
hash function is used to map every state to a unique number.
States are not explicitly stored; the offset in memory uniquely
identifies a state. In Setrograde Analysis, sets must be explic-
itly stored. Thus, looking up a state in the database (line 5)
involves matching a state to a set, a more complicated oper-
ation. Querying can be done efficiently using an appropriate
data structure. One such data structure is discussed in [Stone,
2025]. The approach used lets the values of multiple states be
retrieved in a single query.

Iteration: A state can be bypassed if it is a member of a
set already in the database. Similar to how backjumping is
used in DPLL search [Gaschnig, 1979] to avoid searching ir-
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Figure 2: Sets generated by replacing O or more low-rank cards with
x’s. East is on the lead.

relevant portions of a tree, it is possible to identify portions of
the space that have already been solved, and jump past them.
The exact approach is dependent on the state representation
being used. One low-cost iterator is illustrated in Bridge in
Section 3.4.

3.3 Example 1: Generalization in Bridge

In the following deal, East is on lead. North and South will
take 2 tricks with the two highest spades:

A998 N
a54 | W E
Aa76 S

To generalize this deal we must produce candidate sets.
Here we use the 8 candidates (a-h) shown in Fig. 2 that were
generated by replacing one or more low-rank cards with x’s.
It can quickly be verified that sets a-f contain only states in
which North and South take 2 tricks. For example, consider
verifying set f using minimax search. East, South, and West
each have one legal move (play an x), after which North plays
either the 9 or the 8, winning the trick. The resultant set using
relative card ranks is:

32

N5
Mx x
M

Having taken one trick, North and South must take one
more trick in this resultant set. A search for this set in the
4-card database returns a value of one trick for North and
South. Therefore this candidate set is a valid generalization.
Note that in general, the exact set being looked for may not be
in the database. Instead the overlap of several entries may be
equivalent to the set looked for. The value of the overlapped
sets would be the minimum of their values.

Sets g and h each contain at least one deal in which North
and South take only one trick, for instance:

Ao6
A7 M54
A32

Consider trying to verify the correctness of g. Similar to
the analysis of f above, East, South, and West again have one
legal move and North has 2. North can play an x in which
case North may fail to win the current trick. While a com-
plex analysis can be performed when it is unclear which card
wins a trick, it is sufficient here to note that in any case where

North and South fail to win this trick, North and South will
be unable to take 2 total tricks. Therefore, if North plays an
x on best play, set g must not be consistent. North therefore
plays the 9, producing the following resultant set:

Mx

North and South must take one more trick in this resultant
set. Searching the 4-card database finds the following en-
try, which overlaps the set being looked for. Here North and
South take 0 more tricks:

Mx
N5 Mx
Mx

This means on North’s action (the #49) set g is not consis-
tent. Since North has no legal actions that leads to consistent
resultant positions, set g is not consistent and cannot be added
to the database.

More details can be found in [Stone, 2025].

3.4 Example 2: Low-Cost Iteration in Bridge

To reduce computation, we skip over states that are members
of the set just added to the database. We only solve and gen-
eralize independent states — states not yet represented in the
database. Naively, this can be done as follows: each time
a set is added to the database, we generate one or more po-
tential next-states. These states are constructed by applying
minor changes to the previous set that give rise to states that
are provably not represented by that set. The next states are
placed into an open list (as in the A* algorithm [Hart et al.,
1968]) for further consideration. From the previous example,
if we add to the database the set:

M98 N
Mxx &xx | W E
Mxx S

it would be redundant to evaluate any other state in which
North holds #98. Therefore an independent state can be pro-
duced efficiently by trading the #8 for one of the #x cards.
For example, we could produce the following set (one of three
such possibilities):

ANOx
Mxx Mxx
M3x

If this set is consistent then it will be turned into a state by
replacing the x’s with low values (one of 720 possibilities):

Ao7
A32 M54
A86

This new state goes onto the open list and eventually gets gen-
eralized using the process shown in Example 1. This process
repeats until all deals in the state-space are represented by a
set in the database. Through this process, a Setrograde solver
can consider far fewer states than it would with the standard
iteration over all states, reducing computation costs. Further
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Algorithm 2 General Setrograde Analysis

Algorithm 3 Setrograde Helper Functions

1: ford < 1..D do

2: Ty 0

3: EDBg<+ 0

4: s < nextIndependentState('T ;)
5:  while s # null do

6: v < databaseLookup(s, d)

7: t < generalizeToSet(s,v)

8: Ty« TyqUtL

9: EDBy [t] — v

10: s < nextIndependentState('T )

11:  end while
12:  compactEDB(EDBy)
13: end for

detail on this approach can be found in [Stone, 2025]. Itera-
tion can be performed more generally and cheaply by main-
taining a set of solved or a set of unsolved positions from
which independent states may be directly constructed.

