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Abstract
This paper describes an approach to algorithmic
music composition that takes narrative structures
as input, allowing composers to create music di-
rectly from narrative elements. Creating narrative
development in music remains a challenging task
in algorithmic composition. Our system addresses
this by combining leitmotifs to represent charac-
ters, generative grammars for harmonic coherence,
and evolutionary algorithms to align musical ten-
sion with narrative progression. The system oper-
ates at different scales, from overall plot structure to
individual motifs, enabling both autonomous com-
position and co-creation with varying degrees of
user control. Evaluation with compositions based
on tales demonstrated the system’s ability to com-
pose music that supports narrative listening and
aligns with its source narratives, while being per-
ceived as familiar and enjoyable.

1 Introduction
Music and narrative have been studied through different disci-
plines, from musicology, where the question of whether mu-
sic can be considered a narrative has been discussed [Almén,
2003; Maus, 1988], to music perception, where research has
examined the emergence of narrative interpretations during
music listening [Margulis et al., 2019; Margulis et al., 2022].
Several algorithmic composition1 systems have been devel-
oped across different communities - artificial intelligence
[Davis and Mohammad, 2014; Jeong et al., 2017], computa-
tional creativity [Prechtl et al., 2014; Guo et al., 2022], com-
puter music and music information retrieval [Ruiz-Marcos,
2021; Lopez and Alvaro, 2024] - that either compose mu-
sic for existing narratives, or create musical analogies of ex-
isting narratives. However, the ability to create a narrative
sense of development in music remains an open challenge
in these systems [Carnovalini and Rodà, 2020]. Most sys-
tems lack mechanisms for narrative adaptability and strug-

1Throughout this paper, we use the term “algorithmic compo-
sition” [Fernández and Vico, 2013], although other terms such as
“symbolic music generation” or “music generation” are also com-
mon in the literature [Carnovalini and Rodà, 2020].

gle to control expressive features in alignment with narra-
tive cues [Carnovalini and Rodà, 2020]. Long-term struc-
tural coherence also remains challenging, along with the need
for systems that can align music with higher-level narrative
concepts and adapt to interactive contexts [Herremans et al.,
2017]. These challenges reveal an opportunity for systems
capable of integrating narrative structure, expressive control,
and thematic coherence within algorithmic composition.

In this paper, we present an approach to algorithmic com-
position based on abstract narrative concepts. Our system is
guided by a narrative representation [Gervás, 2019] that is
adaptable to various storytelling domains. It combines gen-
erative grammars to generate chord progressions and evolu-
tionary algorithms to optimize musical elements. The system
incorporates narrative cues such as character themes (leitmo-
tifs), repeated patterns and musical tension to create narrative
structure within music [Herremans et al., 2017]. The evolu-
tionary algorithm combines and evolves these elements while
optimizing for target musical tension, tonal coherence and
recognition of the original leitmotifs.

The novelty in our work lies in (i) the creation of a system
that composes music based on narrative structures by inte-
grating computational representation of narrative, combining
narrative cues and using a hierarchical architecture; and (ii) a
hybrid implementation that allows for autonomous composi-
tion and co-creation with various degrees of controllability.

The remainder of the paper is structured as follows: Sec-
tion 2 presents related work on narrative-based algorithmic
composition and musical tension. Section 3 provides the
foundations for our approach, Section 4 explains our system’s
architecture and implementation, Section 5 discusses evalua-
tion and results, Section 6 addresses limitations, and Section
7 presents conclusions and future work.

2 Related Work

Our work focuses on algorithmic composition based on nar-
rative structure and tension while serving as a tool for co-
creation. As such, we consider related work in two main
areas: algorithmic composition, especially approaches using
musical tension or narrative analogy, and systems for compo-
sition co-creation.
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2.1 Algorithmic Composition

Works on algorithmic composition related to ours can be di-
vided into two types: approaches that compose music based
on different narrative domains and approaches that utilize ten-
sion as a guiding principle.

In the narrative-driven category, several works use differ-
ent approaches to map narrative elements to musical features.
MAgentA [Casella and Paiva, 2001] composes “film-like mu-
sic” using a rule and agent-based approach, selecting compo-
sition algorithms based on emotional states. Brown devel-
oped the Mezzo system [Brown, 2012] for real-time compo-
sition of game soundtracks. It combines musical form and
harmonic tension to reflect the narrative states of the game,
while recurring to leitmotifs for characters, props, and other
important elements in the game. Prechtl et al. [2014] im-
plemented a first-order Markov model to define chord tran-
sitions for real-time composition for games. The transition
matrix varies according to the danger level, a game narrative
metric defined by the authors. Transpose [Davis and Moham-
mad, 2014] composes music for novels by analyzing emo-
tional content through Emotion Word Densities and mapping
it to both global musical parameters (key, tempo) and local
features (pitch, duration).

In the tension-guided category, the approaches vary with
respect to the tension models and composition methods used.
Ruiz-Marcos [2021] uses Lerdahl’s Model of Tonal Tension
[Lerdahl and Krumhansl, 2007], with four components com-
bining rules, generative grammars, and statistical methods.
MorpheuS [Herremans and Chew, 2017] implements the Ten-
sion Ribbons model [Herremans et al., 2016] to compose mu-
sic that matches specified tension profiles (either from a tem-
plate piece or from user input). The authors use an optimiza-
tion approach, implementing a variable neighborhood search
algorithm to optimize the music to the tension patterns. Guo
et al. [2020] use a variational autoencoder (VAE) to com-
pose music controlled by tonal tension. They use two tension
measures from the Tension Ribbons model and were able to
identify four latent feature vectors for tension manipulation.
The same authors developed a system based on the Trans-
former network for infilling applications with multi-level con-
trol [Guo et al., 2022]. They utilize control tokens at the track
level for note density, polyphony, and occupation rate, and at
the bar level for two of the tension measures from the Ten-
sion Ribbons model. MoodLoopGP [Cui et al., 2024] com-
poses loop tablature music using valence, arousal, and mode
control tokens, along with the three tension measures from
Tension Ribbons. Navarro-Cáceres et al. [2019] created an
assistive system to compose chord progressions using an arti-
ficial immune system. The system uses perceptual properties
of chords as objective functions, which were later extended as
a tonal tension model [Navarro-Cáceres et al., 2020]. Jeong et
al. [2017] developed a multi-objective evolutionary approach
using NSGA-II [Deb et al., 2002], optimizing for both stabil-
ity and tension measures. A similar approach is used in an-
other system [Jeong et al., 2022], but instead of the NSGA-II
the authors use a Deep Network-Based Estimation of Dis-
tribution Algorithm, where a VAE is used for new solutions
(trained on each generation of the evolutionary algorithm).

2.2 Co-creative Music Systems
Co-creative music systems employ diverse computational ap-
proaches and allow varying degrees of human interaction in
the composition process. Farbood et al. created Hyper-
score [Farbood et al., 2004], a graphical computer-assisted
composition system designed for novice composers, particu-
larly children. It maps graphical elements controlled by users
(sketches) to both high and low level musical features, such as
harmonic tension, melodic contour, pitch, and dynamics. Co-
coco [Louie et al., 2020] is a web-based music editor that en-
ables novices to co-create music with AI. It does this through
targeted generation controls for specific voices (soprano, alto,
tenor, bass) and time measures, along with semantic sliders
(such as happier/sadder, or more conventional/more surpris-
ing) for high-level musical direction. Déguernel et al. [2022]
proposed a system for co-creative music composition using
a machine learning and rule-based approach. Co-creation is
achieved through data sharing (a user can provide its own
musical data) and knowledge sharing (a user can provide
rules and guidelines). The MMM-Cubase [Tchemeube et
al., 2023] is the application of the Multi-Track Music Ma-
chine [Ens and Pasquier, 2020] as a Digital Audio Worksta-
tion (DAW) plugin. It enables multi-track music co-creation
with three types of user action: track and bar in-flling, and
attribute controls. CHAMELEON [Zacharakis et al., 2021]
is an melodic harmonization assistant that offers co-creation
through conceptual blending of different harmonic idioms.
Micchi et al. [2021] described a co-creative approach to
songwriting, where AI is used as a suggestion tool for multi-
ple musical layers, including melody, chord sequences, lyrics,
and global structure.