4 Setrograde Analysis

Now we turn to a more complete description of Setrograde
Analysis, identify further bottlenecks, and describe how these
are implemented efficiently.

These definitions are used to describe Setrograde Analysis:

* D: maximum Retrograde distance — in Bridge, number
of tricks

* d: Retrograde distance d € 1..D (that is, distance to
terminal state)

e S,: all states at distance d (from terminal state)

* T';: asetof sets of states such that all encapsulated states
have a Retrograde distance d

Setrograde Analysis (Alg. 2) parallels its state-wise prede-
cessor with three key modifications. First, a set T is main-
tained to track solved states (which are not stored explicitly
but found in the union of all sets in T;). Second, at each iter-
ation, a state s € Sy|s ¢ T is evaluated — that is, states that
are already solved are not re-evaluated. While re-evaluation
does not occur in the state-wise formulation, it could occur
in the set-wise formulation if the states were evaluated itera-
tively without validating independence. Finally, each solved
state is generalized to a consisistent set ¢. Set ¢ is stored in the
database instead of the individual state.

Alg. 3 provides the helper functions needed for Alg. 2. The
generalization process from a state to a consistent set can
be done in many ways. One method is a backup heuristic,
such as the one used in most modern Double Dummy solvers
[Ginsberg, 1996]. The heuristic produces a single consistent
set ¢. This approach opts for simplicity, ignoring generality at
each step and incurring a compounding performance penalty
in both computation and storage. For our Setrograde solver,
we use a generate-and-test approach. Multiple candidate sets
are produced, which may or may not be consistent. Each is
evaluated for consistency. Any metric (for instance |¢|) can
be used to select which consistent set to add to the database.

# Returns value of a state.

function databaseLookup(state s, distance d)
return maxy cgec(s) £DBa-1[5']

end

# Returns a state that is not yet present in the EDB.
function nextIndependentState(set of set of states Ty)
if ds € Sd|8 ¢ Ty then
return s
end if
return null
end

# Returns whether all states in a set share a given value.
function ORACLE(set of states t, value v)

return As € t|database Lookup(s) # v
end

# Returns a collection of candidate sets.

function generateCandidates(state s)
return {t € 254|s € t}

end

# Returns a consistent set.
function generalizeToSet(state s, value v)
t'r‘et S
candidates <+ generateCandidates(s)
while 3¢, € candidatates s.t.|t.| > |tre:| do
if ORACLE(t.,v) then
tret <~ tc
end if
end while
return ?,.;
end

Setrograde Analysis is not guaranteed to produce the
smallest possible database by any metric. The order in which
states are evaluated can affect which sets are added to the
database. The metric used to select which consistent can-
didate set is added to the database (or indeed whether mul-
tiple sets are added) can affect the composition of the fi-
nal database. Some metrics (including |#) can result in ties,
and the tiebreak can affect the composition and size of the
database. Anything that affects the size of the database may
also affect computation time since speed is positively corre-
lated with the number of states that are evaluated and gen-
eralized. Future work might establish stronger performance
guarantees or tighter bounds.

The (unrealistic) lower bound on the number of sets re-
quired for a database (Table 1) is based on an ideal set rep-
resentation in which all deals with the same game value are
represented in a single set. In that case, we need exactly one
set for each game value. In Bridge we partition the state-space
based on the distribution of suits between the four hands.
Since each partition requires at least one database entry (some
partitions evaluate to a single game value), the number of
partitions provides the tighter lower bound found in Table 1.
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Figure 3: Top: #98 wins two tricks regardless of the locations of
lower cards in each set depicted. East is next-to-play in all diagrams.
Bottom: Binary representation of the union of the sets above.

This partitioning of both the state-space and set-space also
makes our implementation embarrassingly parallelizable, as
each partition can be solved independently.

5 Implementation in Bridge

This section briefly mentions some of the important Bridge
implementation details. Further information can be found in
[Stone, 2025].

Set Representation: As discussed in the background sec-
tion, and depicted in Fig. 1, representing sets of deals with
low cards unspecified is not a new idea. This representation,
with fixed cards and x’s is used in most (if not all) implemen-
tations of Partition Search. To reduce database size, we ex-
tend this methodology, by representing each card using four
positional bits — one bit per player — indicating whether
or not each player may hold this card. This representation
allows for AND-OR conditions that are not possible with a
simple z notation for low cards. We demonstrate the utility
of this representation by example.