3 Background
This section presents the foundations necessary to our nar-
rative approach to algorithmic composition. We start by ex-
plaining some of the work on narrative structure represen-
tation. Then, we go through some of the existing models of
tonal tension with special focus on the Tension Ribbons [Her-
remans et al., 2016], the model used in our system. Follow-
ing this, we present Rohrmeier’s [2011] generative grammar
of tonal harmony, which provides a framework to regulate the
tonal functions’ hierarchy of our system. Finally, we briefly
introduce evolutionary algorithms in the context of algorith-
mic composition, especially the Non-dominated Sorting Ge-
netic Algorithm II (NSGA-II) [Deb et al., 2002] implemented
in our system. These components work together to provide
the foundation for our system: narrative structure provides
the high-level organization, musical tension enables an anal-
ogy for the narrative tension, harmonic grammar ensures mu-
sical coherence, and evolutionary algorithms enable flexible
solution generation.

3.1 Narrative Structure Representation
Considering computational representations of narrative, there
are several approaches in the field of narrative generation.
These vary mainly in terms of the granularity considered for
the knowledge units and on the control methods used to com-
bine each unit into plots [Gervás, 2017].
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plot schema (plot span)

...plot atom ...axis of interest (plot span)

plot atom plot atom ...
axis of interest (plot span)

plot atom plot atom ...

Figure 1: Narrative Representation Overview

The most popular representation baseline for computa-
tional representations of narratives is the concept of character
functions introduced by Propp [1968] in his morphology of
the Russian folk tale. Propp structurally analyzed a corpus of
Russian folk tales and identified a common set of regularities
in terms of the actions performed by characters. He named
these character functions, defined according to their impor-
tance to the plot’s course of action. Examples of these func-
tions include performing a villainous act, starting or winning
a fight, departing on a journey, or rewarding someone [Propp,
1968]. Another important aspect identified by Propp is the
set of roles for characters in the narrative, which he organized
into spheres associated with dramatis personae such as the
hero, villain, and victim. These two concepts, character func-
tion and role, serve to structure the morphology as an outline
of the elementary structure of tales.

There are several computational representations based on
Propp’s morphology, where each approach focuses on differ-
ent sets of features necessary in a story [Gervás, 2017]. For
our model, we adopted the narrative representation developed
by Gervás [2019], as it combines a broad set of features nec-
essary for a story while remaining adaptable and simple. The
representation is based on Propp’s work and introduces a few
concepts to be able to generate more complex structures.

The basic unit of this representation is the plot atom, which
is similar to Propp’s character function, adding information
on how the roles of the unit (e.g., kidnapper, kidnapped)
are filled by roles relevant to the plot (e.g., villain, vic-
tim) [Gervás, 2018a]. The unit above this is called plot span,
and can be constituted by a sequence of plot atoms or smaller
spans. If a plot span constitutes the entire plot, it is called
plot schema, if it is an intermediate unit in the plot structure
it is called axis of interest [Gervás, 2018b]. Each plot span
can have a protagonist defined (role in the axis of interest,
character in the plot schema). An overview of the narrative
representation can be seen in Figure 1. The axes of interest
could be combined with other axes of interest and plot atoms
to define a plot schema. The plot atoms of an axis of interest
do not need to occur sequentially, but may be intertwined with
other axes of interest and plot atoms, with plot links connect-
ing sequential units. This allows the story to maintain both
local coherence and broader narrative structure. An example
can be seen in Figure 2. The only change to the represen-
tation is the addition of a tension curve for each plot atom.
When building the complete narrative, these tension curves
are concatenated to create the story’s overall tension curve.

3.2 Musical Tension
Musical tension is an important tool for evoking emotion in
the listener [Herremans et al., 2017], as such it has the poten-
tial to connect narrative and music. There are several ten-

Kidnapping
abductor = villain
abducted = victim Call

called = hero
caller = sender

Rescue
abducted = victim

rescuer = hero Reward
rewarded =

hero
Plot

AoI: 
Abduction

AoI: 
Call to Action Reward

Figure 2: Narrative structure example [Gervás and Méndez, 2024].
The plot combines two Axes of Interest (AoI): “Abduction” (con-
taining plot atoms “Kidnapping” and “Rescue”) and “Call to Action
Reward” (containing “Call” and “Reward”). Each plot atom assigns
specific roles to characters (e.g., in “Kidnapping”, the villain abducts
the victim). The final plot (plot schema) is constructed through the
non-linear arrangement of these plot atoms from both axes.

sion models from the fields of musicology, computer mu-
sic, and music information retrieval. While some notable
approaches include Lerdahls’ Model of Tonal Tension [Ler-
dahl and Krumhansl, 2007] based on GTTM [Lerdahl and
Jackendoff, 1996] and TPS [Lerdahl, 2001] theories, and
the Computational Model of Tonal Tension Profile [Navarro-
Cáceres et al., 2020] using Tonal Interval Space [Bernardes
et al., 2016], this work focuses on Tension Ribbons [Herre-
mans et al., 2016] due to its empirical validation and growing
adoption in algorithmic composition systems.

Tension Ribbons [Herremans et al., 2016], the model em-
ployed in our system, is based on the spiral array representa-
tion [Chew, 2002], which provides a geometric model of tonal
space where pitch classes, chords, and keys are represented
as points in a three-dimensional helix. This model calculates
tension through three distinct measures that capture different
aspects of musical tension:

1. Cloud Diameter: Measures the largest distance between
any two notes at a given time.

2. Cloud Momentum: Calculates the distance between two
consecutive centers of effect, where the center of effect
represents the weighted center of a set of pitch classes in
the spiral array space.

3. Tensile Strain: Evaluates the distance between the center
of effect of a cloud of notes and the center of effect of
the key.

In addition to the empirical validation [Herremans et al.,
2016] and the growing adoption in recent algorithmic compo-
sition systems [Herremans and Chew, 2017; Guo et al., 2020;
Guo et al., 2022; Cui et al., 2024] mentioned above, this
model also has the advantage of being simple with three com-
plementary measures, making it easier to interpret. Musical
tension provides a framework for translating narrative tension
into musical form. However, maintaining harmonic coher-
ence is important in the creation of musically coherent com-
positions, which led us to consider formal representations of
tonal harmony.

3.3 Generative Grammar of Tonal Harmony
Rohrmeier [2011] proposed a formalization of tonal harmony
specifically designed for computational purposes. It is based
on functional theories of harmony, and considers two under-
lying principles: the dependency principle, which states that
“each chord in a sequence is structurally connected to its pre-
ceding chord or chord group in a dependency relationship”
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and the functional heads principle, which states that “chords
are organized into functional categories which describe their
tonal function which may be instantiated or modified by dif-
ferent chords” [Rohrmeier, 2011]. This formalization cap-
tures the hierarchical nature of tonal progressions through a
recursive structure that allows for both local and long-term
dependencies.

The syntax is defined as a set of context-free production
rules organized in four different levels: phrase, functional,
scale degree, and surface levels. It utilizes the three main
tonal function, tonic, dominant and subdominant to charac-
terize both terminal and non-terminal symbols. The non-
terminal symbols represent regions (TR - tonic region, SR -
subdominant region and DR - dominant region), while ter-
minal symbols represent specific functional terms (t - tonic,
s - subdominant, d - dominant, tp - tonic parallel, sp - sub-
dominant parallel, dp - dominant parallel, tcp - tonic counter
parallel). This approach provides a clear framework for valid
harmonic progressions, considering both local relationships
and larger-scale tonal structures.

Please refer to the original Rohrmeier paper [Rohrmeier,
2011] for the complete set of production rules and detailed
formalization of the syntax.

3.4 Evolutionary Algorithm
Evolutionary algorithms have been used in algorithmic com-
position for several compositional tasks, such as melody, har-
mony, rhythm, jazz improvisation, and polyphony [Fernández
and Vico, 2013; Herremans et al., 2017]. In our case, the al-
gorithm is used to combine preexisting melody and harmony
to find interesting solutions according to a set of objective
functions. In addition, the system is intended to be flexible,
allowing for varying degrees of control, from fully automatic
to manually guided composition.

Evolutionary algorithms are particularly suitable for this
task due to their effectiveness in handling large and complex
search spaces. Also, since evolutionary algorithms main-
tain a population of candidate solutions, they allow for the
emergence of multiple viable alternatives, which is espe-
cially valuable in creative domains such as musical com-
position. Given these requirements, we opted for a Multi-
Objective Evolutionary Algorithm (MOEA). There are three
main MOEA paradigms: Pareto-based, Indicator-based and
Decomposition-based [Emmerich and Deutz, 2018]. Pareto-
based MOEAs rank solutions first by Pareto dominance and
then by their contribution to population diversity. Indicator-
based MOEAs use quality metrics to evaluate and guide the
selection of solution sets. Decomposition-based MOEAs di-
vide the original problem into multiple single-objective sub-
problems using different weight vectors. We selected a
Pareto-based MOEA for its ability to generate diverse so-
lutions, which enables both automated solution selection
through preference weights and manual selection from a
set of alternatives. Specifically, we implement the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) [Deb et
al., 2002], which is the most widely adopted Pareto-based
MOEA. This algorithm generates solutions along the Pareto
front that exhibit significant diversity. The system can there-
fore function autonomously by selecting solutions based on

preference weights or interactively by presenting multiple di-
verse solutions for user selection.