In each of the four sets in Fig. 3 (top), North and South can
take two tricks by playing the highest two cards, one on each
trick. Since the evaluation of each set is identical (North and
South take two tricks on perfect play), the union of the four
sets is itself a consistent set. The union could be expressed
as (North holds the #9 OR South holds the #9) AND (North
holds the #8 OR South holds the #8) AND (all lower cards
are x’s). Using 4 positional bits per-card (in North-South-
East-West order) we can represent that statement compactly.
The &9 and #8 each have their bits set to true (1) corre-
sponding to North and South holding those cards, and two
bits false (0) corresponding to East and West set not holding
those cards, as illustrated in Fig. 3 (bottom). Our databases
consist of entries mapping from sets represented in this syntax
to a bound on the number of tricks taken by each partnership.

Low-Cost Generalization: State generalization uses bi-
nary search. The lowest card in a suit can always be marked
as x and it is possible that an entire suit (13 cards) could be
xs. Hence for each suit a binary search is done on the num-
ber of xs. The program starts in the middle of the range and
introduces that number of xs. Depending on whether the re-
sulting set is consistent, the search either tries adding more or
eliminating some zs. In some cases, the 4-bit representation
used can compactly express the union of sets in the database,

reducing database size. Compaction operations can be per-
formed at insertion or in post-processing (Alg. 2, line 12).

Low-Cost Querying: State lookups, matching a state to a
set to retrieve a value, are achieved using a depth-limited tree
data structure. At each node, a bitwise AND operation can be
used to determine whether a state is in a set. The tree structure
lets us minimize the nodes that need to be tested. Each node
contains partial information, and if a node does not provide
a partial match, its subtree can be pruned. The tree benefits
from locality, and we maintain relatively small independent
trees for each distribution of suits between players (Lower
Bound in Table 1).

Disk Storage: The 28-card database is partitioned into
7 x 10° independent pieces (Lower Bound in Table 1), each
one reflecting a different distribution of cards (the deal’s
shape). Within each partition the sets are organized in a tree-
like fashion. More details can be found in [Stone, 2025].

6 Experimental Results

Here we discuss Setrograde Analysis performance on Bridge
database generation. The program is written in Julia, and
compiled in version 1.8 or higher using the LLVM com-
piler. All code is compatible with version 1.11. The 24-
card databases and some of the 28-card databases were com-
puted on a machine with 48 cores, 187 GB of RAM, and 256
GB of swap using an Intel(R) Xeon(R) Gold 6248R CPU @
3.00GHz. The remainder of the 28-card databases were pro-
duced using several clusters provided by the Digital Research
Alliance of Canada.

6.1 Performance of Setrograde Analysis

Table 1 shows one measure of Setrograde’s performance. Up-
per Bound is the number of states that a Retrograde Analysis
program would considered (in the reduced search space). Set-
rograde is the number of sets that were needed to capture the
exact same information. For the 28-card database, there is a
factor of 2.5 x 10° reduction. This is slightly too optimistic,
as the cost to compute the value of a state is less than the cost
of producing a consistent set.

In Table 2 the storage and computational resources for Ret-
rograde and Setrograde Analysis are presented. Some of the
Retrograde numbers were too costly to run and their values
are extrapolated (indicated by a T). The Retrograde storage is
pessimistic (two states per byte), given the potential for ap-
plying further data compression techniques. The Retrograde
computation times are optimistic as they do not take into ac-
count performance loss due to scaling (e.g., loss of locality).

Database Size: The Retrograde database sizes reported
used 4 bits per state, indicating a deal’s value 0..d. This rep-
resentation reflects having a function that maps a state to a
unique storage location with no gaps. Although we did not
use such a function (it was too slow), the results are reported
as if we did. Although additional compression techniques
(not done) could yield small gains, Retrograde database sizes
scale linearly with the number of states in the state-space.

In contrast, Setrograde has to store variable size sets (for 28
cards, these range from 8§ to 48 bytes, but compression gives
a factor of 5 reduction). Despite the additional storage for a
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DB Size (GiB) Gen Time (CPU Days) States/Byte

Cards Retrograde Setrograde Retrograde Setrograde Setrograde

4 1x1077 7x107°¢ A — 2.6 x 1072
8 4x107° 3x107° b _ — 3.2x10°
12 2x1072%2 1x107% 3x1072 1x107* 3.1x10'
16 t5x10° 5x1072 1x10° 1x1072 1.9x 10°
20 t2x10° 2x10° +4x102 2x10° 1.6x10°
24 t4x10° 5x10' t1x10° 3x10% 1.5x10%
28 19x107 1x10° F2x107 5x10* 1.4x10°

Table 2: Database generation time and storage for Bridge.

set, our Setrograde database is almost 5 OOM smaller than its
Retrograde counterpart (before investigating data compres-
sion techniques for the Retrograde counterpart).