NSGA-II [Deb et al., 2002] operates through an itera-
tive process that uses typical elements of genetic algorithms
with specialized mechanisms to handle multiple objectives.
The algorithm maintains a population of candidate solutions
and employs three key mechanisms: non-dominated sorting,
which ranks solutions based on Pareto dominance; crowding
distance calculation, which promotes diversity among solu-
tions of the same rank; and elitism, which preserves the best
solutions found. In each generation, parent solutions are se-
lected based on these rankings through binary tournament se-
lection. New offspring are produced through genetic opera-
tors, and the combined parent-offspring population is filtered
to maintain a fixed population size while preserving the best
solutions.

The combination of NSGA-II’s multi-objective optimiza-
tion capabilities with our narrative-based representation, ten-
sion modeling, and harmonic grammar constraints enables
the generation of musically coherent compositions that effec-
tively translate narrative structure and tension while maintain-
ing harmonic coherence. More details will be presented in the
following section.

4 Algorithmic Composition Using Narrative
Structure and Tension

In this section, we present our approach to algorithmic com-
position using narrative structure and tension. The system
was designed to be flexible, enabling both autonomous com-
position and music co-creation. The system composes music
consisting of melody and chord progression; it does not pro-
duce arrangement or performance interpretations (discussed
further in Section 6). The system combines multiple tech-
niques: it utilizes leitmotifs as a basis for phrase construc-
tion while optimizing for target musical tension curves and
maintaining structure coherence through context-free gram-
mar harmony. The leitmotifs serve as musical representa-
tions of narrative elements - specifically characters in our im-
plementation - establishing narrative associations within the
composition. The system utilizes musical tension to align the
composition with the narrative tension while using the gen-
erative model of tonal harmony to ensure coherent musical
structure. This approach prevents ill-defined structure and
tension patterns that could result from the use of musical ten-
sion alone. To combine all of these elements - leitmotifs, ten-
sion curves, and harmonic progression - we implemented the
multi-objective evolutionary algorithm NSGA-II. The code
and examples are available at https://github.com/braga1376/
algorithmic-composition-narrative-tension .

4.1 System Architecture
The system architecture has three main hierarchical compo-
nents: the Plot Span Music Composer, the Plot Atom Music
Composer, and the Leitmotif Composer. Figure 3 presents an
overview of the architecture of the system.

The Plot Span Music Composer serves as the entry point
of the system, receiving the narrative structure (plot schema).
It identifies the unique characters and initializes a Leitmotif
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Plot Span Music Composer

Narrative Structure (Plot Schema)

Characters' Leitmotifs

Plot Atom Music Composer
chord
progressions

Generative
Grammar combine

melodies Leitmotifs
combinations

Evolutionary Algorithm

Combine and select based on overall tension alignment

n best individuals

Musical Composition

initial population
...

Leitmotif Composer

Figure 3: System Architecture

Composer for each. Then, it initializes the necessary com-
ponents for each of the plot schema’s components (see Fig-
ure 1): Plot Atom Music Composers for each plot atom and
Plot Span Music Composers for each axis of interest. Any
new Plot Span Music Composers are recursively processed in
the same way.

The core composition process occurs in the Plot Atom Mu-
sic Composer, which processes each plot atom independently.
This component receives the leitmotifs corresponding to its
characters and creates possible melodies by combining these
motifs in different permutations. It computes the narrative
tension curve from the plot atom and applies the context-free
grammar to produce coherent harmonic progressions of ap-
propriate length. These elements are combined to create the
initial population. This population goes through an evolution-
ary composition process using the NSGA-II which balances
three objectives: aligning musical tension with narrative ten-
sion, maintaining tonal coherence, and preserving character
leitmotif recognition. This component produces a set of indi-
viduals on the Pareto front. These can be selected automati-
cally using a weighted selection matrix to identify the n best
individuals according to predefined preferences, or manually
chosen. In the automatic scenario, the Plot Span Music Com-
poser combines the selections from each Plot Atom Music
Composer and selects the combination with a better correla-
tion with the overall narrative tension.

4.2 Implementation
The input narrative is structured as a plot schema, following
Gervás’s [2019] representation. As detailed in Section 3.1,
this schema represents the overall plot through axis of inter-
est or plot atoms (Figure 1). For musical representation, we
use a MIDI-like representation, where notes are defined by
their pitch, start time and duration. The harmonic progres-
sions are represented as harmonic trees. The time signature is
4
4, however, this can be changed in the user scenario.

The leitmotif composition process can be provided by the
user or automatically composed through a Large Language

Piece key=Cmaj

P
TR

TR
TR DR t

dSR

TR

s

IV (F) V (G) I (C)

t

I (C)

TR
DRTR
d

V (G)

tp

VI (Am)

DRTR
dSR

sp
II (Dm) V (G)

Figure 4: Harmonic Tree Example - non-terminal nodes: TR, DR
and SR; terminal nodes: t, d, s, tp and sp; dashed line: application of
rules at the scale degree level (e.g., tp→VI) and surface level (e.g.,
VI→Am)

Model (LLM). For automated composition, we used An-
thropic’s Claude model through its API2. The LLM receives
a prompt containing character information, roles, and narra-
tive arc, and outputs melodic motifs in a structured format of
pitch-duration tuples [(note, duration), ...] with explanations
of musical decisions. In our implementation, each leitmotif
spans two bars with a predefined duration sum. The leitmo-
tifs are combined to compose melodies for the initial popula-
tion of the evolutionary algorithm, with each plot atom corre-
sponding to eight bars of music.

The harmonic structure is represented through trees built
using the context-free grammar of tonal harmony [Rohrmeier,
2011]. To produce harmonic trees, we apply the rules at the
phrase level (to start the generative process) and functional
level (to characterize harmonic relationships on an abstract
level with respect to functions and keys). The key is defined
by the protagonist’s leitmotif. At the functional level, only
functional expansion rules are applied initially, while substi-
tution and modulation rules are implemented through muta-
tion operators in the evolutionary process. Regarding scale
degree level and surface level, these are only applied to obtain
the final harmonic progression. We use the grammar to ob-
tain coherent harmonic progressions with the desired number
of terminal nodes. In our implementation we set one terminal
node per bar. Figure 4 shows an example of a harmonic tree,
where terminal nodes correspond to individual bars.

Regarding the NSGA-II implementation, each individual
in the population corresponds to a harmonic tree with melody.
The evolutionary process uses three objective functions:

1. Tension Alignment: Evaluates the correlation between
musical and narrative tension using the Tension Ribbons
model. The musical tension curve is computed as the av-
erage of the three tension measurements. For each can-
didate solution, the musical tension is compared with the
target narrative tension using Pearson correlation.

2. Tonal Coherence: Assesses the melodic-harmonic rela-
tionship through a weighted beat-based evaluation sys-
tem. Notes are scored according to their metric position
(weights: beat 1>beat 3>beat 2>beat 4>off-beats) and
relationship to the current harmony. The scoring hier-
archy prioritizes chord tones, followed by scale tones

2console.anthropic.com, model: claude-3-5-sonnet-20241022
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without minor second conflicts with chord tones, then
scale tones with conflicts, and finally non-scale tones.

3. Character Motif Recognition: Measures the preserva-
tion of character leitmotifs in the evolved melody us-
ing a sliding window approach. The evaluation consid-
ers both pitch-based features (intervals and contour) and
rhythmic features (duration ratios), computing correla-
tions between the original motifs and melodic segments.
The four highest correlation values for each of the char-
acters leitmotif are averaged for the final score.

Concerning genetic operators, crossover has a probability
of pc = 0.9 equally divided into three types:

• Melodic crossover: Single-point crossover on the
melodic sequence;

• Harmonic crossover: Exchange of compatible harmonic
subtrees (maintaining grammar validity);

• Combined crossover: Application of both melodic and
harmonic crossover.