Generation Time: The generation time is presented in
number of CPU days. For the 48-core machine, one day of
wall-clock time corresponds to 48 CPU days.

Through 12 cards, the execution times are too small to draw
meaningful conclusions. For the 16-card calculation, Setro-
grade Analysis is 2 OOM faster than Retrograde Analysis.
The 20 and 24 card Retrograde computations were not per-
formed. Both Retrograde and Setrograde Analysis are em-
barrassingly parallelizable for Bridge.

For 28-cards, it is difficult to report the number of CPU
years used for the computation due to the heterogeneous com-
puting resources used. Our best estimate is a runtime of 140
CPU years (equivalent to 3 years on a 48-Core machine).

States/Byte: The number of states divided by the size of
the resulting database is a measure of information density.
A Retrograde solver would store roughly 2 states per byte
(somewhat higher with appropriate compression), regardless
of the value of d. For Setrograde the information density
grows with d. Increasing d means that a set, in general, re-
flects a larger number of states. For 28 cards, each byte in the
database represents over 100,000 states on average.

6.2 24- and 28-card Performance

Setrograde Analysis decreases both storage and computation
costs, rather than trading one for the other. To understand
where the computation and storage costs are being reduced,
we can break down the performance of Setrograde Analysis.
In the 28-card case there are 2 x 10'7 unique states.

Over 90% of computation time is spent evaluating and gen-
eralizing positions. For the 28-card database, this is estimated
to be 2 x 10'2 independent states; the 24-card computation
evaluated 4.6 x 10'° independent states. Each evaluation and
generalization step results in adding a set to the final database.
A post-processing phase (compactEDB in Alg. 2) scans the
database to identify sets that can be combined to form a sin-
gle, more general set. This small additional cost results in
reducing the 28-card database by half to 7 x 10'! sets; the
24-card database was reduced to 2.4 x 10'° sets.

Setrograde’s generalize step has no counterpart in Retro-
grade Analysis — and it is expensive. On average, it increases
the cost of evaluating a state by 1 OOM. This is a worthwhile
tradeoff as it leads to a4 OOM reduction in the number of 24-

card states considered, and a 5 OOM reduction in the number
of 28-card states.

For the 28-card database, the sets range from including 1 to
2,885,762,880,000 (nearly 3 trillion) states. The median set
contains almost 10% states.

6.3 Impact on Double-Dummy Search

Our long-term aim is to build the 52-card database. Most
of the value of the databases is not used by independent DD
searches. DD search computes the value of states one by one,
whereas our databases can return the values for a set of many
positions at once. This can be leveraged by a program that
analyzes bidding strategies — the ultimate goal of this work.

As part of validation, we performed experiments with a DD
solver. The 6-trick database eliminates roughly 75% of the
search tree, and the 7-trick database eliminates 90%.

6.4 Validation

A standard Retrograde implementation was used to verify the
accuracy of each state in the Setrograde database through
16-cards. To scale further, independent partitions of the
20 and 24-card databases were verified exhaustively against
a Retrograde implementation modified to use validated 16-
card and 20-card Setrograde Databases as standard endgame
databases. Finally, 2,000 13-trick DD problems were solved
with our Partition Search implementation using the Setro-
grade databases to truncate the last 20, 24, or 28 ply. The
value of each position in the tree was validated against a stan-
dard alpha-beta solver. In total, approximately 1 billion posi-
tions were validated from the 24-card database. Statistically,
this provides a 99% confidence that less than 3.7 million po-
sitions (or <0.0000005% of the databases) are incorrect.

At this time, approximately 500 million positions from the
28-card database have been sampled and verified against a
standard solver. 64-bit checksums are calculated for each in-
dependent database segment.

7 Conclusions

This paper introduces Setrograde Analysis, a generalization
of Retrograde Analysis from states to sets. It has the potential
to reduce the computational and storage needs by orders of
magnitude. Other games for which Setrograde Analysis will
be beneficial include Chinese Checkers and Skat.

Previously, Bridge endgame databases were not built be-
cause the massive search space and storage needs made
it seemingly impractical. Setrograde makes this possible
through 28 cards. The 32-card database is computable with
today’s technology. There are further improvements to Setro-
grade which we expect will reduce the number of sets created
and reduce the computation time. It is now possible to imag-
ine solving the entire 52-card deal space.
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