Mutation has a probability of pm = 0.2 equally divided in
two types:

• Melodic mutations (at the bar level): transposition
(pm−t = 0.1), augmentation (pm−a = 0.1), diminu-
tion (pm−d = 0.1), inversion (pm−i = 0.1), retrograde
(pm−r = 0.1), intervallic alterations (pm−ia = 0.3), and
ornamentation (pm−o = 0.2);

• Harmonic mutations: parallel transformations, where
the parallel rules of the generative grammar are applied
(pm−pt = 0.5), and modulations to non-tonic regions,
where non-tonic subtrees are modulated (pm−m = 0.5).

The evolution process employs standard NSGA-II com-
ponents including fast non-dominated sorting, crowding dis-
tance calculation, and tournament selection. The population
size is 200 individuals and evolves for 200 generations. In the
end of the evolutionary process, the final composition may
be user-selected from Plot Atom Music Composer’s Pareto
front. In our case, 5 solutions are selected using a preference
matrix [0.1, 0.6, 0.3] weighting tonal coherence, character
motif recognition, and tension alignment, respectively. These
selections are then combined following the narrative order,
with the final combination chosen based on optimal align-
ment with the overall narrative tension curve using Pearson
correlation.

5 Evaluation
The evaluation of the system has the purpose of understand-
ing the potential for algorithmic composition from a narrative
structure. Three different narrative structures were created
based on folk tales archetypes identified by Propp [Propp,
1968]. The music for each was composed autonomously, and
the authors chose from the final combinations. The composi-
tions were played using a Virtual Instrument (piano) playing
one chord per bar (using a spread voicing) and the melody.

Since we intend to evaluate the narrative potential of the
system, we used Margulis et al. [2019] procedure to evalu-
ate narrative listening of music. They introduce a Narrative

Engagement scale to verify if narrative listening of the com-
positions is possible. Although the authors’ study concluded
that listening to music narratively can happen, it is impor-
tant to note that this is a very complex and subjective task.
The study’s items to address music familiarity and enjoyment
were also used. In addition, we added four items to evaluate
the Narrative Alignment with the narrative structure used as
input. The scales used were the same as in the study. The
items used in our survey are:

• Story Response Question (yes/no): Did you imagine a
story?

• Narrative Engagement (1-strongly disagree to 6-strongly
agree):

– “It was easy to imagine a story”
– “I imagined a vivid story”
– “I imagined a story with clear setting, characters,

events”
– “I imagined a story while listening, not after”

• Familiarity and Enjoyability (1-strongly disagree to 6-
strongly agree):

– “The music sounded familiar”
– “I found the music enjoyable”

• Narrative Alignment (1-strongly disagree to 6-strongly
agree):

– “The music matches the story’s emotional tone”
– “The music reflects the story’s pacing”
– “Story events are represented musically”
– “The overall musical structure follows the narrative

arc”

The data and analysis is available at https://github.com/
braga1376/algorithmic-composition-narrative-tension.

The surveys were conducted online, and each person re-
sponded to a survey for one of the compositions. We used the
Allocate Monster [Fergusson, 2016] platform to randomize
the survey allocation per person. There were a total of 73 par-
ticipants (64.4% male, 34.2% female, 1.4% other) distributed
in the three surveys (n1 = 25, n2 = 18, n3 = 30). Partici-
pants were aged between 21-55 years (X̄ = 29.4, S = 7.0).
The sample represented diverse musical backgrounds, from
no formal training (31.5%) to professional (21.9%) . Most
participants came from Engineering or Computer Science
(49.3%) and Visual Arts, Music, or Design (31.0%) fields.
We analyzed participants’ responses across the three dimen-
sions: Narrative Engagement, Familiarity and Enjoyability,
and Narrative Alignment. For each dimension we used Cron-
bach’s alpha to confirm internal consistency: Narrative En-
gagement, α = 0.871; Narrative Alignment, α = 0.894; Fa-
miliarity and Enjoyability, α = 0.515. The high Cronbach’s
alpha values for Narrative Engagement and Alignment vali-
dated these as composite measures, whereas for Familiarity
and Enjoyability, they did not, as such they were analyzed
separately. No statistically significant relationship was found
between these dimensions and age, musical background or
field of work.
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Did you imagine a story?
Yes No Combined

Figure 5: Scores for the dimensions Narrative Engagement, Famil-
iarity, Enjoyability and Narrative Alignment

A Mann-Whitney U test revealed a significant relationship
between the Story Response Question and the Narrative En-
gagement scores (p < 0.001, effect size = 0.939). Of the par-
ticipants who reported imagining a story, 94% showed high
narrative engagement (above the combined median value),
while 87.5% of those who did not imagine a story showed
low engagement (below the combined median value). Neither
Narrative Alignment nor the individual measures of Familiar-
ity and Enjoyability showed significant relationships with the
Story Response Question. Figure 5 illustrates these distribu-
tions, with the split violin plot showing the distinct patterns
of Narrative Engagement between participants who did and
did not imagine stories, while other dimensions show more
uniform distributions regardless of story response.

Considering the significant relationship between the Story
Response Question and the Narrative Engagement, we can
distinguish between participants who listened to the music
narratively and those who did not. For those who imagined a
story, the narrative engagement scores (median = 4, IQR =
1.5) suggest that the music successfully supported their narra-
tive listening. It is also noteworthy that narrative listening did
not affect familiarity, enjoyability and narrative alignment.
Even when participants did not imagine a story, the scores
indicate that they found the music familiar (median = 4,
IQR = 2), enjoyable (median = 4, IQR = 2), and aligned
with the original narrative (median = 4, IQR = 1.5).

6 Limitations
Our approach has several limitations that should be acknowl-
edged. First, the system’s output is composed of chord
progression and melody. It lacks compositional decisions
such as the chords’ voicings or other more complex ar-
rangement, instrumentation, and even dynamics. While this
may be common in these systems [Herremans et al., 2017;
Carnovalini and Rodà, 2020], the absence of arrangement de-
cisions affects aspects such as the narrative engagement and
alignment, and even the overall perceived musical tension.

Second, the model of tonal tension focuses exclusively on
harmonic aspects. Although the simplicity of the model is
useful in our scenario, there are many factors that determine
perceived tension besides the harmonic content, such as dy-

namics, timbre, repetition [Madsen and Fredrickson, 1993],
phrase structure, note density [Krumhansl, 1996], tempo, and
pitch height [Farbood, 2012].

Third, in evolutionary process, although the different op-
erators are able to produce diverse compositions, the set of
possible transformations is bounded by the defined set. This,
of course, constraints the search space of the algorithm and
might pose a challenge in the co-creation scenario since the
user is limited to the predefined operators. These limitations
present opportunities for future research to expand the sys-
tem’s capabilities.

7 Conclusions and Future Work

This paper has presented an algorithmic composition sys-
tem that uses narrative structure and tension that integrates
multiple computational approaches. By utilizing a hierarchi-
cal architecture that processes narrative elements at different
scales - from plot schemas to individual characters - the sys-
tem demonstrates the feasibility of translating narrative ele-
ments into musical form. The system achieves this through
three key mechanisms: character representation through leit-
motifs, maintenance of harmonic coherence through gener-
ative grammars, and optimization of musical tension align-
ment through evolutionary algorithms. This hybrid approach
enables both autonomous composition and various degrees
of user control in the co-creative process. The integration
of these elements - narrative representation, musical tension,
and harmonic structure - provides a framework for narrative-
based musical composition. Although the current implemen-
tation focuses on the first compositional aspects, it establishes
a novel approach on musical narratives.

Regarding future work, we have two main focuses: im-
proving co-creation capabilities of the system and refining
the current approach. For co-creation capabilities, the system
can be extended as a tool by creating an interface for easy
manipulation of elements and connecting it to either a Digital
Audio Workstation or Musical Notation software as a plugin.
This would allow composers to create their own narrative and
compose music for it, with further arranging and editing ca-
pabilities. Since the system uses narrative representation as
input, it could be adapted to compose music for different nar-
rative domains, such as stories and films, by converting orig-
inal narratives to the narrative representation used.

Regarding the current approach, several improvements are
possible. Since many aspects of arrangements influence per-
ceived tension, adding arrangement capabilities could en-
hance the results. The composition process, currently based
on leitmotifs and their alterations to obtain the desired ten-
sion, could become repetitive when narrative segments are
long. To address this, we could add non-motif phrases as in-
filling. The evaluation approach seems promising, and for fu-
ture work we intend to use this evaluation method to compare
the system to a baseline without guidance from the narrative
structure, and with a random narrative structure. Finally, user
control could be expanded by allowing selection of specific
musical operators in the evolutionary algorithm.
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